Direct Comb Vernier Spectroscopy for Fractional Isotopic Ratio Determinations
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kerstel, E.; Gianfrani, L. Advances in laser-based isotope ratio measurements: Selected applications. Appl. Phys. B 2008, 92, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Torn, M.S.; Biraud, S.C.; Still, C.J.; Riley, W.J.; Berry, J.A. Seasonal and interannual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern great plains. Tellus B Chem. Phys. Meteorol. 2011, 63, 181–195. [Google Scholar] [CrossRef]
- Bauska, T.K.; Baggenstos, D.; Brook, E.J.; Mix, A.C.; Marcott, S.A.; Petrenko, V.V.; Schaefer, H.; Severinghaus, J.P.; Lee, J.E. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl. Acad. Sci. USA 2016, 113, 3465–3470. [Google Scholar] [CrossRef] [Green Version]
- Yakir, D.; da Sternberg, L.S.L. The use of stable isotopes to study ecosystem gas exchange. Oecologia 2000, 123, 297–311. [Google Scholar] [CrossRef]
- Yoshida, N.; Toyoda, S. Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers. Nature 2000, 405, 330–334. [Google Scholar] [CrossRef]
- Assonov, S.S.; Brenninkmeijer, C.A.M.T.; Schuck, J.; Taylor, P. Analysis of 13C and 18O isotope data of CO2 in CARIBIC aircraft samples as tracers of upper troposphere/ lower stratosphere mixing and the global carbon cycle. Atmos. Chem. Phys. 2010, 10, 8575–8599. [Google Scholar] [CrossRef] [Green Version]
- Wolf, B.; Merbold, L.; Decock, C.; Tuzson, B.; Harris, E.; Six, J.; Emmenegger, L.; Mohn, J. First on-line isotopic characterization of N2O above intensively managed grassland. Biogeosciences 2015, 12, 2517–2531. [Google Scholar] [CrossRef] [Green Version]
- Harris, E.; Henne, S.; Hüglin, C.; Zellweger, C.; Tuzson, B.; Ibraim, E.; Emmenegger, L.; Mohn, J.J. The isotopic composition of atmospheric nitrous oxide observed at the high-altitude research station Jungfraujoch, Switzerland. Geophys. Res. Atmos. 2017, 122, 1850–1870. [Google Scholar] [CrossRef] [Green Version]
- Delli Santi, M.G.; Bartalini, S.; Cancio, P.; Galli, I.; Giusfredi, G.; Haraldsson, C.; Mazzotti, D.; Pesonen, A.; De Natale, P. Biogenic Fraction Determination in Fuel Blends by Laser-Based 14CO2 Detection. Adv. Photonics Res. 2021, 2, 2000069. [Google Scholar] [CrossRef]
- Casado, M.; Landais, A.; Masson-Delmotte, V.; Genthon, C.; Kerstel, E.; Kassi, S.; Arnaud, L.; Picard, G.; Prie, F.; Cattani, O.; et al. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau. Atmos. Chem. Phys. 2016, 13, 8521–8538. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Chen, W.; Fertein, E.; Masselin, P.; Gao, X.; Zhang, W.; Wang, Y.; Koeth, J.; Brückner, D.; He, X. Measurement of the D/H, 18O/ 16O, and 1 17O/ 16O Isotope Ratios in Water by Laser Absorption Spectroscopy at 2.73 μm. Sensors 2014, 14, 9027–9045. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Lee, X.; Aemisegger, F. A global database of water vapor isotopes measured with high temporal resolution infrared laser spectroscopy. Sci. Data 2019, 6, 180302. [Google Scholar] [CrossRef] [Green Version]
- Galfond, B.; Riemer, D.; Swart, P. Analysis of signal-tonoise ratio of delta13C-CO2 measurements at carbon capture, utilization and storage injection sites. Int. J. Greenh. Gas Control 2015, 42, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Krevor, S.; Perrin, J.C.; Esposito, A.; Rella, C.; Benson, S. Rapid detection and characterization of surface CO2 leakage through the real-time measurement of 13C signatures in CO2 flux from the ground. Int. J. Greenh. Gas Control 2010, 4, 811–815. [Google Scholar] [CrossRef]
- Ciais, P.; Chris, S.; Govindasamy, B.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; Defries, R.; Galloway, J.; Heimann, M. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 465–470. [Google Scholar]
- Denk, T.R.A.; Mohn, J.; Decock, C.; Lewicka-Szczebak, D.; Harris, E.; Butterbach-Bahl, K.; Kiese, R.; Wolf, B. The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biol. Biochem. 2017, 105, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, N.E.; Ostrom, P.H. Mining the isotopic complexity of nitrous oxide: A review of challenges and opportunities. Biogeosciences 2017, 132, 359–372. [Google Scholar] [CrossRef]
