Heat Rate Prediction of Combined Cycle Power Plant Using an Artificial Neural Network (ANN) Method
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. One Input Parameter
3.2. Two Input Parameters
3.3. Three Input Parameters
4. Discussion
5. Conclusions
- Utilizing one parameter as an input could not bring an accurate heat rate prediction. The ANN regression R2 value for fuel gas energy (MMBTU), CO2 percentage (%), and power output (MW) were 0.925, 0.005, and 0.954, respectively.
- The regression R2 values for two input parameters, where fuel gas energy (MMBTU) + CO2 percentage (%), fuel gas energy (MMBTU) + Power (MW), and CO2 percentage (%) + Power (MW), were 0.970, 0.994, and 0.984, respectively.
- The combination of all three parameters showed the best result of the ANN model. The regression R2 value was 0.995 with zero validation check and the lowest average error data.
- The three parameter combination resulted in the lowest average error in experimental data with 0.19%
- Utilizing fuel gas energy (MMBTU), CO2 percentage (%), and power output (MW) as inputs can lead to an accurate CCPP heat rate prediction.
Author Contributions
Funding
Conflicts of Interest
References
- Wood, D.A. Combined cycle gas turbine power output prediction and data mining with optimized data matching algorithm. SN Appl. Sci. 2020, 2, 1–21. [Google Scholar] [CrossRef]
- Liu, Z.; Karimi, I.A. Gas turbine performance prediction via machine learning. Energy 2020, 192, 116627. [Google Scholar] [CrossRef]
- Bartolini, C.; Caresana, F.; Comodi, G.; Pelagalli, L.; Renzi, M.; Vagni, S. Application of artificial neural networks to micro gas turbines. Energy Convers. Manag. 2011, 52, 781–788. [Google Scholar] [CrossRef]
- Anvari, S.; Taghavifar, H.; Saray, R.K.; Khalilarya, S.; Jafarmadar, S. Implementation of ANN on CCHP system to predict trigeneration performance with consideration of various operative factors. Energy Convers. Manag. 2015, 101, 503–514. [Google Scholar] [CrossRef]
- Fast, M.; Assadi, M.; De, S. Development and multi-utility of an ANN model for an industrial gas turbine. Appl. Energy 2009, 86, 9–17. [Google Scholar] [CrossRef]
- Rossi, F.; Velázquez, D.; Monedero, I.; Biscarri, F. Artificial neural networks and physical modeling for determination of baseline consumption of CHP plants. Expert Syst. Appl. 2014, 41, 4658–4669. [Google Scholar] [CrossRef]
- Elfaki, E.A.; Hassan, A.H. Prediction of electrical output power of combined cycle power plant using regression ANN model. J. Power Energy Eng. 2018, 6, 17–38. [Google Scholar] [CrossRef]
- Tüfekci, P. Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. Int. J. Electr. Power Energy Syst. 2014, 60, 126–140. [Google Scholar] [CrossRef]
- Rua Orozco, D.J.; Venturini, O.J.; Escobar Palacio, J.C.; del Olmo, O.A. A new methodology of thermodynamic diagnosis, using the thermoeconomic method together with an artificial neural network (ANN): A case study of an externally fired gas turbine (EFGT). Energy 2017, 123, 20–35. [Google Scholar] [CrossRef]
- Plis, M.; Rusinowski, H. A mathematical model of an existing gas-steam combined heat and power plant for thermal diagnostic systems. Energy 2018, 156, 606–619. [Google Scholar] [CrossRef]
- Palme, T.; Breuhaus, P.; Assadi, M.; Klein, A.; Kim, M. New Alstom Monitoring Tools Leveraging Artificial Neural Network Technologies. ASME Turbo Expo 2011, 281–292. [Google Scholar] [CrossRef]
- Smrekar, J.; Pandit, D.; Fast, M.; Assadi, M.; De, S. Prediction of power output of a coal-fired power plant by artificial neural network. Neural Comput. Appl. 2009, 19, 725–740. [Google Scholar] [CrossRef]
- Fantozzi, F.; Desideri, U. Simulation of power plant transients with artificial neural networks: Application to an existing combined cycle. Proc. Inst. Mech. Eng. 1998, 212, 299–313. [Google Scholar] [CrossRef]
- Flynn, D.; Ritchie, J.; Cregan, M. Data Mining Techniques Applied to Power Plant Performance Monitoring. In IFAC Proceedings Volumes; Elsevier: Amsterdam, The Netherlands, 2005; Volume 38, pp. 369–374. [Google Scholar]
- Lu, S.; Hogg, B. Dynamic nonlinear modelling of power plant by physical principles and neural networks. Int. J. Electr. Power Energy Syst. 2000, 22, 67–78. [Google Scholar] [CrossRef]
- Pan, L.; Flynn, D.; Cregan, M. Statistical Model for Power Plant Performance Monitoring and Analysis. In Proceedings of the 2007 42nd International Universities Power Engineering Conference, Brighton, UK, 4–6 September 2007; pp. 121–126. [Google Scholar]
- Khudair, O.A.; Abass, K.A.; Abed, N.S.; Ali, K.H.; Abdulaziz, S.; Shaboot, A.C. Theoretical Investigation For The Effect of Fuel Quality on Gas Turbine Power Plants. J. Phys. Conf. Ser. 2018, 1003, 012022. [Google Scholar] [CrossRef]
- Walzcak, S.; Narciso, C. Artificial Neural Network. Available online: https://www.researchgate.net/publication/288156361_Artificial_Neural_Networks (accessed on 2 December 2020).
