Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors
Abstract
:1. Introduction
2. Materials and Methods: Coolants Characterization and Sensing Approach
2.1. Coolant Fluids’ Study and Characterization
2.1.1. Industrial Coolant and Lubricant Fluids
2.1.2. pH Characterization
2.1.3. Spectroscopic Characterization
2.2. Fiber Optics Sensor Design and Development
2.2.1. Sol-Gel Overlayers Synthesis
2.2.2. Fiber Surface Preparation
2.2.3. Experimental Set-Up
3. Results and Discussion
3.1. Sensors’ Characterization in Standard Solutions
3.2. Sensors’ Response in Coolant Fluids
3.3. Sensor Integration in Wireless Node Modules
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Emmanouilidis, C.; Liyanage, J.P.; Jantunen, E. Mobile solutions for engineering asset and maintenance management. J. Qual. Maint. Eng. 2009, 15, 92–105. [Google Scholar] [CrossRef]
- Emmanouilidis, C.; Riziotis, C. Wireless condition monitoring integrating smart computing and optical sensor technologies Engineering Asset Management. In Engineering Asset Management—Systems, Professional Practices and Certification, Lecture Notes in Mechanical Engineering; Tse, P.W., Mathew, J., Wong, K., Lam, R., Ko, C.N., Eds.; Springer International Publishing: New York, NY, USA, 2015; pp. 1389–1400. [Google Scholar]
- Kalligeros, S.S. Predictive maintenance of hydraulic lifts through lubricating oil analysis. Machines 2014, 2, 1–12. [Google Scholar] [CrossRef]
- Riziotis, C.; Eineder, L.; Bancallari, L.; Tussiwand, G. Fiber optic architectures for strain monitoring of solid rocket motors’ propellant. Sens. Lett. 2013, 11, 1403–1407. [Google Scholar] [CrossRef]
- Pruneri, V.; Riziotis, C.; Smith, P.G.R.; Vasilakos, A. Fiber and integrated waveguide-based optical sensors. J. Sens. 2009, 2009, 171748. [Google Scholar] [CrossRef]
- Athanasekos, L.; Vasileiadis, M.; El Sachat, A.; Vainos, N.A.; Riziotis, C. ArF excimer laser microprocessing of polymer optical fibers for photonic sensor applications. J. Opt. 2015, 17, 015402. [Google Scholar] [CrossRef]
- Athanasekos, L.; Dimas, D.; Katsikas, S.; Pispas, S.; Vainos, N.A.; Boucouvalas, A.C.; Riziotis, C. Laser microstructuring of polymer optical fibres for enhanced and autonomous sensor architectures. Procedia Eng. 2011, 25, 1593–1596. [Google Scholar] [CrossRef]
- Athanasekos, L.; El Sachat, A.; Pispas, S.; Riziotis, C. Amphiphilic diblock copolymer based multi-agent photonic sensing scheme. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 46–54. [Google Scholar] [CrossRef]
- El Sachat, A.; Meristoudi, A.; Pispas, S.; Riziotis, C. Assessment of block and random copolymer overlayers on polymer optical fibers towards protein detection through electrostatic interaction. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 327–334. [Google Scholar] [CrossRef]
- Sparrow, I.J.G.; Smith, P.G.R.; Emmerson, G.D.; Watts, S.P.; Riziotis, C. Planar Bragg grating sensors—Fabrication and applications: A review. J. Sens. 2009, 2009, 607647. [Google Scholar] [CrossRef]
- Riziotis, C.; El Sachat, A.; Markos, C.; Velanas, P.; Meristoudi, A.; Papadopoulos, A. Assessment of fiber optic sensors for aging monitoring of industrial liquid coolants. Proc. SPIE 2015, 9359. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, S.; Nguyen, T.H.; Sun, T.; Grattan, K.T.V. Wireless sensor network platform for intrinsic optical fiber pH sensors. IEEE Sens. J. 2014, 14, 1313–1320. [Google Scholar] [CrossRef]
- Oikonomou, P.; Botsialas, A.; Olziersky, A.; Kazas, I.; Stratakos, I.; Katsikas, S.; Dimas, D.; Mermikli, K.; Sotiropoulos, G.; Goustouridis, D.; et al. A wireless sensing system for monitoring the workplace environment of an industrial installation. Sens. Actuators B Chem. 2016, 224, 266–274. [Google Scholar] [CrossRef]
- Lazarescu, M.T. Design and field test of a WSN platform prototype for long-term environmental monitoring. Sensors 2015, 15, 9481–9518. [Google Scholar] [CrossRef] [PubMed]
- Piyare, R.; Lee, S.R. Towards internet of things (IoTs): Integration of wireless sensor network to cloud services for data collection and sharing. Int. J. Comput. Netw. Commun. 2013, 5, 59–72. [Google Scholar] [CrossRef]
- Capella, J.V.; Campelo, J.C.; Bonastre, A.; Ors, R. A reference model for monitoring IoT WSN-based applications. Sensors 2016, 16, 1816. [Google Scholar] [CrossRef] [PubMed]
- Byers, J.P. (Ed.) Metalworking Fluids, 2nd ed.; CRC Taylor & Francis: Boca Raton, FL, USA, 2006.
