Stochastic Memristive Interface for Neural Signal Processing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alombah, N.H.; Fotsin, H.; Romanic, K. Coexistence of multiple attractors, metastable chaos and bursting oscillations in a multiscroll memristive chaotic circuit. Int. J. Bifurc. Chaos 2017, 27, 1750067. [Google Scholar] [CrossRef]
- Pikovsky, A.; Rosenblum, M.; Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences; Cambridge University Press: New York, NY, USA, 2001; p. 411. [Google Scholar]
- Boccaletti, S.; Pisarchik, A.N.; del Genio, C.I.; Amann, A. Synchronization: From Coupled Systems to Complex Networks; Cambridge University Press: Cambridge, UK, 2018; p. 255. [Google Scholar]
- Pisarchik, A.; Jaimes-Reátegui, R.; Sevilla-Escoboza, J.R.; López, J.H.G.; Kazantsev, V. Optical fiber synaptic sensor. Opt. Lasers Eng. 2011, 49, 736–742. [Google Scholar] [CrossRef]
- Pisarchik, A.N.; Sevilla-Escoboza, R.; Jaimes-Reategui, R.; Huerta-Cuellar, G.; García-Lopez, J.H.; Kazantsev, V.B. Experimental implementation of a biometric laser synaptic sensor. Sensors 2013, 13, 17322–17331. [Google Scholar] [CrossRef] [Green Version]
- Simonov, A.Y.; Gordleeva, S.Y.; Pisarchik, A.; Kazantsev, V.B. Synchronization with an arbitrary phase shift in a pair of synaptically coupled neural oscillators. JETP Lett. 2014, 98, 632–637. [Google Scholar] [CrossRef]
- Gerasimova, S.A.; Gelikonov, G.V.; Pisarchik, A.N.; Kazantsev, V.B. Synchronization of optically coupled neural-like oscillators. J. Commun. Technol. Electron. 2015, 60, 900–903. [Google Scholar] [CrossRef]
- Horch, K.W.; Kipke, D.R. Neuroprosthetics Theory and Practice, 2nd ed.; World Scientific: Singapore, 2017; Volume 8, p. 934. [Google Scholar]
- Gerasimova, S.; Lebedeva, A.; Fedulina, A.; Koryazhkina, M.; Belov, A.; Mishchenko, M.; Matveeva, M.; Guseinov, D.; Mikhaylov, A.; Kazantsev, V.; et al. A neurohybrid memristive system for adaptive stimulation of hippocampus. Chaos Solitons Fractals 2021, 146, 110804. [Google Scholar] [CrossRef]
- Hramov, A.E.; Maksimenko, V.A.; Pisarchik, A.N. Physical principles of brain-computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Phys. Rep. 2021, 918, 1–133. [Google Scholar] [CrossRef]
- Indiveri, G.; Linares-Barranco, B.; Hamilton, T.J.; van Schaik, A.; Etienne-Cummings, R.; Delbruck, T.; Liu, S.-C.; Dudek, P.; Häfliger, P.; Renaud, S.; et al. Neuromorphic silicon neuron circuits. Front. Neurosci. 2011, 5, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuzum, D.; Yu, S.; Wong, H.-S.P. Synaptic electronics: Materials, devices and applications. Nanotechnology 2013, 24, 382001. [Google Scholar] [CrossRef]
- Bill, J.; Legenstein, R. A compound memristive synapse model for statistical learning through STDP in spiking neural networks. Front. Neurosci. 2014, 8, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Yin, M.; Lu, X.; Cai, Y.; Yang, Y.; Huang, R. Tolerance of intrinsic device variation in fuzzy restricted Boltzmann machine network based on memristive nano-synapses. Nano Futur. 2017, 1, 015003. [Google Scholar] [CrossRef]
- Nair, M.V.; Muller, L.K.; Indiveri, G. A differential memristive synapse circuit for on-line learning in neuromorphic computing systems. Nano Futur. 2017, 1, 035003. [Google Scholar] [CrossRef] [Green Version]
- Strukov, D.B. Tightening grip. Nat. Mater. 2018, 17, 293–295. [Google Scholar] [CrossRef]
