Usability of Two New Interactive Game Sensor-Based Hand Training Devices in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Materials
2.3. Procedure
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lew, M. Overview of Parkinson’s Disease. Pharmacotherapy 2007, 27, 155–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouli, A.; Torsney, K.M.; Kuan, W.-L. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. In Parkinson’s Disease: Pathogenesis and Clinical Aspects; Stoker, T.B., Greenland, J.C., Eds.; Codon Publications: Brisbane, Australia, 2018; pp. 3–26. [Google Scholar]
- Burn, D.; Weintraub, D.; Robbins, T. Introduction: The importance of cognition in movement disorders: Cognition in Movement Disorders. Mov. Disord. 2014, 29, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koerts, J.; Van Beilen, M.; Tucha, O.; Leenders, K.L.; Brouwer, W.H. Executive Functioning in Daily Life in Parkinson’s Disease: Initiative, Planning and Multi-Task Performance. PLoS ONE 2011, 6, e29254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, C.; Lv, L.; Mao, S.; Dong, H.; Liu, B. Cognition Deficits in Parkinson’s Disease: Mechanisms and Treatment. Park. Dis. 2020, 2020, 2076942. [Google Scholar] [CrossRef]
- Foki, T.; Pirker, W.; Geißler, A.; Haubenberger, D.; Hilbert, M.; Hoellinger, I.; Wurnig, M.; Rath, J.; Lehrner, J.; Matt, E.; et al. Finger dexterity deficits in Parkinson’s disease and somatosensory cortical dysfunction. Parkinsonism Relat. Disord. 2015, 21, 259–265. [Google Scholar] [CrossRef]
- Gebhardt, A.; Vanbellingen, T.; Baronti, F.; Kersten, B.; Bohlhalter, S. Poor dopaminergic response of impaired dexterity in Parkinson’s disease: Bradykinesia or limb kinetic apraxia? Mov. Disord. 2008, 23, 1701–1706. [Google Scholar] [CrossRef]
- Vanbellingen, T.; Kersten, B.; Bellion, M.; Temperli, P.; Baronti, F.; Müri, R.; Bohlhalter, S. Impaired finger dexterity in Parkinson’s disease is associated with praxis function. Brain Cogn. 2011, 77, 48–52. [Google Scholar] [CrossRef]
- Morgan, J.C.; Fox, S.H. Treating the Motor Symptoms of Parkinson Disease. Contin. Lifelong Learn. Neurol. 2016, 22, 1064–1085. [Google Scholar] [CrossRef]
- Tveiten, O.V.; Skeie, G.O.; Haugarvoll, K.; Müller, B.; Larsen, J.P.; Tysnes, O.B. Treatment in early Parkinson’s disease: The Norwegian ParkWest study. Acta Neurol. Scand. 2013, 128, 107–113. [Google Scholar] [CrossRef]
- Gotham, A.M.; Brown, R.G.; Marsden, C.D. “Frontal” cognitive function in patients with Parkinson’s disease “on” and “off” levodopa. Brain 1988, 111, 299–321. [Google Scholar] [CrossRef]
- Sturkenboom, I.H.W.M.; Graff, M.J.L.; Hendriks, J.C.M.; Veenhuizen, Y.; Munneke, M.; Bloem, B.R.; der Sanden, M.W.N. Efficacy of occupational therapy for patients with Parkinson’s disease: A randomised controlled trial. Lancet Neurol. 2014, 13, 557–566. [Google Scholar] [CrossRef]
- Keus, S.; Munneke, M.; Graziano, M.; Paltamaa, J.; Pelosin, E.; Domingos, J.; Brühlmann, S.; Ramaswamy, B.; Prins, J.; Struiksma, C.; et al. European Physiotherapy Guideline for Parkinson’s Disease; KNGF/ParkinsonNet: The Netherlands, 2014. [Google Scholar]
- Rao, A.K. Enabling functional independence in Parkinson’s disease: Update on occupational therapy intervention: Occupational Therapy and Parkinson Disease. Mov. Disord. 2010, 25, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Rego, P.A.; Moreira, P.M.; Reis, L.P. A Serious Games Framework for Health Rehabilitation. Int. J. Healthc. Inf. Syst. Inform. 2014, 9, 1–21. [Google Scholar] [CrossRef]
- Read, J.L. Interactive Games to Promote Behavior Change in Prevention and Treatment. JAMA 2011, 305, 1704. [Google Scholar] [CrossRef]
