Genetic Diversity of Selective Breeding Populations of Giant Freshwater Prawn (Macrobrachium rosenbergii) Based on SSR and Mitochondrial D-Loop Gene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Genomic DNA Extraction
2.2. mtDNA D-Loop Amplification and Sequencing
2.3. Microsatellite Amplification and Genotyping
2.4. Microsatellite Data Analyses
2.5. mtDNA D-Loop Sequence Alignment and Data Analyses
3. Results
3.1. Microsatellite Polymorphism and Genetic Variation
3.2. Genetic Diversity Based on D-Loop Sequences
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GFP | Giant freshwater prawn |
NTH | Nantaihu |
HF | Hefu |
GX | Guangxi |
JX | Jiaxing |
TW | Taiwan |
SF | Shufeng |
PCR | Polymerase chain reaction |
DNA | Deoxyribonucleic acid |
mt | Mitochondrial |
RAPD | Randomly amplified polymorphic |
SNP | Single nucleotide polymorphisms |
SSR | Single sequence repeats |
ddH2O | Double distilled water |
μL | Microlitre |
s | Second |
min | Minute |
ng | Nanogram |
PIC | Polymorphic information content |
Na | Mean number of alleles per locus |
Ne | Effective number of alleles |
He | Expected heterozygosity |
Ho | Observed heterozygosity |
HWE | Hardy–Weinberg equilibrium |
N | Sample size |
H | Haplotype number |
Hd | Haplotype diversity |
π | Nucleotide diversity |
S | Number of polymorphic (segregating) sites |
Fis | Inbreeding coefficient |
Fit | Biological Fitness |
Fst | Fixation index |
Nm | Number of migrants |
UPGMA | Unweighted pair group method with arithmetic |
MEGA | Molecular evolutionary genetics analysis |
A | Adenine |
G | Guanine |
C | Cytosine |
T | Thymine |
References
- Xu, Y.; Feng, Y.; Zhang, S.; Yang, Z.; Xu, W.; Gong, J.; Gu, H. Effects of Macrobrachium nipponense on phytoplankton communities and water environmental factors in Macrobrachium rosenbergii culture. Aquac. Res. 2024, 2024, 4218312. [Google Scholar] [CrossRef]
- Tan, K.; Wang, W. The early life culture and gonadal development of giant freshwater prawn, Macrobrachium rosenbergii: A review. Aquaculture 2022, 559, 738357. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). Yearbook of Fishery Statistics: Summary Tables; FAO: Rome, Italy, 2024. [Google Scholar]
- China Fishery Statistical Yearbook 2024; Fisheries Bureau Department of Agriculture of China: Beijing, China, 2024.
- Sui, J.; Luan, S.; Yang, G.; Chen, X.; Luo, K.; Gao, Q.; Wang, J.; Hu, H.; Kong, J. Genetic diversity and population structure of a giant freshwater prawn (Macrobrachium rosenbergii) breeding nucleus in China. Aquac. Res. 2018, 49, 2175–2183. [Google Scholar] [CrossRef]