- Mikhaylov, A.; Pimashkin, A.; Pigareva, Y.; Gerasimova, S.; Gryaznov, E.; Shchanikov, S.; Zuev, A.; Talanov, M.; Lavrov, I.; Demin, V.; et al. Neurohybrid memristive CMOS-integrated systems for biosensors and neuroprosthetics. Front. Neurosci. 2020, 14, 358. [Google Scholar] [CrossRef]
- Thomas, A. Memristor-based neural networks. J. Phys. D Appl. Phys. 2013, 46, 093001. [Google Scholar] [CrossRef] [Green Version]
- Adamatzky, A.; Chua, L.O. Memristor Networks; Springer: Cham, Switzerland, 2014; p. 716. [Google Scholar]
- Ge, R.; Wu, X.; Kim, M.; Shi, J.; Sonde, S.; Tao, L.; Zhang, Y.; Lee, J.C.; Akinwande, D. Atomristor: Nonvolatile resistance switching in atomic sheets of transition metal Dichalcogenides. Nano Lett. 2017, 18, 434–441. [Google Scholar] [CrossRef]
- Binczak, S.; Jacquir, S.; Bilbault, J.-M.; Kazantsev, V.B.; Nekorkin, V.I. Experimental study of electrical FitzHugh–Nagumo neurons with modified excitability. Neural Netw. 2006, 19, 684–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shchapin, D. Dynamics of two neuronlike elements with inhibitory feedback. J. Commun. Technol. Electron. 2009, 54, 175–184. [Google Scholar] [CrossRef]
- Adamchik, D.A.; Matrosov, V.V.; Semyanov, A.V.; Kazantsev, V.B. Model of self-oscillations in a neuron generator under the action of an active medium. JETP Lett. 2015, 102, 624–627. [Google Scholar] [CrossRef]
- Mishchenko, M.A.; Bolshakov, D.I.; Matrosov, V.V. Instrumental implementation of a neuronlike generator with spiking and bursting dynamics based on a phase-locked loop. Tech. Phys. Lett. 2017, 43, 596–599. [Google Scholar] [CrossRef]
- Pisarchik, A.N.; Jaimes-Reátegui, R.; García-Vellisca, M.A. Asymmetry in electrical coupling between neurons alters multistable firing behavior. Chaos: Interdiscip. J. Nonlinear Sci. 2018, 28, 033605. [Google Scholar] [CrossRef]
- Gambuzza, L.V.; Frasca, M.; Fortuna, L.; Ntinas, V.; Vourkas, I.; Sirakoulis, G.C. Memristor crossbar for adaptive synchronization. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 2124–2133. [Google Scholar] [CrossRef]
- Guseinov, D.; Tetelbaum, D.; Mikhaylov, A.; Belov, A.; Shenina, M.; Korolev, D.; Antonov, I.; Kasatkin, A.; Gorshkov, O.; Okulich, E.; et al. Filamentary model of bipolar resistive switching in capacitor-like memristive nanostructures on the basis of yttria-stabilised zirconia. Int. J. Nanotechnol. 2017, 14, 604. [Google Scholar] [CrossRef]
- Matrosov, V.V.; Kazantsev, V.B. Bifurcation mechanisms of regular and chaotic network signaling in brain astrocytes. Chaos: Interdiscip. J. Nonlinear Sci. 2011, 21, 023103. [Google Scholar] [CrossRef] [PubMed]
- Matrosov, V.V.; Mishchenko, M.A.; Shalfeev, V.D. Neuron-like dynamics of a phase-locked loop. Eur. Phys. J. Spéc. Top. 2013, 222, 2399–2405. [Google Scholar] [CrossRef]
- Selyutskiy, Y.D. On auto-oscillations of a plate in flow. In AIP Conference Proceedings; AIP Publishing LLC location: Melville, NY, USA, 2017; Volume 1798, p. 20139. [Google Scholar] [CrossRef]
- Sausedo-Solorio, J.; Pisarchik, A. Synchronization of map-based neurons with memory and synaptic delay. Phys. Lett. A 2014, 378, 2108–2112. [Google Scholar] [CrossRef]
- Sausedo-Solorio, J.M.; Pisarchik, A.N. Synchronization in network motifs of delay-coupled map-based neurons. Eur. Phys. J. Spéc. Top. 2017, 226, 1911–1920. [Google Scholar] [CrossRef]
- Andreev, A.V.; Frolov, N.S.; Pisarchik, A.N.; Hramov, A.E. Chimera state in complex networks of bistable Hodgkin-Huxley neurons. Phys. Rev. E 2019, 100, 022224. [Google Scholar] [CrossRef] [PubMed]
