Robust Nonparametric Distribution Transfer with Exposure Correction for Image Neural Style Transfer
Abstract
1. Introduction
2. Related Work
3. Neural Style Transfer
3.1. Robust Nonparametric Distribution Transferred Neural Style Transfer Model
Algorithm 1 The details of the |
Initialization of the source data and target For example in color transfer, where are the red, green, and blue components of pixel . repeat
The final one-to-one mapping is given by: |
3.2. Exposure Corrected and Robust Nonparametric Distribution Transferred Neural Style Transfer Model
3.2.1. Adaptive Detail-Enhanced Multi-Scale Retinex Algorithm
3.2.2. EC-RNDT Model
4. Experimental Results
4.1. Experiment Details
4.2. Style Transfer Results of RNDT Model
4.3. Results of DEMSR Algorithm
4.4. Style Transfer Result of EC-RNDT Model
4.4.1. Comparison of RNDT Model and EC-RNDT Model
4.4.2. Comparison between Baselines and EC-RNDT Mode
4.5. Color-Preserved Style Transfer
4.6. Quantitative Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kyprianidis, J.E.; Collomosse, J.; Wang, T.; Isenberg, T. State of the “art”: A taxonomy of artistic stylization techniques for images and video. IEEE Trans. Vis. Comput. Graph. 2013, 19, 866–885. [Google Scholar] [CrossRef] [PubMed]
- Semmo, A.; Isenberg, T.; Döllner, J. Neural style transfer: A paradigm shift for image-based artistic rendering? In Proceedings of the Symposium on Non-Photorealistic Animation and Rendering, Los Angeles, CA, USA, 29–30 July 2017; p. 5. [Google Scholar]
- Jing, Y.; Yang, Y.; Feng, Z.; Ye, J.; Yu, Y.; Song, M. Neural style transfer: A review. IEEE Trans. Vis. Comput. Graph. 2019. [Google Scholar] [CrossRef]
- Rosin, P.; Collomosse, J. Image and Video-Based Artistic Stylization; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2016, arXiv:1409.1556. [Google Scholar]
- Le Cun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef] [PubMed]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. Image style transfer using convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2414–2423. [Google Scholar]
- Li, Y.; Fang, C.; Yang, J.; Wang, Z.; Lu, X.; Yang, M.H. Universal style transfer via feature transforms. arXiv 2017, arXiv:1705.08086. [Google Scholar]
- Shen, F.; Yan, S.; Zeng, G. Neural style transfer via meta networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8061–8069. [Google Scholar]
- Huang, X.; Belongie, S. Arbitrary style transfer in real-time with adaptive instance normalization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1501–1510. [Google Scholar]
- Karayev, S.; Trentacoste, M.; Han, H.; Agarwala, A.; Darrell, T.; Hertzmann, A.; Winnemoeller, H. Recognizing image style. arXiv 2013, arXiv:1311.3715. [Google Scholar]
- Yoo, J.; Uh, Y.; Chun, S.; Kang, B.; Ha, J.W. Photorealistic style transfer via wavelet transforms. arXiv 2019, arXiv:1903.09760. [Google Scholar]
- Li, X.; Liu, S.; Kautz, J.; Yang, M.H. Learning linear transformations for fast image and video style transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–21 June 2019; pp. 3809–3817. [Google Scholar]
- Song, Y.Z.; Rosin, P.L.; Hall, P.M.; Collomosse, J.P. Arty shapes. In Computational Aesthetics; The Eurographics Association: Aire-la-Ville, Switzerland, 2008; pp. 65–72. [Google Scholar]
- Kolliopoulos, A. Image Segmentation for Stylized Non-Photorealistic Rendering and Animation; University of Toronto: Toronto, ON, Canada, 2005. [Google Scholar]
- Hertzmann, A. Painterly rendering with curved brush strokes of multiplesizes. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, Orlando, FL, USA, 19–24 July 1998; pp. 453–460. [Google Scholar]
