Hybrid Detection of Breast Abnormalities Based on Contrast Agents: Introducing a Proof of Concept from a Physics Perspective
Abstract
1. Introduction
2. Materials and Methods
2.1. The Hybrid Detective Imaging System
2.2. The Role of the Contrast Agent as “Fingerprint” Tissue Abnormality
2.3. Monte Carlo Modeling of K-X-rays Emitted by the Contrast Agent
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fass, L. Imaging and cancer: A review. Mol. Oncol. 2008, 2, 115–152. [Google Scholar] [CrossRef] [PubMed]
- Dance, D.R.; Christofides, S.; Maidment, A.D.A.; McLean, I.D.; Ng, K.H. Diagnostic Radiology Physics; International Atomic Energy Agency (IAEA): Vienna, Austria, 2014. [Google Scholar]
- Cherry, S. Multimodality imaging: Beyond PET/CT and SPECT/CT. Semin. Nucl. Med. 2009, 39, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Huellner, M.W.; Appenzeller, P.; Kuhn, F.P.; Husmann, L.; Pietsch, C.M.; Burger, I.A.; Porto, M.; Delso, G.; Schulthess, G.K.; Veit-Haibach, P. Whole-body nonenhanced PET/MR versus PET/CT in the staging and restaging of cancers: Preliminary observations. Radiology 2014, 273, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.; Siegel, R.; Jemal, A. Global Cancer Facts & Figures 2018, 4th ed.; American Cancer Society: Atlanta, GA, USA, 2018. [Google Scholar]
- Chen, Y.-C.; Prabhu, K.S.; Das, A.; Mastro, A.M. Dietary selenium supplementation modifies breast tumor growth and metastasis. Int. J. Cancer. 2013, 133, 2054–2064. [Google Scholar] [CrossRef] [PubMed]
- The Swedish Organized Service Screening Evaluation Group. Reduction in breast cancer mortality from organized service screening with mammography: 1. Further confirmation with extended data. Cancer Epidemiol. Biomarkers Prev. 2006, 15, 45–51. [Google Scholar] [CrossRef]
- Thurfjell, E.L.; Lindgren, J.A. Breast cancer survival rates with mammographic screening: Similar favorable survival rates for women younger and those older than 50 years. Radiology 1996, 201, 421–426. [Google Scholar] [CrossRef]
- Durduran, T.; Choe, R.; Baker, W.B.; Yodh, A.G. Diffuse optics for tissue monitoring and tomography. Rep. Prog. Phys. 2010, 73, 076701. [Google Scholar] [CrossRef]
- Gibson, A.P.; Hebden, J.C.; Arridge, S.R. Recent advances in diffuse optical imaging. Phys. Med. Biol. 2005, 50, R1–R43. [Google Scholar] [CrossRef]
- Kerlikowske, K.; Barclay, J.; Grady, D.; Sickles, E.A.; Ernster, V. Comparison of risk factors for ductal carcinoma in situ and invasive breast cancer. J. Natl. Cancer Inst. 1997, 89, 76–82. [Google Scholar] [CrossRef]
- Lucassen, A.; Watson, E.; Eccles, D. Advice about mammography for a young woman with a family history of breast cancer. Br. Med. J. 2004, 322, 1040–1042. [Google Scholar] [CrossRef]