- Crosson, E.R.; Ricci, K.N.; Richman, B.A.; Chilese, F.C.; Owano, T.G.; Provencal, R.A.; Todd, M.W.; Glasser, J.; Kachanov, A.A.; Paldus, B.A.; et al. Stable isotope ratios using cavity ring-down spectroscopy: Determination of 13C/12C for carbon dioxide in human breath. Anal. Chem. 2002, 74, 2003–2007. [Google Scholar] [CrossRef]
- Thorpe, M.J.; Balslev-Clausen, D.; Kirchner, M.S.; Ye, J. Cavity-enhanced optical frequency comb spectroscopy: Application to human breath analysis. Opt. Express 2008, 1, 2387–2397. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.H.; Heinzle, E.; Wittmann, C. Theoretical aspects of 13C metabolic flux analysis with sole quantification of carbon dioxide labeling. Comput. Biol. Chem. 2005, 29, 121–133. [Google Scholar] [CrossRef]
- Schild, H.; Boyle, S.J.; Schmid, H.M. Infrared spectroscopy of symbiotic stars: Carbon abundances and 12C/13C isotopic ratios. Mon. Not. R. Astron. Soc. 1992, 258, 95–102. [Google Scholar] [CrossRef] [Green Version]
- van Geldern, R.; Nowak, M.E.; Zimmer, M.; Szizybalski, A.; Myrttinen, A.; Barth, J.A.C.; Jost, H.-J. Field-Based Stable Isotope Analysis of Carbon Dioxide by Mid-Infrared Laser Spectroscopy for Carbon Capture and Storage Monitoring. Anal. Chem. 2014, 86, 12191–12198. [Google Scholar] [CrossRef]
- Gagliardi, G.; Castrillo, A.; Iannone, R.; Kerstel, E.T.; Gianfrani, L. High-precision determination of the 13CO2/ 12CO2 isotope ratio using a portable 2.008-μm diode-laser spectrometer. Appl. Phys. 2003, 77, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Wu, T.; Wu, Q.; Ye, C.; Hu, R.; Chen, W.; He, X. Real-time measurement of CO2 isotopologue ratios in exhaled breath by a hollow waveguide based mid-infrared gas sensor. Opt. Express 2020, 28, 10970–10980. [Google Scholar] [CrossRef] [PubMed]
- Scholten, S.K.; Perrella, C.; Anstie, J.D.; White, R.T.; Luiten, A.N. Accurate Optical Number Density Measurement of 12CO2 and 13CO2 with Direct Frequency Comb Spectroscopy. Phys. Rev. Appl. 2019, 12, 034045. [Google Scholar] [CrossRef]
- Coddington, I.; Newbury, N.; Swann, W. Dual-comb spectroscopy. Optica 2016, 3, 414–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandon, J.; Guelachvili, G.; Picqué, N. Fourier transform spectroscopy with a laser frequency comb. Nat. Photon. 2009, 3, 99–102. [Google Scholar] [CrossRef]
- Diddams, S.A.; Hollberg, L.; Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 2007, 445, 627–630. [Google Scholar] [CrossRef]
- Siciliani de Cumis, M.; Eramo, R.; Coluccelli, N.; Cassinerio, M.; Galzerano, G.; Laporta, P.; De Natale, P.; Cancio Pastor, P. Tracing part-per-billion line shifts with direct-frequency-comb Vernier spectroscopy. Phys. Rev. A 2015, 91, 012505. [Google Scholar] [CrossRef]
- Rutkowskia, L.; Morvilleb, J. Continuous Vernier filtering of an optical frequency comb for broadband cavity-enhanced molecular spectroscopy. J. Quant. Spec. Rad. Trans. 2017, 187, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Khodabakhsh, A.; Rutkowski, L.; Morville, J.; Foltynowicz, A. Mid-infrared continuous-filtering Vernier spectroscopy using a doubly resonant optical parametric oscillator. Appl. Phys. B 2017, 123, 210. [Google Scholar] [CrossRef]
- Adler, F.; Thorpe, M.J.; Cossel, K.C.; Ye, J. Cavity enhanced direct frequency comb spectroscopy: Technology and applications. Annu. Rev. Anal. Chem. 2010, 3, 175–205. [Google Scholar] [CrossRef] [Green Version]
- Rieker, G.B.; Giorgetta, F.R.; Swann, W.C.; Kofler, J.; Zolot, A.M.; Sinclair, L.C.; Baumann, E.; Cromer, C.; Petron, G.; Sweeney, C.; et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica 2014, 1, 290–298. [Google Scholar] [CrossRef] [Green Version]
- Cossel, K.C.; Waxman, E.M.; Finneran, I.A.; Blake, G.A.; Ye, J.; Newbury, N.R. Gas-phase broadband spectroscopy using active sources: Progress, status, and applications. J. Opt. Soc. Am. B 2017, 34, 104–129. [Google Scholar] [CrossRef] [PubMed]