- Efros, A.A.; Freeman, W.T. Image quilting for texture synthesis and transfer. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17 August 2001; pp. 341–346. [Google Scholar]
- Li, Y.; Wang, N.; Liu, J.; Hou, X. Demystifying neural style transfer. arXiv 2017, arXiv:1701.01036. [Google Scholar]
- Li, C.; Wand, M. Combining markov random fields and convolutional neural networks for image synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2479–2486. [Google Scholar]
- Liao, J.; Yao, Y.; Yuan, L.; Hua, G.; Kang, S.B. Visual attribute transfer through deep image analogy. arXiv 2017, arXiv:1705.01088. [Google Scholar] [CrossRef]
- Hertzmann, A.; Jacobs, C.E.; Oliver, N.; Curless, B.; Salesin, D.H. Image analogies. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17 August 2001; pp. 327–340. [Google Scholar]
- Liu, X.C.; Cheng, M.M.; Lai, Y.K.; Rosin, P.L. Depth-aware neural style transfer. In Proceedings of the Symposium on Non-Photorealistic Animation and Rendering, Los Angeles, CA, USA, 29–30 July 2017; p. 4. [Google Scholar]
- Johnson, J.; Alahi, A.; Li, F.-F. Perceptual losses for real-time style transfer and super-resolution. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 694–711. [Google Scholar]
- Champandard, A.J. Semantic style transfer and turning two-bit doodles into fine artworks. arXiv 2016, arXiv:1603.01768. [Google Scholar]
- Li, S.; Xu, X.; Nie, L.; Chua, T.S. Laplacian-steered neural style transfer. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1716–1724. [Google Scholar]
- Gatys, L.A.; Ecker, A.S.; Bethge, M.; Hertzmann, A.; Shechtman, E. Controlling perceptual factors in neural style transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3985–3993. [Google Scholar]
- Wang, X.; Oxholm, G.; Zhang, D.; Wang, Y.F. Multimodal transfer: A hierarchical deep convolutional neural network for fast artistic style transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5239–5247. [Google Scholar]
- Luan, F.; Paris, S.; Shechtman, E.; Bala, K. Deep photo style transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4990–4998. [Google Scholar]
- Mechrez, R.; Shechtman, E.; Zelnik-Manor, L. Photorealistic style transfer with screened poisson equation. arXiv 2017, arXiv:1709.09828. [Google Scholar]
- Chen, D.; Yuan, L.; Liao, J.; Yu, N.; Hua, G. Stereoscopic neural style transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6654–6663. [Google Scholar]
- Ruder, M.; Dosovitskiy, A.; Brox, T. Artistic style transfer for videos. In German Conference on Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2016; pp. 26–36. [Google Scholar]
- Ruder, M.; Dosovitskiy, A.; Brox, T. Artistic style transfer for videos and spherical images. Int. J. Comput. Vis. 2018, 126, 1199–1219. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, S.; Bengio, Y. Generative adversarial nets. In Proceedings of the Annual Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Choi, Y.; Choi, M.; Kim, M.; Ha, J.M.; Kim, S.; Choo, J. Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8789–8797. [Google Scholar]
- Chang, H.; Lu, J.; Yu, F.; Finkelstein, A. Pairedcyclegan: Asymmetric style transfer for applying and removing makeup. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 40–48. [Google Scholar]
- Yi, Z.; Zhang, H.; Tan, P.; Gong, M. Dualgan: Unsupervised dual learning for image-to-image translation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2849–2857. [Google Scholar]
- Liu, M.Y.; Huang, X.; Mallya, A.; Karras, T.; Aila, T.; Lehtinen, J.; Kautz, J. Few-shot unsupervised image-to-image translation. arXiv 2019, arXiv:1905.01723. [Google Scholar]