- Boudry, P.; Allal, F.; Aslam, M.L.; Bargelloni, L.; Bean, T.P.; Brard-Fudulea, S.; Brieuc, M.S.O.; Calboli, F.C.F.; Gilbey, J.; Haffray, P.; et al. Current status and potential of genomic selection to improve selective breeding in the main aquaculture species of international council for the exploration of the sea (ICES) member countries. Aquac. Rep. 2021, 20, 100700. [Google Scholar] [CrossRef]
- Bijma, P.; Woolliams, J.A. Prediction of rates of inbreeding in populations selected on best linear unbiased prediction of breeding value. Genetics 2000, 156, 361–373. [Google Scholar] [CrossRef]
- Yu, L.; Zhu, X.; Liang, J.; Fan, J.; Chen, C. Analysis of genetic structure of wild and cultured giant freshwater prawn (Macrobrachium rosenbergii) using newly developed microsatellite. Front. Mar. Sci. 2019, 6, 323. [Google Scholar] [CrossRef]
- Chareontawee, K.; Poompuang, S.; Na-Nakorn, U.; Kamonrat, W. Genetic Diversity of hatchery stocks of giant freshwater prawn (Macrobrachium rosenbergii) in Thailand. Aquaculture 2007, 271, 121–129. [Google Scholar] [CrossRef]
- Pillai, B.R.; Ponzoni, R.W.; Das Mahapatra, K.; Panda, D. Genetic improvement of giant freshwater prawn Macrobrachium rosenbergii: A review of global status. Rev. Aquac. 2022, 14, 1285–1299. [Google Scholar] [CrossRef]
- Thanh, N.M.; Nguyen, N.H.; Ponzoni, R.W.; Vu, N.T.; Barnes, A.C.; Mather, P.B. Estimates of strain additive and non-additive genetic effects for growth traits in a diallel cross of three strains of giant freshwater prawn (Macrobrachium rosenbergii) in Vietnam. Aquaculture 2010, 299, 30–36. [Google Scholar] [CrossRef]
- Tang, Q.Y.; Xie, J.H.; Xia, Z.L.; Cai, M.Y.; Wu, Y.M.; Bai, L.H.; Du, H.K.; Li, J.F.; Yang, G.L. Genetic diversity of the breeding populations of giant freshwater prawn Macrobrachium rosenbergii. Acta Hydrobiol. Sin. 2020, 44, 1097–1104. [Google Scholar] [CrossRef]
- Ahammad, A.S.; Rahman, M.S.; Ahmed, M.B.U.; Rabbi, M.F.; Wahab, M.A. Morpho-genetic characterization of morphotypes of the giant freshwater prawn, Macrobrachium rosenbergii. Bangladesh J. Fish. 2019, 31, 31–40. [Google Scholar]
- Wahidah, W.; Omar, S.B.A.; Trijuno, D.D.; Nugroho, E.; Amrullah, A.; Khatimah, K. Genetic variation of giant freshwater prawns Macrobrachium rosenbergii wild population of South Sulawesi, Indonesia. Biodiversitas J. Biol. Divers. 2023, 24, 3081–3090. [Google Scholar] [CrossRef]
- Binur, R.; Pancoro, A. Inbreeding depression level of post-larvae freshwater prawn (Macrobrachium rosenbergii) from several hatcheries in Java, Indonesia. Biodiversitas J. Biol. Divers. 2017, 18, 609–618. [Google Scholar] [CrossRef]
- Lyu, M.; Huang, G.; Li, M.; Yang, Q.; Lu, X.; Gan, H.; Ruan, Z.; Huang, L.; Yang, Y.; Lu, T.; et al. Microsatellite analysis of genetic diversity of male giant freshwater prawn Macrobrachium rosenbergii with various morphotypes. Fish. Sci. 2019, 38, 355–360. [Google Scholar]
