Abstract
Conflict management between UAVs is one of the key aspects in developing future urban aerial mobility (UAM) spaces, such as the one proposed in U-Space. In the framework of tactical conflict management, i.e., with the UAVs in flight, this paper presents PCAN (Prediction-based Conflict-free Adaptive Navigation). This relatively simple navigation technique predicts the occurrence of the conflict and avoids it by modifying the velocity vector of the UAVs involved. The performance evaluation carried out demonstrates its effectiveness compared to similar techniques, even in high-density scenarios, while proving a low overhead in flight time or in the distance traveled by the UAVs to reach their destinations.
1. Introduction
In recent years, interest in Unmanned Aerial Vehicles (UAVs) [1] has grown considerably, given the wide range of possibilities they offer. Within this revolution, it is more than likely that, in the short or medium term, the airspace of the metropolitan environment will be shared by “traditional” manned aerial vehicles and UAVs, which will be mainly electric and will have vertical takeoff and landing capabilities (eVTOL) [2]. These UAVs will fly autonomously [3] at low or very low altitude levels, covering a wide range of services, including the transport of goods or people, and contributing to reducing the surface and sub-surface congestion and the carbon footprint produced by our daily activity. These scenarios are called Urban Air Mobility/Advanced Air Mobility (UAM/AAM) [4].
Several public and private organizations have begun to restructure the airspace to integrate UAVs into it. In this sense, the concept of UTM (Unmanned Aircraft System Traffic Management) has been developed in the United States [5,6], while in Europe, this initiative has adopted the name U-Space [7,8]. Similar initiatives have appeared in other geographical areas, such as Korea [9] and Australia [10].
Conflict management is one of the many technical challenges to be solved in this scenario. Here, a “conflict” is understood as a situation in which two or more UAVs are at a distance less than a minimum separation predetermined by regulation. This is a classic problem in traditional Air Traffic Management (ATM) [11], where it is called Conflict Detection and Resolution (CD&R), and there are already countless resolution proposals [12,13]. In short, the aim is to avoid the occurrence of a collision between two aircraft at all costs.
One possible way of classifying conflict management techniques is to differentiate between those that obtain a priori a set of conflict-free routes or flight plans for the UAVs and those that detect conflicts during flight and resolve them by modifying the flight plan of the UAVs involved. Along the same lines, both UTM and U-space distinguish between strategic (pre-flight) and tactical (in-flight) conflict management.
Within the second group of techniques, there are strategies based on the calculation of the space of valid velocities that prevent any potential conflict between UAVs, such as the popular ORCA (Optimal Reciprocal Collision Avoidance) algorithm [14] and, more recently, the BBCA (Bounding Box Collision Avoidance) algorithm [15]. Still, there are also numerous force-based strategies, such as APF (Artificial Potential Field) [16], or swarm intelligence algorithms, such as PSO (Particle Swarm Optimization) [17]. It is also worth mentioning the existence of a group of methods, referred to as “sense-and-avoid,” in which the UAV is equipped with special hardware (LiDAR type) that allows a fast response in case of imminent collision [18,19].
One of the main characteristics of U-Space is that all operations must be safe. In this sense, and from the perspective of tactical conflict management, this paper presents a new proposal for navigating autonomous UAVs in UAM scenarios that manages to avoid any conflict between them while executing their corresponding flight plans.
Our proposal, called PCAN (Prediction-based Conflict-free Adaptive Navigation), is based on predicting the conflict based on estimating the future position of the UAVs. To prevent the occurrence of each predicted conflict, PCAN proceeds to adapt the velocity vector of the UAVs involved, considering the airspace situation. PCAN works in a centralized way, from the position, velocity, and destination information of all UAVs flying over the airspace.
Apart from preventing the occurrence of any conflict between the UAVs in flight, the proposed algorithm has a low computational cost, which makes it very suitable for urban mobility environments with a high density of UAVs, where fast response to conflicts is demanded. Additionally, as we will proof, the overhead (in terms of flight time and distance traveled by the UAVs) of avoiding all conflict is more than reasonable.
The rest of the paper is structured as follows. Next, Section 2 describes the U-Space context, as well as different techniques for in-flight conflict management. Then, Section 3 focuses on the detailed description of our proposal. Section 4 includes an analysis of the PCAN algorithm in various scenarios and its comparison with similar proposals. Finally, Section 5 presents our conclusions and outlines future works in this line.