- Huang, H.; Yu, P.S.; Wang, C. An introduction to image synthesis with generative adversarial nets. arXiv 2018, arXiv:1803.04469. [Google Scholar]
- Pitié, F.; Kokaram, A.C.; Dahyot, R. Automated colour grading using colour distribution transfer. Comput. Vis. Image. Underst. 2007, 107, 123–137. [Google Scholar] [CrossRef]
- Pitié, F.; Kokaram, A.C.; Dahyot, R. N-dimensional probability density function transfer and its application to color transfer. In Proceedings of the 10th IEEE International Conference on Computer Vision (ICCV’05), Beijing, China, 24–28 October 2010; IEEE: Piscataway, NJ, USA, 2005; pp. 1434–1439. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Patern. Anal. 2012, 35, 1397–1409. [Google Scholar] [CrossRef]
- Cho, S.; Shrestha, B.; Joo, H.J.; Hong, B. Improvement of retinex algorithm for backlight image efficiency. In Computer Science and Convergence; Springer: Berlin/Heidelberg, Germany, 2012; pp. 579–587. [Google Scholar]
- Kong, H.; Akakin, H.C.; Sarma, S.E. A generalized laplacian of gaussian filter for blob detection and its applications. IEEE Trans. Cybern. 2013, 43, 1719–1733. [Google Scholar] [CrossRef]
- Mould, D. Authorial subjective evaluation of non-photorealistic images. In Proceedings of the Workshop on Non-Photorealistic Animation and Rendering, Vancouver, BC, Canada, 8–10 August 2014; pp. 49–56. [Google Scholar]
- Isenberg, T.; Neumann, P.; Carpendale, S.; Sousa, M.C.; Jorge, J.A. Non-photorealistic rendering in context: An observational study. In Proceedings of the 4th International Symposium on Non-Photorealistic Animation and Rendering, Annecy, France, 5–7 June 2006; pp. 115–126. [Google Scholar]
- Reinhard, E.; Adhikhmin, M.; Gooch, B.; Shirley, P. Color transfer between images. IEEE Comput. Graph. Appl. 2001, 21, 34–41. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Sanakoyeu, A.; Kotovenko, D.; Lang, S.; Ommer, B. A style-aware content loss for real-time hd style transfer. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 698–714. [Google Scholar]
- Chen, X.; Xu, C.; Yang, X.; Song, L.; Tao, D. Gated-gan: Adversarial gated networks for multi-collection style transfer. IEEE Trans. Image Process. 2018, 28, 546–560. [Google Scholar] [CrossRef] [PubMed]
Model | Gatys et al. | Huang et al. | RNDT |
---|---|---|---|
Preference | 33.60 | 24.11 | 42.49 |
Model | Gatys et al. | Huang et al. | EC-RNDT |
---|---|---|---|
Preference | 31.21 | 20.95 | 47.84 |
Model | Gatys [8] | Ours + Gatys |
---|---|---|
Deception rate | 0.43 | 0.49 |
Model | Huang [11] | Ours + Huang |
---|---|---|
Deception rate | 0.31 | 0.32 |
Model | Gatys [8] | Ours + Gatys |
---|---|---|
FID score | 265.3 | 262.8 |
Model | Huang [11] | Ours + Huang |
---|---|---|
FID score | 245.8 | 241.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Hong, C.; He, J.; Tian, Z. Robust Nonparametric Distribution Transfer with Exposure Correction for Image Neural Style Transfer. Sensors 2020, 20, 5232. https://doi.org/10.3390/s20185232
Liu S, Hong C, He J, Tian Z. Robust Nonparametric Distribution Transfer with Exposure Correction for Image Neural Style Transfer. Sensors. 2020; 20(18):5232. https://doi.org/10.3390/s20185232
Chicago/Turabian StyleLiu, Shuai, Caixia Hong, Jing He, and Zhiqiang Tian. 2020. "Robust Nonparametric Distribution Transfer with Exposure Correction for Image Neural Style Transfer" Sensors 20, no. 18: 5232. https://doi.org/10.3390/s20185232
APA StyleLiu, S., Hong, C., He, J., & Tian, Z. (2020). Robust Nonparametric Distribution Transfer with Exposure Correction for Image Neural Style Transfer. Sensors, 20(18), 5232. https://doi.org/10.3390/s20185232