- Siciliani de Cumis, M.; Eramo, R.; Coluccelli, N.; Galzerano, G.; Laporta, P.; Cancio Pastor, P. Multiplexed direct-frequency-comb Vernier spectroscopy of carbon dioxide 2ν1 + ν3 ro-vibrational combination band. J. Chem. Phys. 2018, 148, 114303. [Google Scholar] [CrossRef]
- Picqué, N.; Hänsch, T.W. Frequency comb spectroscopy. Nat. Photonics 2019, 13, 146–157. [Google Scholar] [CrossRef]
- Vodopyanov, K.L. Isotopologues Detection and Quantitative Analysis by Mid-Infrared Dual-Comb Laser Spectroscopy. In Encyclopedia of Analytical Chemistry; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Bailey, D.M.; Zhao, G.; Fleisher, A.J. Precision Spectroscopy of Nitrous Oxide Isotopocules with a Cross-Dispersed Spectrometer and a Mid-Infrared Frequency Comb. Anal. Chem. 2020, 92, 13759–13766. [Google Scholar] [CrossRef] [PubMed]
- Kantnerová, K.; Tuzson, B.; Emmenegger, L.; Bernasconi, S.M.; Mohn, J. Quantifying Isotopic Signatures of N2O Using Quantum Cascade Laser Absorption Spectroscopy. Chimia 2019, 73, 232–238. [Google Scholar] [CrossRef]
- Harris, S.J.; Liisberg, J.; Xia, L.; Wei, J.; Zeyer, K.; Yu, L.; Barthel, M.; Wolf, B.; Kelly, B.F.J.; Cendón, D.I.; et al. N2O isotopocule measurements using laser spectroscopy: Analyzer characterization and intercomparison. Atmos. Meas. Tech. 2020, 13, 2797–2831. [Google Scholar] [CrossRef]
- Zare, R.N.; Kuramoto, D.S.; Haase, C.; Tan, S.M.; Crosson, E.R.; Saad, N.M.R. High-precision optical measurements of 13C/12C isotope ratios in organic compounds. Proc. Natl. Acad. Sci. USA 2009, 106, 10928–10932. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, D.; Bodé, S.; Boeckx, P. Measuring 13C-enriched CO2 in air with a cavity ring-down spectroscopy gas analyser: Evaluation and calibration. Rapid Commun. Mass Spectrom. 2017, 31, 1892–1902. [Google Scholar] [CrossRef]
- Available online: https://en.wikipedia.org/wiki/Wavelet (accessed on 11 August 2021).
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN2016 Molecular Spectroscopic Database. J. Quan. Spec. Rad. Trans. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Eramo, R.; Cancio Pastor, P.; Siciliani de Cumis, M. Accurate fit of pressure-broadened molecular line shapes in direct-frequency-comb Vernier spectroscopy. 2021; to be submitted. [Google Scholar]
- Galli, I.; Bartalini, S.; Ballerini, R.; Barucci, M.; Cancio, P.; De Pas, M.; Giusfredi, G.; Mazzotti, D.; Akikusa, N.; De Natale, P. Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity. Optica 2017, 3, 385–388. [Google Scholar] [CrossRef]
Parameter | Global Fit | Weighted-Average of Individual Fits | ||
---|---|---|---|---|
[MHz] | 12,868.8 (6.4) | 5.3 (6.4) | 12,860.8 (6.0) | −2.7 (6.0) |
0.0116(4) | 0.0004 (4) | 0.0116 (4) | 0.0004 (4) | |
Transition a | (201–000) R(18) | CO | ||
[MHz] | 150,041,400.3 (6.0) | −2.6 (6.0) | 150,041,404.3 (5.6) | 1.4 (5.6) |
0.0109 (3) | −0.0002(3) | 0.0107 (2) | −0.0004(2) | |
[MHz/mbar] | 5.3 (3) | −0.6 (3) | 4.5 (3) | −1.4 (3) |
Transition b | (201–000) P(45) | CO | ||
[MHz] | 150,054,269.2 (2.0) | 2.7 (2.0) | 150,054,265.2 (2.1) | −1.3 (2.1) |
0.94 (2) | −0.04(2) | 0.92 (3) | −0.06 (3) | |
[MHz/mbar] | 4.0 (1) | −0.6 (1) | 3.8 (2) | −0.8 (2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siciliani de Cumis, M.; Eramo, R.; Jiang, J.; Fermann, M.E.; Cancio Pastor, P. Direct Comb Vernier Spectroscopy for Fractional Isotopic Ratio Determinations. Sensors 2021, 21, 5883. https://doi.org/10.3390/s21175883
Siciliani de Cumis M, Eramo R, Jiang J, Fermann ME, Cancio Pastor P. Direct Comb Vernier Spectroscopy for Fractional Isotopic Ratio Determinations. Sensors. 2021; 21(17):5883. https://doi.org/10.3390/s21175883
Chicago/Turabian StyleSiciliani de Cumis, Mario, Roberto Eramo, Jie Jiang, Martin E. Fermann, and Pablo Cancio Pastor. 2021. "Direct Comb Vernier Spectroscopy for Fractional Isotopic Ratio Determinations" Sensors 21, no. 17: 5883. https://doi.org/10.3390/s21175883
APA StyleSiciliani de Cumis, M., Eramo, R., Jiang, J., Fermann, M. E., & Cancio Pastor, P. (2021). Direct Comb Vernier Spectroscopy for Fractional Isotopic Ratio Determinations. Sensors, 21(17), 5883. https://doi.org/10.3390/s21175883