2. Background
2.1. Tactical Conflict Management in U-Space
As stated, U-Space is focused on the safe integration of many UAVs into the airspace. To this end, it plans to introduce a set of services that will be deployed progressively, based on 4 phases (U1, U2, U3, and U4) with an incremental complexity and level of integration [8,20].
U-Space services related to tactical conflict management are in phase U2. Very briefly, a tracking service provides the estimated positions and trajectories of the UAVs. Then, the monitoring service uses the above information and, if applicable, alerts on potential conflicts. The tactical conflict resolution service is responsible for modifying the UAV flight plan. Finally, the emergency management service provides the UAVs involved with the action to be taken to mitigate the risk.
For UAV/UAS flight, U-Space defines a new Very Low Level (VLL) airspace, which coexists with the ICAO (International Civil Airspace Organization) A-G airspaces [21]. The VLL airspace is decomposed into three volumes, X, Y, and Z, which offer different services and have different access requirements. The main difference between these volumes lies precisely in the provision of conflict resolution services.
There are no such services in X-type volumes, and the pilot, in whose visual range the UAV is located (this is known as Visual Line of Sight, or VLOS), is responsible for ensuring a safe operation. In Y-type volumes, Beyond Visual Line of Sight (BVLOS) flights are allowed using remote pilots connected to U-Space, with strategic (but not tactical) conflict resolution services. Operation plans must be approved prior to takeoff. The drawback is that this can result in large separations between aircraft, both in space and time.
The Z-type volume allows for a higher density of operations, adding tactical conflict resolution services, which reduce the residual risk of strategic for in- and out-of-visual-range and autonomous flights. Specifically, and as discussed above, these services should check for any potential conflict in real-time, based on the current position of all aircraft (and, if possible, their flight plans), and provide the necessary avoidance instructions to the aircraft involved in the form of changes in velocity, altitude or course. If the airspace is controlled by the Air Traffic Service (ATS), it is called a Za volume. As we assume in this paper, the airspace is controlled by U-Space. It is referred to as a Zu volume.
2.2. Conflict Resolution Techniques for UAV
As discussed, UAV conflict management techniques have traditionally been classified into proactive (or strategic) and reactive (or tactical). Other possible classifications consider whether conflict control is centralized or distributed in each UAV or whether there is communication between UAVs sharing the airspace [22].
Within strategic management, the literature is abundant in collision-free path planning mechanisms, which have been widely explored for years in mobile robotics. Some of the most popular ones are visibility graphs, Probabilistic Road Maps (PRM), Rapidly-exploring Random Trees (RRT), A-Star (A*) and its multiple variants, Ant Colony Optimization (ACO), Tabu Search (TS), and Voronoi diagrams [23]. In general, all these techniques share a high computational complexity. In the following, we describe with more detail some of the techniques for tactical UAV conflict management.
ORCA [14] is a velocity-based conflict avoidance method. These methods are based on choosing the optimal velocity for a mobile agent (in our case, a UAV) from among all those velocities that avoid conflict with other mobile agents (called “valid velocities”). Each agent predicts its future position and nearby agents based on current velocities and, under this assumption, determines its new velocity according to some optimization criterion. In ORCA, each agent computes a Velocity Obstacle (VO) with respect to each agent flying in its environment. The VO includes all the prohibited velocities for the UAV. ORCA guarantees collision-free navigation in sparse scenarios. In dense scenarios it is possible not to find a valid velocity. Linear programming techniques are used to solve this problem, with a medium to high computational cost [24].
BBCA [15] is also a velocity-based mechanism with lower complexity than ORCA and, therefore, is more appropriate for real-time conflict management. Basically, in BBCA the set of valid velocities for each UAV is represented by a rectangular area. This area is modified in each execution of the algorithm (by very simple operations) to avoid conflict with each of the nearby UAVs. BBCA can avoid any conflict in scenarios with two UAVs, and most of them in denser scenarios, with a reasonably acceptable overhead on the distance traveled and the final flight time of the UAVs.
On the other hand, APF [16] is an example of a force-based conflict avoidance method. These methods simulate particle systems, where each particle exerts a certain force on the nearest ones. In the case of APF, the motion of each agent is determined by an attractive force towards its final destination, while the rest of the agents behave as obstacles exerting repulsive forces on it [25]. The main drawback of these methods is the existence of local minima that prevents the agents from moving towards their goal and a high computational cost.