- Anderson, J.E.; Kim, B.R.; Mueller, S.A.; Lofton, T.V. Composition and analysis of mineral oils and other organic compounds in metalworking and hydraulic fluids. Crit. Rev. Environ. Sci. Technol. 2010, 33, 73–109. [Google Scholar] [CrossRef]
- Irani, R.A.; Bauer, R.J.; Warkentin, A. A review of cutting fluid application in the grinding process. Int. J. Mach. Tools Manuf. 2005, 45, 1696–1705. [Google Scholar] [CrossRef]
- Gordon, T. Metalworking fluid—The toxicity of a complex mixture. J. Toxicol. Environ. Health 2004, 67, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Aghazadeh, F.; Hatipkarasulu, S.; Ray, T.G. Health risks from exposure to metal-working fluids in machining and grinding operations. Int. J. Occup. Saf. Ergon. 2003, 9, 75–95. [Google Scholar] [CrossRef] [PubMed]
- Dilger, S.; Fluri, A.; Sonntag, H.G. Bacterial contamination of preserved and non-preserved metalworking fluids. Int. J. Hyg. Environ. Health 2005, 208, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Howes, T.D.; Tönshoff, H.K.; Heuer, W.; Howes, T. Environmental aspects of grinding fluids. CIRP Ann. Manuf. Technol. 1991, 40, 623–630. [Google Scholar] [CrossRef]
- Castrol Syntilo 81BF Data Sheet. Available online: https://thelubricantoracle.castrol.com/product/syntilo-81-bf (accessed on 3 June 2015).
- Multan-Henkel Data Sheet. Available online: http://www.henkel-adhesives.com/industrial/brands-5497.htm?nodeid=8797570924686 (accessed on 3 June 2015).
- Lemos, S.G.; Nogueira, A.R.A.; Torre-Neto, A.; Parra, A.; Alonso, J. Soil calcium and pH monitoring sensor system. J. Agric. Food Chem. 2007, 55, 4658–4663. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Gu, B.; Zhao, Q.; Qian, J.; Zhang, A.; An, Q.; He, S. Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating. Anal. Bioanal. Chem. 2011, 399, 3623–3631. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Yin, M.-J.; Zhang, A.P.; Qian, J.-W.; He, S. Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer. Opt. Express 2009, 17, 22296–22302. [Google Scholar] [CrossRef] [PubMed]
- Michie, W.C.; Culshaw, B.; McKenzie, I.; Konstantakis, M.; Graham, N.B.; Moran, C.; Santos, F.; Bergqvist, E.; Carlstrom, B. Distributed sensor for water and pH measurements using fiber optics and swellable polymeric systems. Opt. Lett. 1995, 20, 103–105. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.P.; Porter, M.D. Optical pH sensor based on the chemical modification of a porous polymer film. Anal. Chem. 1998, 60, 404–406. [Google Scholar] [CrossRef]
- Alvarado-Méndez, E.; Rojas-Laguna, R.; Andrade-Lucio, J.A.; Hernández-Cruz, D.; Lessard, R.A.; Aviña-Cervantes, J.G. Design and characterization of pH sensor based on sol–gel silica layer on plastic optical fiber. Sens. Actuators B Chem. 2005, 106, 518–522. [Google Scholar]
- Lee, S.T.; Gin, J.; Nampoori, V.P.N.; Vallabhan, C.P.G.; Unnikrishnan, N.V.; Radhakrishnan, P. Sensitive Fiber Optic pH Sensors Using Multiple Sol-Gel Coatings. J. Opt. A Pure Appl. Opt. 2001, 3, 355–359. [Google Scholar] [CrossRef]
- Yin, M.; Qian, J.; An, Q.; Zhao, Q.; Gui, Z.; Li, J. Polyelectrolyte layer-by-layer self-assembly at vibration condition and the pervaporation performance of assembly multilayer films in dehydration of isopropanol. J. Membr. Sci. 2010, 358, 43–50. [Google Scholar] [CrossRef]
- Itano, K.; Choi, J.Y.; Rubner, M.F. Mechanism of the pH-induced discontinuous swelling/deswelling transitions of poly(allylamine hydrochloride)-containing polyelectrolyte multilayer films. Macromolecules 2005, 38, 3450–3460. [Google Scholar] [CrossRef]