- Taghavifar, H.; Mardani, A.; Taghavifar, L. A hybridized artificial neural network and imperialist competitive algorithm opti-mization approach for prediction of soil compaction in soil bin facility. Measurement 2013, 46, 2288–2299. [Google Scholar] [CrossRef]
- ASME. ASME PTC 22—2005 Gas Turbine Performance Test Code. Available online: https://www.twirpx.com/file/866220/ (accessed on 2 December 2020).
No | Fuel Gas Heat Input (MMBTU) 1 | CO2 Percentage (%) | Power Output (MW) | Heat Rate (kcal/kWh) |
---|---|---|---|---|
1 | 2197.821 | 3.678 | 302.52 | 1878.26 |
2 | 2197.821 | 3.678 | 302.52 | 1878.26 |
3 | 2197.821 | 3.678 | 302.88 | 1876.03 |
4 | 2197.821 | 3.678 | 303.21 | 1873.99 |
5 | 2196.798 | 3.636 | 303.09 | 1874.17 |
6 | 2196.798 | 3.636 | 302.34 | 1878.82 |
7 | 2197.423 | 3.563 | 302.73 | 1876.23 |
8 | 2197.423 | 3.563 | 303 | 1874.56 |
9 | 2200.318 | 3.614 | 303.03 | 1876.92 |
10 | 2202.682 | 3.577 | 303.12 | 1876.68 |
… | … | … | … | … |
4313 | 2165.601 | 3.719 | 305.01 | 1816.48 |
4314 | 2165.601 | 3.7190 | 303.66 | 1824.56 |
4315 | 2165.601 | 3.7190 | 304.17 | 1821.5 |
4316 | 2165.601 | 3.7190 | 304.68 | 1818.45 |
4317 | 2157.497 | 3.595 | 303.87 | 1816.67 |
4318 | 2155.63 | 3.716 | 302.85 | 1820.62 |
4319 | 2155.63 | 3.716 | 303.3 | 1817.92 |
4320 | 2151.122 | 3.901 | 302.07 | 1823.05 |
4321 | 2150.759 | 3.804 | 301.86 | 1823.44 |
4322 | 2150.759 | 3.804 | 302.28 | 1820.91 |
Group | Variation | Parameter Description | Output Parameter |
---|---|---|---|
One input Parameter | P1 | Fuel gas energy (MMBTU) | heat rate |
P2 | CO2 percentage (%) | heat rate | |
P3 | Power (MW) | heat rate | |
Two input Parameters | P1 + P2 | Fuel gas energy (MMBTU) & CO2 percentage (%) | heat rate |
P1 + P3 | Fuel gas energy (MMBTU) & Power (MW) | heat rate | |
P2 + P3 | CO2 percentage (%) & Power (MW) | heat rate | |
Three input parameters | P1 + P2 + P3 | Power (MW) & Fuel gas energy (MMBTU) | heat rate |
No | Actual | P1 | Error | P2 | Error | P3 | Error | P1 + P2 | Error |
---|---|---|---|---|---|---|---|---|---|
1 | 1930.12 | 1961.38 | 1.62% | 1858.55 | 3.71% | 1962.81 | 1.69% | 1928.67 | 0.08% |
2 | 1943.56 | 1961.38 | 0.92% | 1858.55 | 4.37% | 1965.96 | 1.15% | 1928.67 | 0.77% |
3 | 1918.19 | 1962.03 | 2.29% | 1858.32 | 3.12% | 1960.44 | 2.20% | 1929.10 | 0.57% |
4 | 1930.22 | 1962.03 | 1.65% | 1858.32 | 3.72% | 1963.29 | 1.71% | 1929.10 | 0.06% |