- Smith, S.T.; Schoene, D. The use of exercise-based videogames for training and rehabilitation of physical function in older adults: Current practice and guidelines for future research. Aging Health 2012, 8, 243–252. [Google Scholar] [CrossRef]
- Ottiger, B.; Van Wegen, E.; Keller, K.; Nef, T.; Nyffeler, T.; Kwakkel, G.; Vanbellingen, T. Getting into a “Flow” state: A systematic review of flow experience in neurological diseases. J. NeuroEng. Rehabil. 2021, 18, 65. [Google Scholar] [CrossRef]
- Anders, P.; Lehmann, T.; Müller, H.; Grønvik, K.B.; Skjæret-Maroni, N.; Baumeister, J.; Vereijken, B. Exergames Inherently Contain Cognitive Elements as Indicated by Cortical Processing. Front. Behav. Neurosci. 2018, 12, 102. [Google Scholar] [CrossRef]
- Hötting, K.; Röder, B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 2013, 37, 2243–2257. [Google Scholar] [CrossRef]
- Kraft, E. Cognitive function, physical activity, and aging: Possible biological links and implications for multimodal interventions. Aging Neuropsychol. Cogn. 2012, 19, 248–263. [Google Scholar] [CrossRef]
- Barry, G.; Galna, B.; Rochester, L. The role of exergaming in Parkinson’s disease rehabilitation: A systematic review of the evidence. J. NeuroEng. Rehabil. 2014, 11, 33. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Agundez, A.; Folkerts, A.-K.; Konrad, R.; Caserman, P.; Tregel, T.; Goosses, M.; Göbel, S.; Kalbe, E. Recent advances in rehabilitation for Parkinson’s Disease with Exergames: A Systematic Review. J. NeuroEng. Rehabil. 2019, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Ozgonenel, L.; Cagirici, S.; Cabalar, M.; Durmusoglu, G. Use of Game Console for Rehabilitation of Parkinson’s Disease. Balk. Med. J. 2016, 33, 396–400. [Google Scholar] [CrossRef] [PubMed]
- van Beek, J.J.W.; van Wegen, E.E.H.; Bohlhalter, S.; Vanbellingen, T. Exergaming-Based Dexterity Training in Persons With Parkinson Disease: A Pilot Feasibility Study. J. Neurol. Phys. Ther. 2019, 43, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Herrera-Baeza, P.; Cano-de-la-Cuerda, R.; Oña-Simbaña, E.D.; Palacios-Ceña, D.; Pérez-Corrales, J.; Cuenca-Zaldivar, J.N.; Gueita-Rodriguez, J.; Balaguer-Bernaldo de Quirós, C.; Jardón-Huete, A.; Cuesta-Gomez, A. The Impact of a Novel Immersive Virtual Reality Technology Associated with Serious Games in Parkinson’s Disease Patients on Upper Limb Rehabilitation: A Mixed Methods Intervention Study. Sensors 2020, 20, 2168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 1992, 55, 181–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooke, J. SUS-A quick and dirty usability scale. In Usability Evaluation in Industry; Jordan, P.W., Thomas, B., McClelland, I.L., Weerdmeester, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Bangor, A.; Kortum, P.T.; Miller, J.T. An Empirical Evaluation of the System Usability Scale. Int. J. Hum.-Comput. Interact. 2008, 24, 574–594. [Google Scholar] [CrossRef]
- Yoshida, K.; Asakawa, K.; Yamauchi, T.; Sakuraba, S.; Sawamura, D.; Murakami, Y.; Sakai, S. The Flow State Scale for Occupational Tasks: Development, Reliability, and Validity. Hong Kong J. Occup. Ther. 2013, 23, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Csikszentmihalyi, M. Beyond Boredom and Anxiety; Jossey-Bass Publishers: Hoboken, NJ, USA, 1975. [Google Scholar]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Mace, M.; Mutalib, S.A.; Ogrinc, M.; Goldsmith, N.; Burdet, E. GripAble: An accurate, sensitive and robust digital device for measuring grip strength. J. Rehabil. Assist. Technol. Eng. 2022, 9, 205566832210784. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 14 April 2022).