- Ge, J.; Xu, Z.; Huang, Y.; Lu, Q.; Pan, J.; Yang, J. Genetic variation in wild and cultured populations of the freshwater prawn, Macrobrachium nipponense, in China. J. World Aquac. Soc. 2011, 42, 504–511. [Google Scholar] [CrossRef]
- Jiang, F.; Dai, X.L. Analysis of the genetic diversity and sequence variation of mitochondrial COIgene from three populations of Macrobrachium rosenbergii. J. Fish. Res. 2023, 45, 8. [Google Scholar]
- Bala, B.; Mallik, M.; Saclain, S.; Islam, M.S. Genetic variation in wild and hatchery populations of giant freshwater prawn (Macrobrachium rosenbergii) revealed by randomly amplified polymorphic DNA markers. J. Genet. Eng. Biotechnol. 2017, 15, 23–30. [Google Scholar] [CrossRef]
- Agarwal, D.; Aich, N.; Pavan-Kumar, A.; Kumar, S.; Sabnis, S.; Joshi, C.G.; Koringa, P.; Pandya, D.; Patel, N.; Karnik, T.; et al. SNP mining in transcripts and concomitant estimation of genetic variation in Macrobrachium rosenbergii stocks. Conserv. Genet. Resour. 2016, 8, 159–168. [Google Scholar] [CrossRef]
- Chen, P.; Shih, C.; Chu, T.J.; Lee, Y.; Tzeng, T.D. Phylogeography and genetic structure of the oriental river prawn Macrobrachium nipponense (Crustacea: Decapoda: Palaemonidae) in East Asia. PLoS ONE 2017, 12, e0173490. [Google Scholar] [CrossRef]
- Ke, X.; Liu, J.; Gao, F.; Cao, J.; Liu, Z.; Lu, M. Analysis of genetic diversity among six dojo loach (Misgurnus anguillicaudatus) populations in the pearl river basin based on microsatellite and mitochondrial DNA markers. Aquac. Rep. 2022, 27, 101346. [Google Scholar] [CrossRef]
- Noorullah, M.; Zuberi, A.; Zaman, M.; Younas, W.; Hussain, S.; Kamran, M. Assessment of genetic diversity among wild and captive-bred Labeo rohita through microsatellite markers and mitochondrial DNA. Fish. Aquat. Sci. 2023, 26, 752–761. [Google Scholar] [CrossRef]
- Liu, S.; Yu, Q.; Chen, R.; Hu, W.; Yan, X.; Han, Q.; Xu, D.; Zhu, Q. Comparison of genetic diversity between hatchery-reared and wild rock bream (Oplegnathus fasciatus) based on microsatellite markers and mitochondrial COI sequences. Aquac. Res. 2024, 2024, 5570764. [Google Scholar] [CrossRef]
- Li, Y.; Song, J.; Shen, X.; Cai, Y.; Cheng, H.; Zhang, X.; Yan, B.; Chu, K.H. The First mitochondrial genome of Macrobrachium rosenbergii from China: Phylogeny and gene rearrangement within Caridea. Mitochondrial DNA Part B 2018, 4, 134–136. [Google Scholar] [CrossRef]
- Woodruff, D.S. Populations, Species, and conservation genetics. In Encyclopedia of Biodiversity; Elsevier: Amsterdam, The Netherlands, 2001; pp. 811–829. [Google Scholar] [CrossRef]
- Ding, Q.; Shi, M.; Ji, P.; Qin, L.; Gao, X.; Zhang, X.; Jiang, Q. Genetic diversity and differentiation of cultured Macrobrachium rosenbergii in China using newly developed microsatellite multiplex PCR panels. Aquac. Int. 2024, 32, 7895–7910. [Google Scholar] [CrossRef]
