Influence of the Size of Damage to the Steel Wire Rope on the Magnetic Signature
Abstract
1. Introduction
1.1. Background
1.2. Aim of the Work
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Magnetic Anomaly Detection
2.2.2. Self-Magnetic Flux Leakage (SMFL)
2.2.3. Tunneling Magnetoresistance (TMR) Sensor-Based Measuring System
3. Results
4. Discussion
4.1. Interpretation of Charts
- ➢
- Rope no. 1:
- ○
- Damage 1 mm: ΔBx_D = 20 μT, ΔBy_D= 2 μT, ΔBz_D = 30 μT,
- ○
- Damage 2 mm: ΔBx_D = 60 μT, ΔBy_D= 15 μT, ΔBz_D = 90 μT,
- ○
- Damage 3 mm: ΔBx_D = 100 μT, ΔBy_D= 25 μT, ΔBz_D = 130 μT,
- ➢
- Rope no. 2:
- ○
- Damage 1 mm: ΔBx_D = 5 μT, ΔBy_D=1 μT, ΔBz_D = 10 μT,
- ○
- Damage 2 mm: ΔBx_D = 30 μT, ΔBy_D=5 μT, ΔBz_D = 50 μT,
- ○
- Damage 3 mm: ΔBx_D = 70 μT, ΔBy_D=10 μT, ΔBz_D = 100 μT,
- ➢
- Rope no. 1:
- ○
- Damage 1 mm: B_D* = 1000 μT^3,
- ○
- Damage 2 mm: B_D* = 35000 μT^3,
- ○
- Damage 3 mm: B_D* = 145000 μT^3,
- ➢
- Rope no. 2:
- ○
- Damage 1 mm: B_D* = 50 μT^3,
- ○
- Damage 2 mm: B_D* = 1500 μT^3,
- ○
- Damage 3 mm: B_D* = 22000 μT^3,
- ➢
- Rope no. 1:
- ○
- Damage 1 mm: |B_D| = 18 μT,
- ○
- Damage 2 mm: |B_D| = 57 μT,
- ○
- Damage 3 mm: |B_D| = 89 μT,
- ➢
- Rope no. 2:
- ○
- Damage 1 mm: |B_D| = 5 μT,
- ○
- Damage 2 mm: |B_D| = 25 μT,
- ○
- Damage 3 mm: |B_D| = 57 μT,
4.2. Analysis of the Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Jing, L.; Chen, C.; Bai, X.; Tan, J. A comprehensive study of the magnetic concentrating sensor for the damage detection of steel wire ropes. Mater. Res. Express 2020, 7, 096102. [Google Scholar] [CrossRef]
- Zhou, P.; Zhou, G.; Zhu, Z.; He, Z.; Ding, X.; Tang, C. A Review of Non-Destructive Damage Detection Methods for Steel Wire Ropes. Appl. Sci. 2019, 9, 2771. [Google Scholar] [CrossRef]
- Jiles, D.C. Theory of the magnetomechanical effect. J. Phys. D Appl. Phys. 1995, 28, 1537–1546. [Google Scholar] [CrossRef]
- Ni, Y.; Zhang, Q.; Xin, R. Magnetic flux detection and identification of bridge cable metal area loss damage. Measurement 2020, 167, 108443. [Google Scholar] [CrossRef]
- Dong, Z.; Fan, P.; Li, P.; Mao, Y. Experimental study on the sensitive parameters of non-destructive test method for the cable based on the leakage magnetic principle. IOP Conf. Ser. Earth Environ. Sci. 2020, 474, 072039. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Shi, J. A new quantitative non-destructive testing approach of broken wires for steel wire rope. Int. J. Appl. Electromagn. Mech. 2020, 62, 415–431. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Z. Fault Diagnosis of Steel Wire Ropes Based on Magnetic Flux Leakage Imaging Under Strong Shaking and Strand Noises. IEEE Trans. Ind. Electron. 2020, 68, 2543–2553. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, E.; Pan, S.; Yan, X.; Gao, W. Fast Quantitative Method to Detect the Cross-Sectional Loss of Wire Rope Defects. IEEE Trans. Instrum. Meas. 2021, 70, 3054695. [Google Scholar] [CrossRef]
- Gontarz, S.; Radkowski, S. Impact of Various Factors on Relationships Between Stress and Eigen Magnetic Field in a Steel Specimen. IEEE Trans. Magn. 2011, 48, 1143–1154. [Google Scholar] [CrossRef]
- Mazurek, P.; Roskosz, M.; Kwasniewski, J. Novel Diagnostic of Steel Wire Rope with Passive Magnetic Methods. IEEE Magn. Lett. 2021, 13, 3128828. [Google Scholar] [CrossRef]
- Mouradi, H.; El Barkany, A.; El Biyaali, A. Investigation on the main degradation mechanisms of steel wire ropes: A literature review. J. Eng. Appl. Sci. 2016, 11, 1206–1217. [Google Scholar] [CrossRef]
- Mazurek, P.; Kwaśniewski, J.; Roskosz, M.; Siwoń-Olszewski, R. The use of a magnetic flux leakage in the assessment of the technical state of a steel wire rope subjected to bending. J. Konbin 2018, 48, 493–513. [Google Scholar] [CrossRef]
- Mazurek, P.; Roskosz, M. Influence of the Earth’s magnetic field on the diagnosis of steel wire rope by passive magnetic methods. J. Magn. Magn. Mater. 2021, 547, 168802. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, P.; Tan, X. Recognition of Broken Wire Rope Based on Remanence using EEMD and Wavelet Methods. Sensors 2018, 18, 1110. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, J.; Zhang, L.; Yu, Q.; Huang, Y.; Shen, Y. Magnetic Signature Analysis for Smart Security System Based on TMR Magnetic Sensor Array. IEEE Sens. J. 2019, 19, 3149–3155. [Google Scholar] [CrossRef]
- Khan, M.A.; Sun, J.; Li, B.; Przybysz, A.; Kosel, J. Magnetic sensors-A review and recent technologies. Eng. Res. Express 2021, 3, 022005. [Google Scholar] [CrossRef]
- SpinMeter-3D USB 3 Axis Magnetometer-Software Installation and User Guide. Available online: http://www.micromagnetics.com/product_page_spinmeter3.html (accessed on 24 August 2022).
- Sheinker, A.; Frumkis, L.; Ginzburg, B.; Salomonski, N.; Kaplan, B.-Z. Magnetic Anomaly Detection Using a Three-Axis Magnetometer. IEEE Trans. Magn. 2009, 45, 160–167. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazurek, P.; Roskosz, M.; Kwaśniewski, J. Influence of the Size of Damage to the Steel Wire Rope on the Magnetic Signature. Sensors 2022, 22, 8162. https://doi.org/10.3390/s22218162
Mazurek P, Roskosz M, Kwaśniewski J. Influence of the Size of Damage to the Steel Wire Rope on the Magnetic Signature. Sensors. 2022; 22(21):8162. https://doi.org/10.3390/s22218162
Chicago/Turabian StyleMazurek, Paweł, Maciej Roskosz, and Jerzy Kwaśniewski. 2022. "Influence of the Size of Damage to the Steel Wire Rope on the Magnetic Signature" Sensors 22, no. 21: 8162. https://doi.org/10.3390/s22218162
APA StyleMazurek, P., Roskosz, M., & Kwaśniewski, J. (2022). Influence of the Size of Damage to the Steel Wire Rope on the Magnetic Signature. Sensors, 22(21), 8162. https://doi.org/10.3390/s22218162