- Andreev, A.V.; Maksimenko, V.A.; Pisarchik, A.N.; Hramov, A.E. Synchronization of interacted spiking neuronal networks with inhibitory coupling. Chaos Solitons Fractals 2021, 146, 110812. [Google Scholar] [CrossRef]
- Bashkirtseva, I.A.; Ryashko, L.B.; Pisarchik, A.N. Ring of map-based neural oscillators: From order to chaos and back. Chaos Solitons Fractals 2020, 136, 109830. [Google Scholar] [CrossRef]
- Matveyev, Y.; Egorov, K.V.; Markeev, A.; Zenkevich, A. Resistive switching and synaptic properties of fully atomic layer deposition grown TiN/HfO2/TiN devices. J. Appl. Phys. 2015, 117, 044901. [Google Scholar] [CrossRef]
- Shi, Y.; Fong, S.; Wong, H.-S.P.; Kuzum, D. Synaptic devices based on phase-change memory. In Neuro-Inspired Computing Using Resistive Synaptic Devices; Springer: Cham, Switzerland, 2017; pp. 19–51. [Google Scholar]
- Choi, S.; Tan, S.H.; Li, Z.; Kim, Y.; Choi, C.; Chen, P.-Y.; Yeon, H.; Yu, S.; Kim, J. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 2018, 17, 335–340. [Google Scholar] [CrossRef]
- Gerasimova, S.A.; Mikhaylov, A.; Belov, A.I.; Korolev, D.; Gorshkov, O.N.; Kazantsev, V.B. Simulation of synaptic coupling of neuron-like generators via a memristive device. Tech. Phys. 2017, 62, 1259–1265. [Google Scholar] [CrossRef]
- Ignatov, M.; Ziegler, M.; Hansen, M.; Petraru, A.; Kohlstedt, H. A memristive spiking neuron with firing rate coding. Front. Neurosci. 2015, 9, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korotkov, A.G.; Kazakov, A.; Levanova, T.; Osipov, G.V. The dynamics of ensemble of neuron-like elements with excitatory couplings. Commun. Nonlinear Sci. Numer. Simul. 2018, 71, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Bao, H.; Zhang, Y.; Liu, W.; Bao, B. Memristor synapse-coupled memristive neuron network: Synchronization transition and occurrence of chimera. Nonlinear Dyn. 2020, 100, 937–950. [Google Scholar] [CrossRef]
- Parastesh, F.; Jafari, S.; Azarnoush, H.; Hatef, B.; Namazi, H.; Dudkowski, D. Chimera in a network of memristor-based Hopfield neural network. Eur. Phys. J. Spéc. Top. 2019, 228, 2023–2033. [Google Scholar] [CrossRef]
- Pershin, Y.V.; Di Ventra, M. On the validity of memristor modeling in the neural network literature. Neural Netw. 2020, 121, 52–56. [Google Scholar] [CrossRef]
- Williamson, A.; Schumann, L.; Hiller, L.; Klefenz, F.; Hoerselmann, I.; Husar, P.; Schober, A. Synaptic behavior and STDP of asymmetric nanoscale memristors in biohybrid systems. Nanoscale 2013, 5, 7297–7303. [Google Scholar] [CrossRef]
- Yang, R.; Huang, H.-M.; Hong, Q.-H.; Yin, X.-B.; Tan, Z.-H.; Shi, T.; Zhou, Y.-X.; Miao, X.-S.; Wang, X.-P.; Mi, S.-B.; et al. Synaptic suppression triplet-STDP learning rule realized in second-order memristors. Adv. Funct. Mater. 2017, 28. [Google Scholar] [CrossRef]
- Serrano-Gotarredona, T.; Masquelier, T.; Prodromakis, T.; Indiveri, G.; Linares-Barranco, B. STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front. Neurosci. 2013, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikiruy, K.E.; Surazhevsky, I.A.; Demin, V.A.; Emelyanov, A.V. Spike-timing-dependent and spike-shape-independent plasticities with dopamine-like modulation in nanocomposite memristive synapses. Phys. Status Solidi A 2020, 217, 1900938. [Google Scholar] [CrossRef]