There are also methods based on swarm intelligence, such as PSO [17]. They are inspired by the behavior of certain animal species, organizing agents into groups that work together to obtain an optimal solution to the problem of reaching their destinations (while avoiding conflicts between them). In PSO, obtaining this optimal solution is based on a continuous optimization problem. The distance of each agent to its destination is iteratively calculated and shared with the rest of the agents. These algorithms also involve a high computational cost, not being good candidates for real-time applications with multiple agents.
Another recent proposal is [26], where conflict management is performed in three separate stages. The first stage consists of strategic path planning using a PSO-type algorithm. Later, in a “pre-tactical” stage, it is proposed to delay the start of flights to avoid unresolved conflicts in the previous stage. Finally, residual conflicts that may appear in flight are solved using the “hovering” technique, which stops the UAV in the air for the time necessary to avoid the conflict.
4. Performance Evaluation
In this section, we present the performance evaluation results of the proposed algorithm (PCAN), with the airspace bounding improvement described in Section 3.5. This evaluation has been carried out using simulation techniques.
The simulation tool employed has been developed in Matlab R2020b [28] by making use of the object-oriented programming language offered by this platform. The simulator allows the configuration of the parameters of the proposed algorithm and the generation of random scenarios of any size. It also provides result reports, generating plots such as the ones shown below.
In total, more than 150,000 scenarios have been simulated, with different configurations. As we will see next, the PCAN algorithm has prevented the occurrence of conflicts in all cases.
4.1. Two-UAV Study
First, we will analyze the behavior of PCAN when . Figure 6 shows the different scenarios evaluated. Given a circumference of in diameter, in all the scenarios starts its flight from the west (point ), crosses the circumference passing through its center, and ends at the opposite point of the circumference (). On the other hand, starts its flight from a different position in each scenario. In particular, we have considered 18 different initial positions for () resulting in 18 relative angles between both UAVs (between 0° and 170°, in 10° intervals). Each initial position () has an associated destination (), which is also reached by passing through the center of the circumference. In each configuration, and start the flight simultaneously, with (), finally colliding at the center of the circumference if the navigation algorithm does not prevent it. We have set , and , and PCAN parameters as , = 50, , and . Moreover, the safety radius has been increased 8.34 m, as Figure 1 shown explains.
Figure 6.
Two-UAV scenarios: relative angles between trajectories.
Figure 7 shows a scenario number corresponding to each of the 18 configurations described above on its abscissa axis. The ordinate axis represents the number of conflicts produced in each scenario. The two series represent the results obtained by the direct and PCAN algorithms. As expected, the direct algorithm produces conflicts (leading to collisions) in all scenarios. In contrast, the PCAN algorithm manages to avoid them in all the scenarios analyzed.
Figure 7.
Two-UAV study. The number of conflicts.
As detailed, PCAN avoids conflicts by causing UAVs to deviate from the optimal trajectory to the destination or by reducing their velocity (but maintaining the optimal trajectory). This can lead to increases in the distance traveled by the UAVs and the time required to reach their destinations. Figure 8a shows the average distance traveled by the UAVs, expressed in meters. The direct algorithm indicates the minimum distance between the initial and the final position. The increase due to the deviations made by PCAN to avoid conflict is negligible in this plot. In the case of the BBCA algorithm, an increase in the distance traveled is clearly visible.
Figure 8.
Two-UAV study. Distance traveled: (a) absolute values; (b) relative increase with respect to the direct algorithm.
To better analyze these results, Figure 8b shows the increase in the distance traveled by the UAVs when using PCAN and BBCA relative to the minimum distance provided by the direct algorithm. As we can see, the penalty in the distance for BBCA is appreciable in some scenarios. In PCAN, this increase is negligible again (about 0.11% in the worst case, but about 0.06% in most of the scenarios).
We have also analyzed the impact on the flight time due to the avoidance maneuvers performed by the UAVs. Figure 9a shows the average flight time of UAVs, expressed in seconds. In the case of PCAN, it can be observed that the increase in time is greater than in the distance. This is because PCAN tends to modify the velocity modulus (instead of the UAV trajectory) to avoid the conflict, thereby slightly increasing the time the UAV remains in flight.
Figure 9.
Two-UAV study. Flight time: (a) absolute values; (b) relative increase with respect to the direct algorithm.