- Banu, M.R.; Siraj, S.S.; Christianus, A.; Ikhsan, N.F.M.; Rajaee, A.H. Genetic variation among different morphotypes of the male freshwater prawn Macrobrachium rosenbergii (De Man). Aquac. Rep. 2015, 1, 15–19. [Google Scholar] [CrossRef]
- Avval, S.E. Assessing Polymorphism Information Content (PIC) Using SSR molecular markers on local species of Citrullus Colocynthis. Case study: Iran, Sistan-Balouchestan Province. J. Mol. Biol. Res. 2017, 7, 42. [Google Scholar] [CrossRef]
- Zhang, H.-R.; Niu, S.-F.; Wu, R.-X.; Zhai, Y.; Tian, L.-T. Development and characterization of 26 polymorphic microsatellite markers in Lateolabrax maculatus and cross-species amplification for the phylogenetically related taxa. Biochem. Syst. Ecol. 2016, 66, 326–330. [Google Scholar] [CrossRef]
- Qin, Y.; Shi, G.; Sun, Y. Evaluation of genetic diversity in Pampus argenteus using SSR markers. Genet. Mol. Res. 2013, 12, 5833–5841. [Google Scholar] [CrossRef]
- Huang, X.; Yang, S.; Gong, J.; Zhao, Y.; Feng, Q.; Gong, H.; Li, W.; Zhan, Q.; Cheng, B.; Xia, J.; et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat. Commun. 2015, 6, 6258. [Google Scholar] [CrossRef]
- Sui, J.; Luan, S.; Yang, G.; Xia, Z.; Luo, K.; Tang, Q.; Lu, X.; Meng, X.; Kong, J. Genetic parameters and selection response for the harvest body weight of the giant freshwater prawn (Macrobrachium rosenbergii) in a breeding program in China. PLoS ONE 2019, 14, e0218379. [Google Scholar] [CrossRef]
- Wu, J.; Wang, W.; Deng, D.; Zhang, K.; Peng, S.; Xu, X.; Zhang, Y.; Zhou, Z. Genetic diversity and phylogeography of Daphnia similoides sinensis located in the middle and lower reaches of the Yangtze river. Ecol. Evol. 2019, 9, 4362–4372. [Google Scholar] [CrossRef] [PubMed]
- Grant, W. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J. Hered. 1998, 89, 415–426. [Google Scholar] [CrossRef]
- Yao, Q.; Yang, P.; Chen, L.Q.; Guo, H.; Zhang, H.; Yu, N.; Yang, G.L.; Wang, J.Y. Interspecific DNA sequence polymorphism in the mitochondrial D-loop gene from three populations of Macrobrachium rosenbergii. J. Fish. China 2007, 31, 18–22, (In Chinese with English abstract). [Google Scholar]
- Wright, S. Variability Within and Among Natural Populations. In Evolution and the Genetics of Populations: A Treatise in Four Volumes; The University of Chicago Press, Cop: Chicago, IL, USA; London, UK, 1984; Volume 4. [Google Scholar]
Locus | Repeat Motif | Primers Sequence (5′–3′) | Size Range (bp) | Annealing Temperature (°C) |
---|---|---|---|---|
Mr2824 | (ATA)18 | F: CAGTGCCAGCAGTATAATTTCA R: GGGTCTTTCCTTTGCTCCTATT | 220–290 | 58 |
Mr2865 | (TAA)24 | F: GCCTCAGATCATCTCCACTC R: GCCGTTATCATTGTATCTTGTG | 250–300 | 55 |
Mr7125 | (AAT)25 | F: AGACAGGGCTGTATCATACTTG R: ACAGAGTGGTAACGAGAATTGT | 200–250 | 55 |