- Prudnikov, N.V.; Lapkin, D.A.; Emelyanov, A.V.; Minnekhanov, A.A.; Malakhova, Y.N.; Chvalun, S.N.; Demin, V.A.; Erokhin, V.V. Associative STDP-like learning of neuromorphic circuits based on polyaniline memristive microdevices. J. Phys. D Appl. Phys. 2020, 53, 414001. [Google Scholar] [CrossRef]
- Demin, V.; Nekhaev, D.; Surazhevsky, I.; Nikiruy, K.; Emelyanov, A.; Nikolaev, S.; Rylkov, V.; Kovalchuk, M. Necessary conditions for STDP-based pattern recognition learning in a memristive spiking neural network. Neural Netw. 2020, 134, 64–75. [Google Scholar] [CrossRef]
- Sarmiento-Reyes, A.; Rodriguez-Velasquez, Y. Maze-solving with a memristive grid of charge-controlled memristors. In Proceedings of the 2018 IEEE 9th Latin American Symposium on Circuits & Systems (LASCAS), Puerto Vallarta, Mexico, 25–28 February 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Isah, A.; Nguetcho, A.T.; Binczak, S.; Bilbault, J. Dynamics of a charge-controlled memristor in master–slave coupling. Electronics 2020, 56, 211–213. [Google Scholar] [CrossRef]
- Raj, P.M.P.; Kalita, A.R.; Kundu, S. Memristive computational amplifiers and equation solvers. In Modelling, Simulation and Intelligent Computing; Goel, N., Ed.; Springer Nature: Singapore, 2020; pp. 74–82. [Google Scholar] [CrossRef]
- Guo, T.; Wang, L.; Zhou, M.; Duan, S. A multi-layer memristive recurrent neural network for solving static and dynamic image associative memory. Neurocomputing 2018, 334, 35–43. [Google Scholar] [CrossRef]
- Tanaka, G.; Nakane, R.; Yamane, T.; Takeda, S.; Nakano, D.; Nakagawa, S.; Hirose, A. Waveform classification by memristive reservoir computing. In International Conference on Neural Information Processing; Springer: Cham, Switzerland, 2017; pp. 457–465. [Google Scholar]
- Erokhin, V. Memristive Devices for neuromorphic applications: Comparative analysis. BioNanoScience 2020, 10, 834–847. [Google Scholar] [CrossRef]
- Isah, A.; Nguetcho, A.S.T.; Binczak, S.; Bilbault, J. Memristor dynamics involved in cells communication for a 2D non-linear network. IET Signal Process. 2020, 14, 427–434. [Google Scholar] [CrossRef]
- Chakma, G.; Adnan, M.; Wyer, A.R.; Weiss, R.; Schuman, C.D.; Rose, G.S. Memristive mixed-signal neuromorphic systems: Energy-efficient learning at the circuit-level. IEEE J. Emerg. Sel. Top. Circuits Syst. 2017, 8, 125–136. [Google Scholar] [CrossRef]
- Battistoni, S.; Cocuzza, M.; Marasso, S.L.; Verna, A.; Erokhin, V. The role of the internal capacitance in organic memristive device for neuromorphic and sensing applications. Adv. Electron. Mater. 2021, 2100494. [Google Scholar] [CrossRef]
- Bian, H.; Goh, Y.Y.; Liu, Y.; Ling, H.; Xie, L.; Liu, X. Stimuli-responsive memristive materials for artificial synapses and neuromorphic nomputing. Adv. Mater. 2021, 2006469. [Google Scholar] [CrossRef] [PubMed]
- Alsuwian, T.; Kousar, F.; Rasheed, U.; Imran, M.; Hussain, F.; Khalil, R.A.; Algadi, H.; Batool, N.; Khera, E.A.; Kiran, S.; et al. First principles investigation of physically conductive bridge filament formation of aluminum doped perovskite materials for neuromorphic memristive applications. Chaos Solitons Fractals 2021, 150, 111111. [Google Scholar] [CrossRef]
- Gerasimova, S.A.; Mikhaylov, A.N.; Belov, A.I.; Korolev, D.; Guseinov, D.V.; Lebedeva, A.V.; Gorshkov, O.N.; Kazantsev, V.B. Design of memristive interface between electronic neurons. In AIP Conference Proceedings; AIP Publishing LLC location: Melville, NY, USA, 2018; Volume 1959, p. 090005. [Google Scholar] [CrossRef]