- Carney, P.A.; Miglioretti, D.L.; Yankaskas, B.C.; Kerlikowske, K.; Rosenberg, R.; Rutter, C.M.; Geller, B.M.; Abraham, L.A.; Taplin, S.H.; Dignan, M.; et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann. Intern. Med. 2003, 138, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Boyd, N.F.; Guo, H.; Martin, L.J.; Sun, L.; Stone, J.; Fishell, E.; Jong, R.A.; Hislop, G.; Chiarelli, A.; Minkin, S.; et al. Mammographic density and the risk and detection of breast cancer. N. Engl. J. Med. 2007, 356, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Warner, E.; Plewes, D.B.; Shumak, R.S.; Catzavelos, G.C.; Di Prospero, L.S.; Yaffe, M.J.; Goel, V.; Ramsay, E.; Chart, P.L.; Cole, D.E.; et al. Comparison of breast magnetic resonance imaging, mammography and ultrasound for surveillance of women at high risk for hereditary breast cancer. J. Clin. Oncol. 2001, 19, 3524–3531. [Google Scholar] [CrossRef] [PubMed]
- Lobbes, M.B.I.; Smidt, M.L.; Houwers, J.; Tjan-Heijnen, V.C.; Wildberger, J.E. Contrast enhanced mammography: Techniques, current results, and potential indications. Clin. Radiol. 2013, 68, 935–944. [Google Scholar] [CrossRef]
- Punnoose, J.; Xu, J.; Sisniega, A.; Zbijewski, W.; Siewerdsen, J.H. Technical Note: SPEKTR 3.0—A computational tool for x-ray spectrum modeling and analysis. Med. Phys. 2016, 43, 4711–4717. [Google Scholar] [CrossRef]
- Nowotny, R. XMuDat: Photon Attenuation Data on PC; IAEA-NDS-195; International Atomic Energy Agency: Vienna, Austria, 1998; Available online: https://www-nds.iaea.org/publications/iaea-nds/iaea-nds-0195.htm (accessed on 31 August 2022).
- Jochelson, M.S.; Dershaw, D.D.; Sung, J.S.; Heerdt, A.S.; Thornton, C.; Moskowitz, C.S.; Ferrara, J.; Morris, E.A. Bilateral contrast-enhanced dual-energy digital mammography: Feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma. Radiology 2013, 266, 743–751. [Google Scholar] [CrossRef]
- Wilson, C.B.J.H.; Lammertsma, A.A.; McKenzie, C.G.; Sikora, K.; Jones, T. Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: A rapid and noninvasive dynamic method. Cancer Res. 1992, 52, 1592–1597. [Google Scholar]
- Cullen, D.E.; Hubbell, J.H.; Kissel, L. EPDL97 the Evaluated Data Library, ’97 version, Report UCRL-50400; LLNLL: Livermore, CA, USA, 1997. [Google Scholar]
- Hubbell, J.H.; Trehan, P.N.; Singh, N.; Chand, B.; Mehta, D.; Garg, M.L.; Garg, R.R.; Singh, S.; Puri, S. A Review, Bibliography, and Tabulation of K, L, and Higher Atomic Shell X-ray Fluorescence Yields. J. Phys. Chem. Ref. Data 1994, 23, 339–364. [Google Scholar] [CrossRef]
- Chen, R.C.; Longo, R.; Rigon, L.; Zanconati, F.; De Pellegrin, A.; Arfelli, F.; Dreossi, D.; Menk, R.-H.; Vallazza, E.; Xiao, T.Q.; et al. Measurement of the linear attenuation coefficients of breast tissues by synchrotron radiation computed tomography. Phy. Med. Biol. 2010, 55, 4993–5005. [Google Scholar] [CrossRef]
- Blanchota, G.; Chmeissania, M.; Diazb, A.; Diazb, F.; Fernandezc, J.; Garciab, E.; Garciaa, J.; Kainbergerd, F.; Lozanoe, M.; Maiorinoa, M.; et al. Dear-Mama: A photon counting X-ray imaging project for medical applications. Nucl. Instr. Meth. A 2006, 569, 136–139. [Google Scholar] [CrossRef]
- Bor, D.; Tukel, S.; Olgar, T.; Aydin, E. Variations in breast doses for an automatic mammography unit. Diagn. Interv. Radiol. 2008, 14, 122–126. [Google Scholar] [PubMed]
- IAEA-TECDOC-1447; Optimization of the Radiological Protection of Patients: Image Quality and Dose in Mammography (Coordinated Research in Europe). IAEA: Vienna, Austria, May 2005.