Analogous to Figure 8b, Figure 9b shows the relative increase (with respect to the direct algorithm) in the UAV flight time when using PCAN and BBCA. For PCAN, we can observe an increase of less than 2% in all the scenarios. One more time, the penalty introduced by BBCA in some scenarios is notable.
4.2. Multi-UAV Study
Next, we study the behavior of PCAN when it is used in airspaces with multiple UAVs. We have considered a flight region and with different UAV densities. In particular, . Figure 10 shows an example. For each density, 24 random route configurations have been generated for the UAVs, considering that the initial and the final position cannot be less than from the edges of the region and less than away. Each route configuration has been simulated with the direct, BBCA, APF, and PCAN algorithms, resulting in 960 runs. In all cases, we have set , , and , and PCAN parameters as , , , and . Moreover, the safety radius has been increased 8.34 m, as Figure 1 explains.
Figure 10.
Random scenario with 80 UAVs and PCAN. Each number represents the initial position of a UAV; each circle represents the current position of the UAV and its safety radius; each line represents the trajectory followed by the UAV. Units on the X and Y axes are meters.
The abscissa axis in the plot of Figure 11a indicates the number of UAVs in the flight region. In contrast, the ordinate axis shows the mean number of conflicts produced and the corresponding standard deviation. For the direct method, conflicts increase exponentially with the number of UAVs in the region. The APF algorithm manages to resolve isolated conflicts, but its performance decreases as the UAV density increases. BBCA significantly reduces the number of conflicts but does not eliminate them. Finally, as expected, PCAN successfully resolves all the conflicts.
Figure 11.
Multi-UAV study. The number of conflicts: (a) not solved conflicts (mean and standard deviation); (b) solved conflicts (%).
Figure 11b shows the same results, but now from the point of view of the percentage of solved conflicts. We can clearly see that PCAN and BBCA outperform APF. Obviously, the direct method is not plotted since it does not avoid any conflict.
Figure 12a shows the distance traveled by the UAVs, in absolute terms, as a function of the UAV density. As expected, when applying the direct method, the distance traveled by each UAV does not vary with its number, while the standard deviation decreases. On the contrary, the detours introduced by BBCA increase the distance linearly. Finally, PCAN also increases the distance traveled by the UAVs, but to a lesser extent since it resolves the conflicts more efficiently.
Figure 12.
Multi-UAV study. Distance traveled: (a) absolute values (mean and standard deviation); (b) relative increase with respect to the direct algorithm.
In Figure 12b, we can see the relative increase in the distance traveled by the UAVs regarding the direct algorithm. We can observe the linearity in this increase, which in the case of PCAN progresses from 0% to about 4% for the 100-UAV configuration. If we compare PCAN to BBCA, we can see that the increase in distance is marginal, even avoiding all conflicts. APF performs slightly better than PCAN, but at the cost of not being conflict-free.
Figure 13a shows the flight time of UAVs, in absolute terms, as a function of the UAV density. For the direct method, flight time does depend on the number of UAVs. As shown, PCAN offers better results than the rest of conflict management algorithms.
Figure 13.
Multi-UAV study. Flight time: (a) absolute values (mean and standard deviation); (b) relative increase with respect to the direct algorithm.
Finally, Figure 13b compares the flight time for BBCA, APF, and PCAN with respect to the direct algorithm. In the case of PCAN, in the highest density scenarios, the flight time is increased by about 6%, outperforming, in any case, the other two techniques.
4.3. Computation Time
To conclude the analysis, we studied the time used by the direct, PCAN, BBCA, and APF algorithms to offer their solutions. Figure 14 shows the time consumed to produce an output for every UAV each time the navigation computation is executed, expressed in milliseconds. Results were generated with an Intel i9-10900KF@3.7GHz processor, using one core.
Figure 14.
Time (per UAV) consumed by the navigation algorithm.
As shown, PCAN works very well in low-density scenarios exhibiting better behavior than BBCA from 10 to 50 UAVs. As the density of UAVs increases, PCAN requires more time to solve all the potential conflicts produced, which were shown in Figure 11a, series direct. In any case, the computation time does not represent a dramatic bottleneck. For the 100-UAV configuration, the time employed is less than . Note that these are extremely dense scenarios in which avoiding all conflict is complex.