- Kasdin, N.J. Runge-Kutta Algorithm for the numerical integration of stochastic differential equations. J. Guid. Control. Dyn. 1995, 18, 114–120. [Google Scholar] [CrossRef]
- Kasdin, N.J. Discrete simulation of colored noise and stochastic processes and 1/fα power law noise generation. Proc. IEEE 1995, 83, 802–827. [Google Scholar] [CrossRef]
- Higham, D.J. An Algorithmic Introduction to numerical simulation of stochastic differential equations. SIAM Rev. 2001, 43, 525–546. [Google Scholar] [CrossRef]
- Emelyanov, A.; Nikiruy, K.; Demin, V.; Rylkov, V.; Belov, A.; Korolev, D.; Gryaznov, E.; Pavlov, D.; Gorshkov, O.; Mikhaylov, A.; et al. Yttria-stabilized zirconia cross-point memristive devices for neuromorphic applications. Microelectron. Eng. 2019, 215, 110988. [Google Scholar] [CrossRef]
- Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater. Sci. Eng. R Rep. 2014, 83, 1–59. [Google Scholar] [CrossRef]
- Lee, J.S.; Lee, S.; Noh, T.W. Resistive switching phenomena: A review of statistical physics approaches. Appl. Phys. Rev. 2015, 2, 031303. [Google Scholar] [CrossRef] [Green Version]
- Ignatov, M.; Ziegler, M.; Hansen, M.; Kohlstedt, H. Memristive stochastic plasticity enables mimicking of neural synchrony: Memristive circuit emulates an optical illusion. Sci. Adv. 2017, 3, e1700849. [Google Scholar] [CrossRef] [Green Version]
- Miranda, E.; Mehonic, A.; Ng, W.H.; Kenyon, A. Simulation of cycle-to-cycle Instabilities in SiOx- based ReRAM devices using a self-correlated process with long-term variation. IEEE Electron Device Lett. 2018, 40, 28–31. [Google Scholar] [CrossRef]
- Agudov, N.; Dubkov, A.; Safonov, A.; Krichigin, A.; Kharcheva, A.; Guseinov, D.; Koryazhkina, M.; Novikov, A.; Shishmakova, V.; Antonov, I.; et al. Stochastic model of memristor based on the length of conductive region. Chaos Solitons Fractals 2021, 150, 111131. [Google Scholar] [CrossRef]
- Guseinov, D.; Matyushkin, I.; Chernyaev, N.; Mikhaylov, A.; Pershin, Y. Capacitive effects can make memristors chaotic. Chaos Solitons Fractals 2021, 144, 110699. [Google Scholar] [CrossRef]
- Parvizi-Fard, A.; Amiri, M.; Kumar, D.; Iskarous, M.M.; Thakor, N.V. A functional spiking neuronal network for tactile sensing pathway to process edge orientation. Sci. Rep. 2021, 11, 1320. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerasimova, S.A.; Belov, A.I.; Korolev, D.S.; Guseinov, D.V.; Lebedeva, A.V.; Koryazhkina, M.N.; Mikhaylov, A.N.; Kazantsev, V.B.; Pisarchik, A.N. Stochastic Memristive Interface for Neural Signal Processing. Sensors 2021, 21, 5587. https://doi.org/10.3390/s21165587
Gerasimova SA, Belov AI, Korolev DS, Guseinov DV, Lebedeva AV, Koryazhkina MN, Mikhaylov AN, Kazantsev VB, Pisarchik AN. Stochastic Memristive Interface for Neural Signal Processing. Sensors. 2021; 21(16):5587. https://doi.org/10.3390/s21165587
Chicago/Turabian StyleGerasimova, Svetlana A., Alexey I. Belov, Dmitry S. Korolev, Davud V. Guseinov, Albina V. Lebedeva, Maria N. Koryazhkina, Alexey N. Mikhaylov, Victor B. Kazantsev, and Alexander N. Pisarchik. 2021. "Stochastic Memristive Interface for Neural Signal Processing" Sensors 21, no. 16: 5587. https://doi.org/10.3390/s21165587
APA StyleGerasimova, S. A., Belov, A. I., Korolev, D. S., Guseinov, D. V., Lebedeva, A. V., Koryazhkina, M. N., Mikhaylov, A. N., Kazantsev, V. B., & Pisarchik, A. N. (2021). Stochastic Memristive Interface for Neural Signal Processing. Sensors, 21(16), 5587. https://doi.org/10.3390/s21165587