- Abbene, L.; La Manna, A.; Fauci, F.; Gerardi, G.; Stumbo, S.; Raso, G. X-ray spectroscopy and dosimetry with a portable CdTe device. Nucl. Instr. Meth. A 2007, 571, 373–377. [Google Scholar] [CrossRef]
- Liaparinos, P.; Bliznakova, K. Monte Carlo performance on the x-ray converter thickness in digital mammography using software breast models. Med. Phys. 2012, 39, 6638–6651. [Google Scholar] [CrossRef] [PubMed]
- Hoheisel, M. Review of medical imaging with emphasis on X-ray detectors. Nucl. Instr. Meth. A 2006, 563, 215–224. [Google Scholar] [CrossRef]
- Liaparinos, P. LIGHTAWE—Case studies of LIGHT spreAd in poWder materials: A montE carlo simulation tool for research and educational purposes. Appl. Phys. B 2019, 125, 151. [Google Scholar] [CrossRef]
- Liaparinos, P.F. Optical diffusion performance of nanophosphor-based materials for use in medical imaging. J. Biomed. Opt. 2012, 17, 126013. [Google Scholar] [CrossRef]
- Dainty, J.C.; Shaw, R. Image Science; Academic: New York, NY, USA, 1974. [Google Scholar] [CrossRef]
- Willemink, M.J.; Persson, M.; Pourmorteza, A.; Pelc, N.J.; Fleischmann, D. Photon-counting CT: Technical Principles and Clinical Prospects. Radiology 2018, 289, 293–312. [Google Scholar] [CrossRef]
- Procza, S.; Avilab, C.; Feya, J.; Roqueb, G.; Schuetza, M.; Hamannc, E. X-ray and gamma imaging with Medipix and Timepix detectors in medical research. Radiat. Meas. 2019, 127, 106104. [Google Scholar] [CrossRef]
- Quarati, F.; O’Shea, V.; Smith, K. Image quality of medipix2 assemblies with silicon detectors of two different thicknesses. Nucl. Instr. Meth. A 2005, 546, 42–45. [Google Scholar] [CrossRef]
- Leng, S.; Bruesewitz, M.; Tao, S.; Rajendran, K.; Halaweish, A.F.; Campeau, N.G.; Fletcher, J.G.; McCollough, C.H. Photon-counting Detector CT: System Design and Clinical Applications of an Emerging Technology. Radiographics 2019, 39, 729–743. [Google Scholar] [CrossRef]
- Wang, X.; Meier, D.; Taguchi, K.; Wagenaar, D.J.; Patt, B.E.; Frey, E.C. Material separation in X-ray CT with energy resolved photon-counting detectors. Med. Phys. 2011, 38, 1534–1546. [Google Scholar] [CrossRef] [PubMed]
- Wright, V.A.; Davidson, W.D.; Melone, J.J.; O’Shea, V.; Smith, K.M.; Donohue, L.; Lea, L.; Robb, K.; Nenonen, S.; Sipila, H. Three-dimensional medipix—A new generation of X-ray detectors. IEEE Trans. Nucl. Sci. 2005, 52, 1873–1876. [Google Scholar] [CrossRef]
- Hainfeld, J.F.; Ridwan, S.M.; Stanishevskiy, Y.; Smilowitz, N.R.; Davis, J.; Smilowitz, H.M. Small, long blood half-life iodine nanoparticle for vascular and tumor imaging. Sci. Rep. 2018, 8, 13803. [Google Scholar] [CrossRef] [PubMed]