- Assad, O.; Hermann, R.; Lilla, D.; Mellies, B.; Meyer, R.; Shevach, L.; Siegel, S.; Springer, M.; Tiemkeo, S.; Voges, J.; et al. Motion-Based Games for Parkinson’s Disease Patients. In Entertainment Computing—ICEC 2011; Anacleto, J.C., Fels, S., Graham, N., Kapralos, B., Saif El-Nasr, M., Stanley, K., Eds.; Springer: Berlin, Heidelberg, 2011; Volume 6972, pp. 47–58. [Google Scholar]
- Roberts, H.C.; Syddall, H.E.; Butchart, J.W.; Stack, E.L.; Cooper, C.; Sayer, A.A. The Association of Grip Strength With Severity and Duration of Parkinson’s: A Cross-Sectional Study. Neurorehabil. Neural Repair 2015, 29, 889–896. [Google Scholar] [CrossRef]
- Fellows, S. Precision grip and Parkinson’s disease. Brain 1998, 121, 1771–1784. [Google Scholar] [CrossRef] [PubMed]
- Foki, T.; Vanbellingen, T.; Lungu, C.; Pirker, W.; Bohlhalter, S.; Nyffeler, T.; Kraemmer, J.; Haubenberger, D.; Fischmeister, F.P.S.; Auff, E.; et al. Limb-kinetic apraxia affects activities of daily living in Parkinson’s disease: A multi-center study. Eur. J. Neurol. 2016, 23, 1301–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutalib, S.A.; Mace, M.; Seager, C.; Burdet, E.; Mathiowetz, V.; Goldsmith, N. Modernising grip dynamometry: Inter-instrument reliability between GripAble and Jamar. BMC Musculoskelet Disord 2022, 23, 80. [Google Scholar] [CrossRef] [PubMed]
- Marston, H.R.; Kroll, M.; Fink, D.; Gschwind, Y.J. Flow Experience of Older Adults Using the iStoppFalls Exergame. Games Cult. 2016, 11, 201–222. [Google Scholar] [CrossRef]
- Galna, B.; Jackson, D.; Schofield, G.; McNaney, R.; Webster, M.; Barry, G.; Mhiripiri, D.; Balaam, M.; Olivier, P.; Rochester, L. Retraining function in people with Parkinson’s disease using the Microsoft kinect: Game design and pilot testing. J. NeuroEng. Rehabil. 2014, 11, 60. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.-L.; Chou, J.C.-L.; Ding, C.-M. Enhancing Mobile Satisfaction through Integration of Usability and Flow. Eng. Manag. Res. 2012, 1, 44. [Google Scholar] [CrossRef]
- Dahui, L.; Glenn, B. SystemsRole of Need for Cognition in Online Flow Experience: An Empirical Investigation. In Proceedings of the 10th Americas Conference on Information (AMCIS 2004), New York, NY, USA, 6–8 August 2004. [Google Scholar]
- Harris, D.J.; Vine, S.J.; Wilson, M.R. Neurocognitive mechanisms of the flow state. Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2017; Volume 234, pp. 221–243. [Google Scholar] [CrossRef]
- Dalrymple-Alford, J.C.; MacAskill, M.R.; Nakas, C.T.; Livingston, L.; Graham, C.; Crucian, G.P.; Melzer, T.R.; Kirwan, J.; Keenan, R.; Wells, S.; et al. The MoCA: Well-suited screen for cognitive impairment in Parkinson disease. Neurology 2010, 75, 1717–1725. [Google Scholar] [CrossRef]
- Yoshida, K.; Sawamura, D.; Ogawa, K.; Ikoma, K.; Asakawa, K.; Yamauchi, T.; Sakai, S. Flow Experience during Attentional Training Improves Cognitive Functions in Patients with Traumatic Brain Injury: An Exploratory Case Study. Hong Kong J. Occup. Ther. 2014, 24, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Vanbellingen, T.; van Beek, J.; Nyffeler, T.; Urwyler, P.; Nef, T.; Bohlhalter, S. Tablet app-based dexterity-training in patients with Parkinson’s disease: Pilot feasibility study. Ann. Phys. Rehabil. Med. 2021, 64, 101419. [Google Scholar] [CrossRef]
PD (N = 8) | HS (N = 8) | p-Value | |
---|---|---|---|
Age, y | 63.5 (58–69.5) | 63 (58–65) | 0.710 |
Gender (m/f), n | 6/2 | 2/6 | 0.046 |
MoCA | 27.5 (25.25–27.5) | 26.5 (23–28) | 0.400 |
Handedness, (r/l), n | 7/1 | 8/0 | 0.300 |
Disease duration, mo | 31.5 (22.5–55) | - | - |
Hoehn and Yahr stage | 1.75 (1–2) | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saric, L.; Knobel, S.E.J.; Pastore-Wapp, M.; Nef, T.; Mast, F.W.; Vanbellingen, T. Usability of Two New Interactive Game Sensor-Based Hand Training Devices in Parkinson’s Disease. Sensors 2022, 22, 6278. https://doi.org/10.3390/s22166278
Saric L, Knobel SEJ, Pastore-Wapp M, Nef T, Mast FW, Vanbellingen T. Usability of Two New Interactive Game Sensor-Based Hand Training Devices in Parkinson’s Disease. Sensors. 2022; 22(16):6278. https://doi.org/10.3390/s22166278
Chicago/Turabian StyleSaric, Lea, Samuel E. J. Knobel, Manuela Pastore-Wapp, Tobias Nef, Fred W. Mast, and Tim Vanbellingen. 2022. "Usability of Two New Interactive Game Sensor-Based Hand Training Devices in Parkinson’s Disease" Sensors 22, no. 16: 6278. https://doi.org/10.3390/s22166278
APA StyleSaric, L., Knobel, S. E. J., Pastore-Wapp, M., Nef, T., Mast, F. W., & Vanbellingen, T. (2022). Usability of Two New Interactive Game Sensor-Based Hand Training Devices in Parkinson’s Disease. Sensors, 22(16), 6278. https://doi.org/10.3390/s22166278