Abstract
Rodents, as a core component of desert ecosystems and an important indicator of environmental changes, are ideal subjects for studying the impacts of fluctuations in climatic conditions on wildlife. Based on field data from the southern Alxa Desert (2014–2020), this study constructed an ecosystem structure network integrating local/metacommunities, climate, soil, and plant communities. Combined with structural equation modeling, we explored the response mechanisms of rodent communities to climatic conditions across multiple scales. The results showed the following: the α-diversity of local and metacommunities exhibited convergent seasonal patterns, with greater impacts from human disturbances than interannual effects, as well as coexisting species turnover and nesting in metacommunities. Precipitation directly affected metacommunity abundance and diversity and indirectly influenced both community types via vegetation, while temperature directly regulated community characteristics; metacommunities were formed via the coupling of local communities through species migration and habitat filtering, reflecting complex links between local and regional processes. This research provides scientific support for predicting desert ecosystem dynamics and guiding conservation management.