- Saunders, R.S.; Samei, E.; Lo, J.Y.; Baker, J.A. Can Compression Be Reduced for Breast Tomosynthesis? Monte Carlo Study on Mass and Microcalcification Conspicuity in Tomosynthesis. Radiology 2009, 251, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Poulos, A.; McLean, D.; Rickard, M.; Heard, R. Breast compression in mammography: How much is enough? Australas. Radiol. 2003, 47, 121–126. [Google Scholar] [CrossRef]
Contrast Agent-Iodine (I) | |
---|---|
K-edge (keV) | 33.18 |
Fluorescent yield ωKα | 0.841 a |
X-ray energy (keV) Κα | 28.46 |
Fluorescent yield ωKβ | 0.900 b |
X-ray energy (keV) Κβ1 | 33.29 |
Probability of KL relaxation ξKL | 0.820 c |
Κα Produced | Κα Emitted | Κβ1 Produced | Κβ1 Emitted | |
---|---|---|---|---|
Tissue thickness (mm) | 40 kV W/Al (0.3 mm Gd) | |||
ESAK 10 mGy: 154,325,927 ± 2361 X-ray photons | ||||
Fibrous tissue | ||||
0.20 | 919,530 ± 1113 | 180,213 ± 91 | 216,270 ± 585 | 46,657 ± 134 |
0.50 | 2,259,247 ± 303 | 439,864 ± 318 | 531,387 ± 314 | 113,560 ± 243 |
1.00 | 4,390,417 ± 1123 | 845,360 ± 1441 | 1,031,301 ± 689 | 218,528 ± 210 |
2.50 | 10,069,414 ± 6029 | 1,871,363 ± 662 | 2,364,725 ± 577 | 485,761 ± 558 |
Tumor tissue | ||||
0.20 | 3,554,987 ± 1547 | 696,311 ± 525 | 834,560 ± 1110 | 179,404 ± 303 |
0.50 | 8,288,675 ± 1295 | 1,613,178 ± 176 | 1,946,062 ± 160 | 416,505 ± 316 |
1.00 | 14,825,168 ± 5152 | 2,847,935 ± 487 | 3,480,900 ± 1381 | 735,349 ± 988 |
2.50 | 27,282,049 ± 8256 | 5,018,295 ± 1782 | 6,411,497 ± 3725 | 1,304,219 ± 1618 |
50 kV W/Al (0.3 mm Gd) | ||||
ESAK 10 mGy: 208,131,504 ± 11,054 X-ray photons | ||||
Fibrous tissue | ||||
0.20 | 1,528,085 ± 950 | 299,099 ± 672 | 359,320 ± 227 | 77,464 ± 362 |
0.50 | 3,769,500 ± 1747 | 733,758 ± 1030 | 886,339 ± 886 | 189,812 ± 236 |
1.00 | 7,359,554 ± 3712 | 1,414,941 ± 742 | 1,729,163 ± 243 | 366,219 ± 397 |
2.50 | 17,167,289 ± 2508 | 3,193,661 ± 1358 | 4,030,857 ± 878 | 829,263 ± 962 |
Tumor tissue | ||||
0.20 | 5,946,659 ± 302 | 1,164,779 ± 1396 | 1,397,721 ± 558 | 300,511 ± 824 |
0.50 | 14,048,481 ± 3716 | 2,734,730 ± 1064 | 3,298,319 ± 1223 | 704,555 ± 647 |
1.00 | 25,675,571 ± 3529 | 4,940,486 ± 3296 | 6,028,654 ± 1281 | 1,275,854 ± 751 |
2.50 | 49,935,784 ± 3291 | 9,208,489 ± 3261 | 11,721,499 ± 2947 | 2,390,102 ± 1366 |
Κα Produced | Κα Emitted | Κβ1 Produced | Κβ1 Emitted | |
---|---|---|---|---|
Tissue thickness (mm) | 40 kV W/Al (0.3 mm Gd) | |||
ESAK 15 mGy: 231,489,318 ± 1873 X-ray photons | ||||
Fibrous tissue | ||||
0.20 | 1,086,583 ± 693 | 111,018 ± 172 | 255,284 ± 856 | 30,692 ± 133 |
0.50 | 2,668,106 ± 128 | 271,053 ± 131 | 626,624 ± 804 | 74,837 ± 277 |
1.00 | 5,182,404 ± 1631 | 521,206 ± 614 | 1,216,283 ± 1555 | 144,092 ± 164 |