5 | 1927.70 | 1962.03 | 1.78% | 1858.32 | 3.60% | 1962.69 | 1.82% | 1929.10 | 0.07% |
6 | 1929.72 | 1962.03 | 1.67% | 1858.32 | 3.70% | 1963.17 | 1.73% | 1929.10 | 0.03% |
7 | 1933.59 | 1962.41 | 1.49% | 1858.15 | 3.90% | 1964.12 | 1.58% | 1929.30 | 0.22% |
8 | 1928.04 | 1962.41 | 1.78% | 1858.15 | 3.63% | 1962.81 | 1.80% | 1929.30 | 0.07% |
9 | 1936.64 | 1962.41 | 1.33% | 1858.15 | 4.05% | 1964.83 | 1.46% | 1929.30 | 0.38% |
10 | 1927.54 | 1962.41 | 1.81% | 1858.15 | 3.60% | 1962.69 | 1.82% | 1929.30 | 0.09% |
1072 | 1816.48 | 1811.50 | 0.27% | 1860.87 | 2.44% | 1814.07 | 0.13% | 1821.54 | 0.28% |
1073 | 1824.56 | 1811.50 | 0.72% | 1860.87 | 1.99% | 1816.74 | 0.43% | 1821.54 | 0.17% |
1074 | 1821.50 | 1811.50 | 0.55% | 1860.87 | 2.16% | 1815.73 | 0.32% | 1821.54 | 0.00% |
1075 | 1818.45 | 1811.50 | 0.38% | 1860.87 | 2.33% | 1814.72 | 0.21% | 1821.54 | 0.17% |
1076 | 1816.67 | 1814.29 | 0.13% | 1860.40 | 2.41% | 1816.32 | 0.02% | 1822.70 | 0.33% |
1077 | 1820.62 | 1814.93 | 0.31% | 1860.86 | 2.21% | 1818.34 | 0.13% | 1822.98 | 0.13% |
1078 | 1817.92 | 1814.93 | 0.16% | 1860.86 | 2.36% | 1817.45 | 0.03% | 1822.98 | 0.28% |
1079 | 1823.05 | 1816.47 | 0.36% | 1861.58 | 2.11% | 1819.88 | 0.17% | 1823.71 | 0.04% |
1080 | 1823.44 | 1816.60 | 0.38% | 1861.20 | 2.07% | 1820.30 | 0.17% | 1823.74 | 0.02% |
1081 | 1820.91 | 1816.60 | 0.24% | 1861.20 | 2.21% | 1819.47 | 0.08% | 1823.74 | 0.16% |
No | Actual | P1 + P3 | Error | P2 + P3 | Error | P1 + P2 + P3 | Error | |
---|---|---|---|---|---|---|---|---|
1 | 1930.12 | 1930.85 | 0.04% | 1935.11 | 0.26% | 1932.78 | 0.14% | |
2 | 1943.56 | 1938.25 | 0.27% | 1939.50 | 0.21% | 1943.22 | 0.02% | |
3 | 1918.19 | 1924.42 | 0.32% | 1932.04 | 0.72% | 1923.87 | 0.30% | |
4 | 1930.22 | 1931.08 | 0.04% | 1935.93 | 0.30% | 1933.33 | 0.16% | |
5 | 1927.70 | 1929.69 | 0.10% | 1935.12 | 0.38% | 1931.35 | 0.19% | |
6 | 1929.72 | 1930.80 | 0.06% | 1935.77 | 0.31% | 1932.94 | 0.17% | |
7 | 1933.59 | 1932.52 | 0.06% | 1937.24 | 0.19% | 1935.61 | 0.10% | |
8 | 1928.04 | 1929.45 | 0.07% | 1935.46 | 0.38% | 1931.22 | 0.16% | |
9 | 1936.64 | 1934.19 | 0.13% | 1938.21 | 0.08% | 1938.01 | 0.07% | |
10 | 1927.54 | 1929.17 | 0.08% | 1935.29 | 0.40% | 1930.82 | 0.17% | |
1072 | 1816.48 | 1821.28 | 0.26% | 1820.62 | 0.23% | 1820.14 | 0.20% | |
1073 | 1824.56 | 1827.36 | 0.15% | 1822.06 | 0.14% | 1826.51 | 0.11% | |
1074 | 1821.50 | 1825.09 | 0.20% | 1821.52 | 0.00% | 1824.12 | 0.14% | |
