Low Computational Signal Acquisition for GNSS Receivers Using a Resampling Strategy and Variable Circular Correlation Time
Abstract
:1. Introduction
2. Characteristics of Satellite Signals and Framework of GNSS Receivers
2.1. Characteristics of Satellite Signals
2.2. Framework of GNSS Receivers
3. Methodology of the Resampling Strategy and Variable Circular Correlation Time
3.1. Principle of the Resampling Strategy
3.2. Realization of the Resampling Strategy for Signal Aquisition
Algorithm 1 Realization of the Resampling Strategy for GNSS Signal Acquisition 
Input:


Return: the acquired Doppler frequency and code phase offset of the received satellite signal. 
3.3. Coarse Acquisition with Variable Circular Correlation Time
3.4. Fine Acquisition with Pilot Channel
3.5. Performance Evaluation of Signal Acquisition
4. Experiments and Discussion
4.1. Experimental Platform and Datasets Description
4.2. Performance Analysis of the Resampling Strategy
4.3. Performance of Variable Circular Correlation Time
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
 Sükeová, L.; Santos, M.C.; Langley, R.B.; Leandro, R.F.; Nievinski, F. GPS L2C signal quality analysis. In Proceedings of the 63rd Annual Meeting of the Institute of Navigation, Cambridge, MA, USA, 23–25 April 2007. [Google Scholar]
 Li, H.; Lu, M. Design and assessment of composite civil moderate code structure for efficient global positioning system L2 civil signal acquisition. IET Radar Sonar Navig. 2015, 9, 907–916. [Google Scholar] [CrossRef]
 Xie, G. Principles of GPS and Receiver Design, 1st ed.; Electronic Industry Press: Beijing, China, 2009. [Google Scholar]
 Bao, J.; Tsui, Y. Fundamentals of Global Positioning System Receivers: A Software Approach; Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
 Sagiraju, P.K.; Raju, G.V.S.; Akopian, D. Fast acquisition implementation for high sensitivity global positioning systems receivers based on joint and reduced space search. IET Radar Sonar Navig. 2008, 2, 376–387. [Google Scholar] [CrossRef]
 Tang, P.; Wang, S.; Li, X.; Jiang, Z. A lowcomplexity algorithm for fast acquisition of weak DSSS signal in high dynamic environment. GPS Solut. 2017, 21, 1427–1441. [Google Scholar] [CrossRef]
 Principe, F.; Bacci, G.; Giannetti, F.; Luise, M. SoftwareDefined Radio Technologies for GNSS Receivers: A Tutorial Approach to a Simple Design and Implementation. Int. J. Navig. Obs. 2011, 2011, 979815. [Google Scholar] [CrossRef]
 Hassanieh, H.; Adib, F.; Katabi, D.; Indyk, P. Faster GPS via the sparse Fourier transform. In Proceedings of the International Conference on Mobile Computing & Networking, Istanbul, Turkey, 22–26 August 2012. [Google Scholar]
 Akopian, D. Fast FFT based GPS satellite acquisition methods. IEE Proc. Radar Sonar Navig. 2005, 152, 277–286. [Google Scholar] [CrossRef]
 Patel, V. Reducedsize FFT correlation techniques for GPS signal acquisition. Int. J. Comput. Appl. 2011, 2, 14–19. [Google Scholar]
 Zeng, Q.; Tang, L.; Zhang, P.; Pei, L. Fast acquisition of L2C CL codes based on combination of hyper codes and averaging correlation. J. Syst. Eng. Electron. 2016, 27, 308–318. [Google Scholar] [CrossRef]
 Ahamed, S.F.; Laveti, G.; Goswami, R.; Rao, G.S. Fast acquisition of GPS signal using Radix2 and Radix4 FFT algorithms. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing, Bhimavaram, India, 27–28 February 2016. [Google Scholar]
 Han, X.; Zheng, G.; Peng, S. High dynamic GPS signal analysis and acquisition algorithm. Commun. Syst. Inf. Technol. 2011, 100, 773–779. [Google Scholar]
 Silva, F.C.; Souza, S.X.D.; Silveira, L.F.Q.; Mota, F.C.; Albuquerque, G.L.A.; Valderrama, C. Twostep low complexity GPS signal acquisition. In Proceedings of the ION 2015 Pacific PNT Meeting, Honolulu, HI, USA, 20–23 April 2015. [Google Scholar]