2.50 | 11,883,820 ± 1862 | 1,158,467 ± 891 | 2,792,623 ± 849 | 322,277 ± 618 |
Tumor tissue | ||||
0.20 | 4,195,170 ± 458 | 429,199 ± 132 | 985,172 ± 553 | 118,587 ± 355 |
0.50 | 9,782,535 ± 3045 | 995,528 ± 776 | 2,297,811 ± 1913 | 274,695 ± 243 |
1.00 | 17,496,435 ± 4343 | 1,758,550 ± 2252 | 4,112,562 ± 474 | 486,680 ± 484 |
2.50 | 32,188,347 ± 913 | 3,107,396 ± 1886 | 7,563,711 ± 3166 | 864,557 ± 604 |
50 kV W/Al (Gd filtration) | ||||
ESAK 15 mGy: 312,198,595 ± 11,587 X-ray photons | ||||
Fibrous tissue | ||||
0.20 | 1,927,864 ± 480 | 196,690 ± 354 | 452,256 ± 791 | 54,170 ± 116 |
0.50 | 4,753,395 ± 2088 | 482,327 ± 408 | 1,115,946 ± 404 | 133,064 ± 253 |
1.00 | 9,279,887 ± 1131 | 932,832 ± 612 | 2,180,559 ± 511 | 258,119 ± 317 |
2.50 | 21,657,692 ± 2070 | 2,112,970 ± 1711 | 5,086,165 ± 1837 | 586,491 ± 1310 |
Tumor tissue | ||||
0.20 | 7,494,827 ± 1304 | 765,266 ± 340 | 1,761,087 ± 1369 | 211,620 ± 758 |
0.50 | 17,722,602 ± 6765 | 1,801,619 ± 619 | 4,165,397 ± 1660 | 497,862 ± 461 |
1.00 | 32,418,446 ± 9013 | 3,261,592 ± 1376 | 7,612,154 ± 2321 | 901,771 ± 1504 |
2.50 | 63,219,666 ± 6066 | 6,123,979 ± 417 | 14,856,997 ± 3051 | 1,704,321 ± 1617 |
Ratio of Κα Counted | Ratio of Κβ1 Counted | Ratio of Κα Counted | Ratio of Κβ1 Counted | |
---|---|---|---|---|
40 kV W/Al (0.3 mm Gd) | ||||
Tissue thickness(mm) | Fat tissue: 4 cm | Fat tissue: 8 cm | ||
0.20 | 3.87 | 3.88 | 3.86 | 3.86 |
0.50 | 3.67 | 3.68 | 3.66 | 3.66 |
1.00 | 3.37 | 3.35 | 3.38 | 3.38 |
2.50 | 2.68 | 2.68 | 2.68 | 2.68 |
50 kV W/Al (0.3mm Gd) | ||||
Fat tissue: 4 cm | Fat tissue: 8 cm | |||
0.20 | 3.88 | 3.85 | 3.88 | 3.87 |
0.50 | 3.72 | 3.72 | 3.74 | 3.75 |
1.00 | 3.49 | 3.48 | 3.50 | 3.48 |
2.50 | 2.89 | 2.89 | 2.90 | 2.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liaparinos, P. Hybrid Detection of Breast Abnormalities Based on Contrast Agents: Introducing a Proof of Concept from a Physics Perspective. Sensors 2022, 22, 7514. https://doi.org/10.3390/s22197514
Liaparinos P. Hybrid Detection of Breast Abnormalities Based on Contrast Agents: Introducing a Proof of Concept from a Physics Perspective. Sensors. 2022; 22(19):7514. https://doi.org/10.3390/s22197514
Chicago/Turabian StyleLiaparinos, Panagiotis. 2022. "Hybrid Detection of Breast Abnormalities Based on Contrast Agents: Introducing a Proof of Concept from a Physics Perspective" Sensors 22, no. 19: 7514. https://doi.org/10.3390/s22197514
APA StyleLiaparinos, P. (2022). Hybrid Detection of Breast Abnormalities Based on Contrast Agents: Introducing a Proof of Concept from a Physics Perspective. Sensors, 22(19), 7514. https://doi.org/10.3390/s22197514