5. Conclusions and Future Works
This paper proposes the PCAN algorithm for conflict-free navigation among a set of UAVs flying over urban airspace according to a set of predetermined flight plans. In each run of the algorithm, assuming that all UAVs are heading in a straight line and at maximum velocity towards their destinations, the algorithm predicts future conflicts between them and proposes modifications in their velocities to prevent their occurrence. The analysis carried out shows that PCAN results, in the worst case, in an increase in the distance traveled by the UAVs of about 4% and an increase in flight time of approximately 6%. This makes our conflict avoidance proposal suitable for the deployment of tactical conflict resolution services in the framework of the future U-Space UAM space.
As future work, we plan to revise the decision-making of PCAN to reduce the overhead involved in conflict avoidance. Instead of performing an intensive search of modified velocities, the algorithm can start by exploring the most promising velocities according to the airspace state. Moreover, as discussed in Section 3.4, we can implement a priority system based on categories. In this way, those UAVs with higher priority will see their trajectories modified to a lesser extent. Finally, we must consider the existence of geofences in the airspace that define no-fly zones.
Author Contributions
Conceptualization, A.B. and R.C.; methodology, J.J., A.B., and R.C.; software, J.J.; validation, A.B. and R.C.; formal analysis, J.J., A.B., and R.C.; investigation, J.J., A.B., and R.C.; resources, J.J., A.B., and R.C.; data curation, J.J., A.B. and R.C.; writing—original draft preparation, J.J., A.B., and R.C.; writing—review and editing, J.J., A.B., and R.C.; visualization, J.J.; supervision, A.B. and R.C.; project administration, A.B. and R.C.; funding acquisition, A.B. and R.C. All authors have read and agreed to the published version of the manuscript.
Funding
This research was funded by the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU) and European Union (EU) under RTI2018-098156-B-C52 grant, by the Junta de Comunidades de Castilla-La Mancha (JCCM) and EU through the European Regional Development Fund (ERDF-FEDER) under SBPLY/19/180501/000159 grant, and by the Universidad de Castilla–La Mancha under 2021-GRIN-31042 grant.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
The data presented in this study are openly available in FigShare at http://doi.org/10.6084/m9.figshare.15830565.
Conflicts of Interest
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
References
- Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M. Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access 2019, 7, 48572–48634. [Google Scholar] [CrossRef]
- Kleinbekman, I.C.; Mitici, M.A.; Wei, P. eVTOL Arrival Sequencing and Scheduling for On-Demand Urban Air Mobility. In Proceedings of the 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), London, UK, 23–27 September 2018; Volume 2018-Septe, pp. 1–7. [Google Scholar]
- Casado, R.; Bermúdez, A. A simulation framework for developing autonomous drone navigation systems. Electronics 2021, 10, 7. [Google Scholar] [CrossRef]
- Straubinger, A.; Rothfeld, R.; Shamiyeh, M.; Büchter, K.D.; Kaiser, J.; Plötner, K.O. An overview of current research and developments in urban air mobility—Setting the scene for UAM introduction. J. Air Transp. Manag. 2020, 87, 101852. [Google Scholar] [CrossRef]
- Kopardekar, P. Enabling civilian low-altitude airspace and Unmanned Aerial System (UAS) operations by Unmanned Aerial System Traffic Management (UTM). AUVSI Unmanned Syst. 2014, 2, 1678–1683. [Google Scholar]
- FAA NextGen Organization. UTM Concept of Operations Version 2.0 (UTM ConOps v2.0); U.S. Department of Transportation: Washington, DC, USA, 2020.
- Barrado, C.; Boyero, M.; Brucculeri, L.; Ferrara, G.; Hately, A.; Hullah, P.; Martin-Marrero, D.; Pastor, E.; Rushton, A.P.; Volkert, A. U-space concept of operations: A key enabler for opening airspace to emerging low-altitude operations. Aerospace 2020, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- CORUS project. U-Space Concept of Operations; Single European Sky ATM Research Joint Undertaking (SESAR JU): Brussels, Belgium, 2019. [Google Scholar]
- Konkuk University; Korean Air Urban Air Mobility Concept of Operations. Available online: http://kada.konkuk.ac.kr/2021/06/09/urban-air-mobility-concepts-of-operations/ (accessed on 15 July 2021).
- EmbraerX. Airservices Australia Urban Air Traffic Management Concept of Operations. Available online: https://embraerx.embraer.com/global/en/uatm (accessed on 15 July 2021).