 Albuquerque, G.L.A.; Valderrama, C.; Silva, F.C.; XavierdeSouza, S. Timeeffective GPS time domain signal acquisition algorithm. In Proceedings of the 2016 IEEE International Conference on Localization and GNSS (ICLGNSS), Barcelona, Spain, 28–30 June 2016. [Google Scholar]
 Soltanian, B.; Demirtas, A.M.; Ghadam, A.S.H.; Renfors, M. Reducedcomplexity FFTbased method for Doppler estimation in GNSS receivers. EURASIP J. Adv. Signal Process. 2014, 1, 143. [Google Scholar] [CrossRef]
 Wang, K.; Jiang, R.; Li, Y.; Zhang, N. A new algorithm for fine acquisition of GPS carrier frequency. GPS Solut. 2014, 18, 581–592. [Google Scholar] [CrossRef]
 Liu, X.; He, Z.; Haowei, W.U.; Jinglan, O.U. Rapid DSSS signal acquisition algorithm under high dynamic environment. J. Electr. Inf. Technol. 2016. [Google Scholar] [CrossRef]
 Zhou, J.; Liu, C. Joint datapilot acquisition of GPS L1 civil signal. In Proceedings of the 2014 IEEE 12th International Conference on Signal Processing, Hangzhou, China, 19–23 October 2014. [Google Scholar]
 Wei, K.; Wen, Z.; Zhang, Y.; Bo, B. New compress sampling algorithm for FFTbased GPS signal acquisition. In Proceedings of the 2007 International Conference on Convergence Information Technology, Gyeongju, Korea, 21–23 November 2007. [Google Scholar]
 Qaisar, S.U.; Benson, C.; Ryan, M.J. A novel efficient signal processing approach for combined acquisition of GPS L1 and L2 civilian signals. In Proceedings of the 2016 Military Communications and Information Systems Conference, Canberra, Australia, 8–10 November 2016. [Google Scholar]
 Li, X.; Rueetschi, A.; Eldar, Y.C.; Scaglione, A. GPS signal acquisition via compressive multichannel sampling. Phys. Commun. 2012, 5, 173–184. [Google Scholar] [CrossRef]
 Vaughan, R.G.; Scott, N.L.; White, D.R. The theory of bandpass sampling. IEEE Trans. Signal Process. 1991, 39, 1973–1984. [Google Scholar] [CrossRef]
 Ville, S.; Valkama, M. Jitter Mitigation in HighFrequency BandpassSampling OFDM Radios. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Budapest, Hungary, 5–8 April 2009; pp. 1–6. [Google Scholar]
 Yang, Y.; Lim, C.; Nirmalathas, A. Multichannel Digitized RFOverFiber Transmission Based on Bandpass Sampling and FPGA. IEEE Trans. Microw. Theory Tech. 2010, 58, 3181–3188. [Google Scholar] [CrossRef]
 Zou, N.; Xu, Z.; Ran, J.; Li, C. Performance of Reconstruction Algorithm Based on SubNyquist Bandpass Sampling in the Pulse Position ModulationUltra Wide Band System. J. Radars 2015, 4, 827–831. [Google Scholar]
 Akos, D.M.; Stockmaster, M.; Tsui, J.B.Y.; Caschera, J. Direct bandpass sampling of multiple distinc RF signals. IEEE Trans. Commun. 1999, 47, 983–988. [Google Scholar] [CrossRef]
 Tseng, C.H.; Chou, S.C. Direct downconversion of multiband RF signals using bandpass sampling. IEEE Trans. Wirel. Commun. 2006, 5, 72–76. [Google Scholar] [CrossRef]
 Liu, J.C. Complex bandpass sampling and direct downconversion of multiband analytic signals. Signal Process. 2010, 90, 504–512. [Google Scholar] [CrossRef]
 Thabet, J.; Barrak, R.; Ghazel, A. Enhancement of bandpass sampling efficiency in direct RF subsampling receivers: Application to multiband GPS subsampling receiver. In Proceedings of the 2014 International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, 14–16 April 2014; pp. 1412–1417. [Google Scholar]
 Qaisar, S.U.; Dempster, A.G. Assessment of the GPS L2C code structure for efficient signal acquisition. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1889–1902. [Google Scholar] [CrossRef]
 Zhu, C.; Fan, X. A novel method to extend coherent integration for weak GPS signal acquisition. IEEE Commun. Lett. 2015, 19, 1343–1346. [Google Scholar] [CrossRef]
