Measuring the Wave Height Based on Binocular Cameras
Abstract
1. Introduction
2. Related Work
3. The Proposed Stereo Match Algorithm
3.1. Corner Detection
3.2. Stereo Matching Algorithm
4. Experimental Results
4.1. Experimental Equipment
4.2. Experiment in a Circular Storage Tank
4.3. Experiment in a Tank
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, L.; Hu, Y.; Zong, Z.; Yu, Z.; Pei, Y. Generation and propagation of internal wave and its interaction with ocean structures. Sci. Found. China 2017, 3, 72–80. [Google Scholar]
- Cuypers, Y.; Vaillant, X.L.; Bouruet-Aubertot, P.; Vialard, J.; Mcphaden, M.J. Tropical storm-induced near-inertial internal waves during the Cirene experiment: Energy fluxes and impact on vertical mixing. J. Geophys. Res. Oceans 2013, 118, 358–380. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, X.; Zhang, J.; Ji, Y. Detection of Vessel Targets in Sea Clutter Using In Situ Sea State Measurements With HFSWR. IEEE Geosci. Remote Sens. Lett. 2018, 15, 302–306. [Google Scholar] [CrossRef]
- Amstutz, E.D. Stereophotogrammetric Reconnaissance of Ocean Wave/Sea Ice Interaction [Microform]. Dissertation Abstracts Int. 1977, 38, 120. [Google Scholar]
- Chen, Z.; He, Y.; Zhang, B. An Automatic Algorithm to Retrieve Wave Height from X-Band Marine Radar Image Sequence. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5084–5092. [Google Scholar] [CrossRef]
- Broeders, J.; Pascal, R.W.; Cresens, C.; Waugh, E.W.; Cardwell, C.L.; Yelland, M.J. Smart electronics for high accuracy wave height measurements in the open ocean. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–5. [Google Scholar]
- Salin, B.M.; Salin, M.B. Combined Method for Measuring 3D Wave Spectra. I. Algorithms to Transform the Optical-Brightness Field into the Wave-Height Distribution. Radiophys. Quantum Electron. 2015, 58, 114–123. [Google Scholar] [CrossRef]
- Lataitis, R.J.; Crawford, G.B.; Clifford, S.F. A new acoustic technique for remote measurement of the temporal ocean wave spectrum. IEEE Oceans 1988, 2, 315–317. [Google Scholar]
- Kim, W.J.; Van, S.H.; Kim, D.H. Measurement of flows around modern commercial ship models. Exp. Fluids 2001, 31, 567–578. [Google Scholar] [CrossRef]
- Moisy, F.; Rabaud, M.; Salsac, K. A synthetic Schlieren method for the measurement of the topography of a liquid interface. Exp. Fluids 2009, 46, 1021–1036. [Google Scholar] [CrossRef]
- Lowe, D.G.; Lowe, D.G. Distinctive Image Features from Scale-Invariant Key-points. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Tsubaki, R.; Fujita, I. Stereoscopic measurement of a fluctuating free surface with discontinuities. Meas. Sci. Technol. 2005, 16, 1894–1902. [Google Scholar] [CrossRef]
- Douxchamps, D.; Devriendt, D.; Capart, H.; Craeye, C.; Macq, B.; Zech, Y. Stereoscopic and velocimetric reconstructions of the free surface topography of antidune flows. Exp. Fluids 2005, 39, 535–553. [Google Scholar] [CrossRef]
- Felice, F.D.; Pereira, F. Developments and Applications of PIVin Naval Hydrodynamics. In Particle Image Velocimetry; Springer: Berlin/Heidelberg, Germany, 2008; pp. 475–503. [Google Scholar]
- Turney, D.E. Improved Understanding of air–water Transfer of Volatile Chemicals. Master’s Thesis, University of California, Berkeley, CA, USA, 2009. [Google Scholar]
- Fedele, F.; Benetazzo, A.; Gallego, G.; Shih, P.C.; Yezzi, A.; Barbariol, F.; Ardhuin, F. Space-time measurements of oceanic sea states. Ocean Model. 2013, 70, 103–115. [Google Scholar] [CrossRef]
- Viriyakijja, K.; Chinnarasri, C. Wave Flume Measurement Using Image Analysis. Aquat. Procedia 2015, 4, 522–531. [Google Scholar] [CrossRef]
- Chatellier, L.; Jarny, S.; Gibouin, F.; David, L. A parametric PIV/DIC method for the measurement of free surface flows. Exp. Fluids 2013, 54, 1488. [Google Scholar] [CrossRef]
- Gomit, G.; Chatellier, L.; Calluaud, D.; David, L. Free surface measurement by stereo-refraction. Exp. Fluids 2013, 54, 1540. [Google Scholar] [CrossRef]
- Gomit, G.; Chatellier, L.; Calluaud, D.; David, L.; Fréchou, D.; Boucheron, R.; Hubert, C. Large-scale free surface measurement for the analysis of ship waves in a towing tank. Exp. Fluids 2015, 56, 1–13. [Google Scholar] [CrossRef]
- Suzuki, T.; Sumino, K. A Technique to Measure Wave Height Using Projected Light Distribution on the Screen Near the Water Surface. J. Kansai Soc. Naval Archit. Jpn. 1993, 13 (Suppl. 1), 241–244. [Google Scholar]
- Sanada, Y.; Hamachi, S.; Toda, Y. 2006A-G3-9 Development of a New Technique to MeasureWave Height Distribution Using Reflected Light Image. In Proceedings of the The Japan Society of Naval Architects and Ocean Engineers. Available online: https://ci.nii.ac.jp/naid/110007185859/en (accessed on 17 March 2019).
- Sanada, Y.; Toda, Y.; Hamachi, S. The development of the new technique which measures the unsteady density field: The examination on density field reconstruction method. J. Jpn. Soc. Naval Archit. Ocean Eng. 2005, 2, 57–63. [Google Scholar] [CrossRef]
- Ng, I.; Kumar, V.; Sheard, G.J.; Hourigan, K.; Fouras, A. Experimental study of simultaneous measurement of velocity and surface topography: In the wake of a circular cylinder at low Reynolds number. Exp. Fluids 2011, 50, 587–595. [Google Scholar] [CrossRef]
- Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Wu, F. Research on Digital Method of Measuring the Height of Ocean Wave. Ph.D. Thesis, Tianjin University, Tianjin, China, June 2010. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cang, Y.; He, H.; Qiao, Y. Measuring the Wave Height Based on Binocular Cameras. Sensors 2019, 19, 1338. https://doi.org/10.3390/s19061338
Cang Y, He H, Qiao Y. Measuring the Wave Height Based on Binocular Cameras. Sensors. 2019; 19(6):1338. https://doi.org/10.3390/s19061338
Chicago/Turabian StyleCang, Yan, Hengxiang He, and Yulong Qiao. 2019. "Measuring the Wave Height Based on Binocular Cameras" Sensors 19, no. 6: 1338. https://doi.org/10.3390/s19061338
APA StyleCang, Y., He, H., & Qiao, Y. (2019). Measuring the Wave Height Based on Binocular Cameras. Sensors, 19(6), 1338. https://doi.org/10.3390/s19061338