- International Civil Aviation Organization (ICAO). Doc 4444. PANS-ATM, Procedures for Air Navigation Services. Air Traffic Management; ICAO: Montreal, QC, Canada, 2016. [Google Scholar]
- Tang, J. Conflict Detection and Resolution for Civil Aviation: A literature survey. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 20–35. [Google Scholar] [CrossRef]
- Casado, R.; Bermúdez, A. Neural network-based aircraft conflict prediction in final approach maneuvers. Electronics 2020, 9, 1708. [Google Scholar] [CrossRef]
- van den Berg, J.; Guy, S.J.; Lin, M.; Manocha, D. Reciprocal n-Body Collision Avoidance. In Springer Tracts in Advanced Robotics; Springer: Berlin, Germany, 2011; Volume 70, pp. 3–19. ISBN 9783642194566. [Google Scholar] [CrossRef]
- Sánchez, P.; Casado, R.; Bermúdez, A. Real-time collision-free navigation of multiple UAVs based on bounding boxes. Electronics 2020, 9, 1632. [Google Scholar] [CrossRef]
- Sun, J.; Tang, J.; Lao, S. Collision Avoidance for Cooperative UAVs with Optimized Artificial Potential Field Algorithm. IEEE Access 2017, 5, 18382–18390. [Google Scholar] [CrossRef]
- Alejo, D.; Cobano, J.A.; Heredia, G.; Ollero, A. Particle Swarm Optimization for collision-free 4D trajectory planning in Unmanned Aerial Vehicles. In Proceedings of the 2013 International Conference on Unmanned Aircraft Systems, ICUAS 2013—Conference Proceedings, Atlanta, GA, USA, 28–31 May 2013; pp. 298–307. [Google Scholar]
- Yasin, J.N.; Mohamed, S.A.S.; Haghbayan, M.H.; Heikkonen, J.; Tenhunen, H.; Plosila, J. Unmanned Aerial Vehicles (UAVs): Collision Avoidance Systems and Approaches. IEEE Access 2020, 8, 105139–105155. [Google Scholar] [CrossRef]
- Park, J.; Cho, N. Collision avoidance of hexacopter UAV based on lidar data in dynamic environment. Remote Sens. 2020, 12, 975. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, J.J.; Capitan, C.; Capitiin, J.; Castano, A.R.; Ollero, A. A Geometrical Approach based on 4D Grids for Conflict Management of Multiple UAVs operating in U-space. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 1–4 September 2020; pp. 263–270. [Google Scholar]
- International Civil Aviation Organization (ICAO). Annex 11 to the Convention on International Civil Aviation. Air Traffic Servies; ICAO: Montreal, QC, Canada, 2001. [Google Scholar]
- Yang, X.; Wei, P. Autonomous Free Flight Operations in Urban Air Mobility With Computational Guidance and Collision Avoidance. IEEE Trans. Intell. Transp. Syst. 2021. [Google Scholar] [CrossRef]
- Shin, H.; Chae, J. A performance review of collision-free path planning algorithms. Electronics 2020, 9, 316. [Google Scholar] [CrossRef] [Green Version]
- Snape, J.; Guy, S.J.; Lin, M.C.; Manocha, D.; Van Den Berg, J. Reciprocal collision avoidance and multi-agent navigation for video games. In Proceedings of the Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012. [Google Scholar]
- Khatib, O. The Potential Field Approach And Operational Space Formulation in Robot Control. In Adaptive and Learning Systems; Springer US: Boston, MA, USA, 1986; pp. 367–377. [Google Scholar]
- Alharbi, A.; Poujade, A.; Malandrakis, K.; Petrunin, I.; Panagiotakopoulos, D.; Tsourdos, A. Rule-based conflict management for unmanned traffic management scenarios. In Proceedings of the AIAA/IEEE Digital Avionics Systems Conference—Proceedings, San Antonio, TX, USA, 11–15 October 2020; Volume 2020-Octob. [Google Scholar]
- Bermúdez, A.; Casado, R.; Fernández, G.; Guijarro, M.; Olivas, P. Drone challenge: A platform for promoting programming and robotics skills in K-12 education. Int. J. Adv. Robot. Syst. 2019, 16. [Google Scholar] [CrossRef]
- The MathWorks Inc Matlab. Available online: https://www.mathworks.com/products/matlab.html (accessed on 25 June 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).