 Zhu, C.; Fan, X. Weak global navigation satellite system signal acquisition with bit transition. IET Radar Sonar Navig. 2014, 9, 38–47. [Google Scholar] [CrossRef]
 Jin, T.; Yang, J.; Huang, Z.; Qin, H. Multicorrelation strategies fusion acquisition method for high data rate global navigation satellite system signals. IET Signal Process. 2015, 9, 623–630. [Google Scholar] [CrossRef]
 Li, Y.; Li, J.; Zhang, P.; Zheng, Y. Improved algorithm for weak GPS signal acquisition based on delayaccumulation method. Acta Geod. Cartogr. Sin. 2016, 45, 44–49. [Google Scholar]
 Yang, J.; Jin, T.; Huang, Z.; Qin, H. Data and pilot optimized combining method for new composite global navigation satellite system signal acquisition. IET Radar Sonar Navig. 2016, 10, 953–965. [Google Scholar]
 Ta, T.H.; Qaisar, S.U.; Dempster, A.G.; Dovis, F. Partial differential postcorrelation processing for GPS L2C signal acquisition. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1287–1305. [Google Scholar] [CrossRef]
 Wang, X.L.; Li, Y.F. An innovative scheme for SINS/GPS ultratight integration system with lowgrade IMU. Aerosp. Sci. Technol. 2012, 23, 452–460. [Google Scholar] [CrossRef]
Dataset No.  1  2  3  4 

Data Type  8bit Real Data  8bit Real Data  8bit Real Data  8bit Complex Data 
Intermediate Frequency (MHz)  7.4  7.4  7.6  −0.02 
Conventional Sampling Frequency (MHz)  53  53  79.25  4 
Acquired Satellites  Acquisition without the Resampling Strategy  Acquisition with the Resampling Strategy  

PRN  CNo (dBHz)  Frequency  Doppler  Code Phase  Magnitude  Ratio  Frequency  Doppler  Code Phase  Magnitude  Ratio 
(MHz)  (Hz)  (samples)  /  /  (MHz)  (Hz)  (samples)  /  /  
5  38.0  7.39649  −3507  701962  21976  3.9492  7.39649  −3508  701963  2210  3.9103 
6  42.8  7.40103  1032  356345  40595  6.8311  7.40103  1033  356347  4033  6.2393 
12  43.1  7.39853  −1470  193389  40928  7.0512  7.39853  −1465  193394  3983  7.2284 
17  33.7  7.40119  1187  879016  14909  2.6156  7.40119  1186  879013  1546  2.6421 
24  33.2  7.40152  1522  829115  14041  2.6483  7.40152  1522  829119  1342  2.2496 
25  35.9  7.39697  −3027  621138  18820  3.4106  7.39697  −3030  621140  1843  3.2997 
29  27.6  7.39708  −2920  933174  12710  2.1654  7.39708  −2922  933179  1196  2.1817 
DataSet No.  Acquisition without the Resampling Strategy  Acquisition with the Resampling Strategy  

Sampling Frequency (MHz)  Computation (${\mathit{O}}^{\mathit{M}},{\mathit{O}}^{\mathit{A}}$)  Time Cost (s)  Sampling Frequency (MHz)  Computation (${\mathit{O}}^{\mathit{M}},{\mathit{O}}^{\mathit{A}}$)  Time Cost (s)  
1  53.00  (6.8 × 10^{11}, 1.3 × 10^{12})  2486  5.97  (6.7 × 10^{10}, 1.3 × 10^{11})  246.8 
2  53.00  (6.8 × 10^{11}, 1.3 × 10^{12})  2467  5.97  (6.7 × 10^{10}, 1.3 × 10^{11})  244.9 
3  79.25  (1.1 × 10^{12}, 2.0 × 10^{12})  3455  6.13  (6.9 × 10^{10}, 1.3 × 10^{11})  268.5 
4  4.00  (4.4 × 10^{10}, 8.2 × 10^{11})  109.5  2.36  (2.5 × 10^{10}, 4.7 × 10^{11})  70.2 
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, M.; Li, Y. Low Computational Signal Acquisition for GNSS Receivers Using a Resampling Strategy and Variable Circular Correlation Time. Sensors 2018, 18, 678. https://doi.org/10.3390/s18020678
Zhang Y, Wang M, Li Y. Low Computational Signal Acquisition for GNSS Receivers Using a Resampling Strategy and Variable Circular Correlation Time. Sensors. 2018; 18(2):678. https://doi.org/10.3390/s18020678
Chicago/Turabian StyleZhang, Yeqing, Meiling Wang, and Yafeng Li. 2018. "Low Computational Signal Acquisition for GNSS Receivers Using a Resampling Strategy and Variable Circular Correlation Time" Sensors 18, no. 2: 678. https://doi.org/10.3390/s18020678