- Goicoechea, J.; Zamarreño, C.R.; Matias, I.R.; Arregui, F.J. Utilization of white light interferometry in pH sensing applications by mean of the fabrication of nanostructured cavities. Sens. Actuators B Chem. 2009, 138, 613–618. [Google Scholar] [CrossRef]
- Corres, J.M.; Villar, D.I.; Matias, I.R.; Arregui, F.J. Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly. Opt. Lett. 2007, 32, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.-Y.; Yin, M.-J.; Tam, H.-Y.; Albert, J. Fiber optic pH sensor with self-assembled polymer multilayer nanocoatings. Sensors 2013, 13, 1425–1434. [Google Scholar]
- Aspiotis, N.; El Sachat, A.; Athanasekos, L.; Vasileiadis, M.; Mousdis, G.; Vainos, N.A.; Riziotis, C. Diffractive ammonia sensors based on sol-gel nanocomposites materials. Sens. Lett. 2013, 11, 1415–1419. [Google Scholar] [CrossRef]
- Gupta, B.D.; Singh, C.D. Evanescent-absorption coefficient for diffuse source illumination: Uniform- and tapered-fiber sensors. Appl. Opt. 1994, 33, 2737–2742. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.D.; Singh, C.D.; Sharma, A. Fiber-optic evanescent field absorption sensor: Effect of launching condition and the geometry of the sensing region. Opt. Eng. 1994, 33, 1864–1868. [Google Scholar] [CrossRef]
- Gupta, B.D.; Sharma, S. A long-range fiber optic pH sensor prepared by dye doped sol-gel immobilization technique. Opt. Commun. 1998, 154, 282–284. [Google Scholar] [CrossRef]
- Dong, S.; Luo, M.; Peng, G.; Cheng, W. Broad range pH sensor based on sol-gel entrapped indicators on fibre optic. Sens. Actuators B Chem. 2008, 129, 94–98. [Google Scholar] [CrossRef]
- Prisma Electronics S.A. Available online: http://www.prismaelectronics.eu (accessed on 8 March 2016).
- Arrue, J.; Jiménez, F.; Aldabaldetreku, G.; Durana, G.; Zubia, J.; Lomer, M.; Mateo, J. Analysis of the use of tapered graded-index polymer optical fibers for refractive-index sensors. Opt. Express 2008, 16, 16616–16631. [Google Scholar] [PubMed]
- Kumar, P.S.; Vallabhan, C.P.G.; Nampoori, V.P.N.; Pillai, V.S.; Radhakrishnan, P. A fibre optic evanescent wave sensor used for the detection of trace nitrites in water. J. Opt. A Pure Appl. Opt. 2002, 4, 247–250. [Google Scholar] [CrossRef]
Coolant | Material | Quantity (%) | Chemical Structure |
---|---|---|---|
Multan 61-3 DF (Henkel) | Polyalkylene glycol esters | N/A | |
Pyridine-2-thiol 1-oxide sodium salt | 0.25–0.3 | | |
Inorganic salts | N/A | N/A | |
Syntilo 81 BF (Castrol) | Triethanolamine | 35–40 | |
Ethanolamine | 1–5 | | |
3-Iodo-2-propynyl butylcarbamate | 0.1–1 | | |
Poly(quaternary ammonium chloride) | 0.1–0.25 | - |
Indicator | Chemical Structure | pH range |
---|---|---|
Bromophenol blue | | 3.0–4.6 |
Chlorophenol red | | 4.8–6.7 |
Cresol red | | 7.0–10.8 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sachat, A.E.; Meristoudi, A.; Markos, C.; Sakellariou, A.; Papadopoulos, A.; Katsikas, S.; Riziotis, C. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors. Sensors 2017, 17, 568. https://doi.org/10.3390/s17030568
Sachat AE, Meristoudi A, Markos C, Sakellariou A, Papadopoulos A, Katsikas S, Riziotis C. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors. Sensors. 2017; 17(3):568. https://doi.org/10.3390/s17030568
Chicago/Turabian StyleSachat, Alexandros El, Anastasia Meristoudi, Christos Markos, Andreas Sakellariou, Aggelos Papadopoulos, Serafim Katsikas, and Christos Riziotis. 2017. "Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors" Sensors 17, no. 3: 568. https://doi.org/10.3390/s17030568
APA StyleSachat, A. E., Meristoudi, A., Markos, C., Sakellariou, A., Papadopoulos, A., Katsikas, S., & Riziotis, C. (2017). Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors. Sensors, 17(3), 568. https://doi.org/10.3390/s17030568