1075 | 1818.45 | 1822.79 | 0.24% | 1820.98 | 0.14% | 1821.71 | 0.18% | |
1076 | 1816.67 | 1821.52 | 0.27% | 1822.22 | 0.31% | 1820.36 | 0.20% | |
1077 | 1820.62 | 1825.02 | 0.24% | 1822.91 | 0.13% | 1824.36 | 0.21% | |
1078 | 1817.92 | 1822.98 | 0.28% | 1822.44 | 0.25% | 1822.22 | 0.24% | |
1079 | 1823.05 | 1825.82 | 0.15% | 1823.51 | 0.02% | 1825.79 | 0.15% | |
1080 | 1823.44 | 1826.54 | 0.17% | 1823.79 | 0.02% | 1826.29 | 0.16% | |
1081 | 1820.91 | 1824.65 | 0.21% | 1823.35 | 0.13% | 1824.34 | 0.19% |
Input Parameter | Max Error | Average Error |
---|---|---|
P1 | 7.84% | 0.73% |
P2 | 4.81% | 1.84% |
P3 | 5.42% | 0.58% |
P1 + P2 | 5.80% | 0.49% |
P1 + P3 | 2.10% | 0.23% |
P2 + P3 | 5.14% | 0.41% |
P1 + P2 + P3 | 1.47% | 0.19% |
No | Actual | Prediction | Error |
---|---|---|---|
1 | 2462.34 | 2404.59 | 2.35% |
2 | 2429.13 | 2436.05 | 0.28% |
3 | 2461.90 | 2433.80 | 1.14% |
4 | 2446.28 | 2431.91 | 0.59% |
5 | 2443.30 | 2414.70 | 1.17% |
6 | 2433.57 | 2431.62 | 0.08% |
7 | 2460.70 | 2434.82 | 1.05% |
8 | 2462.24 | 2438.58 | 0.96% |
9 | 2436.63 | 2451.69 | 0.62% |
10 | 2447.93 | 2437.34 | 0.43% |
1019 | 2447.89 | 2447.84 | 0.00 |
1020 | 2451.29 | 2430.37 | 0.01 |
1021 | 2445.20 | 2444.25 | 0.00 |
1022 | 2439.77 | 2394.99 | 0.02 |
1023 | 2420.73 | 2431.86 | 0.00 |
1024 | 2453.71 | 2437.44 | 0.01 |
1025 | 2423.18 | 2422.99 | 0.00 |
1026 | 2409.58 | 2432.12 | 0.01 |
1027 | 2439.65 | 2412.53 | 0.01 |
1028 | 2431.93 | 2421.86 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arferiandi, Y.D.; Caesarendra, W.; Nugraha, H. Heat Rate Prediction of Combined Cycle Power Plant Using an Artificial Neural Network (ANN) Method. Sensors 2021, 21, 1022. https://doi.org/10.3390/s21041022
Arferiandi YD, Caesarendra W, Nugraha H. Heat Rate Prediction of Combined Cycle Power Plant Using an Artificial Neural Network (ANN) Method. Sensors. 2021; 21(4):1022. https://doi.org/10.3390/s21041022
Chicago/Turabian StyleArferiandi, Yondha Dwika, Wahyu Caesarendra, and Herry Nugraha. 2021. "Heat Rate Prediction of Combined Cycle Power Plant Using an Artificial Neural Network (ANN) Method" Sensors 21, no. 4: 1022. https://doi.org/10.3390/s21041022
APA StyleArferiandi, Y. D., Caesarendra, W., & Nugraha, H. (2021). Heat Rate Prediction of Combined Cycle Power Plant Using an Artificial Neural Network (ANN) Method. Sensors, 21(4), 1022. https://doi.org/10.3390/s21041022