Mr7151 | (TAT)10(TAG)13 | F: TCATGTCCGGCGTCACTT R: AGGGACGATAGATTCATCATCTTCG | 190–220 | 63 |
Mr7255 | (TTA)19 | F: CCTCCTGTTCCTCTACCTACC R: ATTGCTTCCGTTCATTCATTGG | 250–300 | 58.4 |
Mr7288 | (AAT)20 | F: TCTTCACAGAACAGCCAACAA R: CGGAGGTTAATTTCATCATCGCATT | 220–300 | 55 |
Mr7341 | (TAA)27 | F: CCTACTAAGCAGTACAACCTCT R: TGTGTTCATGTCTAGCCTCTG | 200–270 | 55 |
Mr5035 | (GA)33 | F: TTAAGTCAGCAAGTCAGGTGAT R: GCTTGTGTGGGTGTAAAGAAC | 250–330 | 60.5 |
Mr5318 | (TC)35 | F: GCGTCAGAAACTTGTGATACA R: GCCGAACTTCTACCTTCCAA | 250–300 | 58.4 |
Mr45015 | (GA)41 | F: GTGTCTGTGTCTAAGTCGTTGA R: GCAAAGGTCTTATTTGGGCATT | 190–220 | 60.5 |
Mr44633 | (AG)35 | F: CGCCCTCCCTATTTCCTGTC R: CCAACGCCGAGCATTCTAAG | 220–300 | 54 |
Mr7140 | (TACA)5T(TA)20 | F: TGTAGGCGCGGTTATCTTATAC R: GCTAGGGAGAGTGTTATCCATC | 230–280 | 60 |
Mr5362 | (TC)36 | F: TCAACTCTTCCTGATGGCTAGT R: AGTAGAACCAGACGCAACAAC | 250–300 | 54 |
Mr3235 | (TA)34 | F: CGTAGAGAACAAGGACACTGT R: CGGATTTGATGACATCGAAAGT | 190–250 | 58 |
Mr3101 | (TTA)19 | F: GCGATCTTCACATCCTCACT R: TGGTTGTTCTTCACAGTCTCC | 220–290 | 58 |
Mr3007 | (CTT)19 | F: TAACGCTGCCGTCTTGGTA R: TGTAAGCACGCTTGTATCTTCA | 120–200 | 55 |
Locus | Fis | Fit | Fst | Nm |
---|---|---|---|---|
Mr2824 | −0.0503 | 0.0224 | 0.0693 | 3.3573 |
Mr2865 | 0.1498 | 0.2080 | 0.0685 | 3.4023 |
Mr7125 | 0.3009 | 0.3763 | 0.1079 | 2.0677 |
Mr7151 | −0.0117 | 0.0412 | 0.0523 | 4.5282 |
Mr7255 | −0.0616 | 0.0189 | 0.0759 | 3.0434 |
Mr7288 | −0.1131 | −0.0574 | 0.0500 | 4.7462 |
Mr7341 | −0.0187 | 0.0279 | 0.0457 | 5.2211 |
Mr5035 | −0.0847 | −0.0505 | 0.0315 | 7.6788 |
Mr5318 | −0.0395 | −0.0005 | 0.0375 | 6.4152 |
Mr45015 | 0.1507 | 0.2048 | 0.0637 | 3.6722 |
Mr44633 | −0.0213 | 0.0245 | 0.0449 | 5.3162 |
Mr7140 | 0.1429 | 0.2234 | 0.0939 | 2.4112 |
Mr5362 | 0.1782 | 0.2073 | 0.0354 | 6.8035 |
Mr3235 | 0.2780 | 0.3216 | 0.0604 | 3.8858 |
Mr3101 | −0.0300 | 0.0388 | 0.0668 | 3.4947 |
Mr3007 | −0.0348 | 0.0458 | 0.0779 | 2.9612 |
Mean | 0.0454 | 0.1039 | 0.0612 | 3.8320 |
Pop ID | NTH | GX | JX | HF | TW | SF |
---|---|---|---|---|---|---|
NTH | ||||||
GX | 0.05396 * | |||||
JX | 0.06000 * | 0.07003 * | ||||
HF | 0.04746 * | 0.05585 * | 0.03541 | |||
TW | 0.08538 * | 0.09637 * | 0.04625 | 0.07048 * | ||
SF | 0.04294 | 0.06307 * | 0.04503 | 0.03852 | 0.06391 * |
Group | N | H | S | Hd | π |
---|---|---|---|---|---|
NTH | 32 | 6 | 61 | 0.690 | 0.01365 |
GX | 34 | 3 | 12 | 0.465 | 0.00398 |
JX | 30 | 11 | 69 | 0.678 | 0.01303 |
HF | 28 | 13 | 58 | 0.907 | 0.01189 |
TW | 34 | 7 | 40 | 0.326 | 0.00471 |
SF | 39 | 7 | 83 | 0.775 | 0.02758 |
Avg. | / | / | 0.640 | 0.01247 |
NTH | GX | JX | HF | TW | SF | |
---|---|---|---|---|---|---|
NTH | ||||||
GX | 0.07756 * | |||||
JX | 0.07092 * | 0.06296 * | ||||
HF | 0.16923 * | 0.19488 * | 0.16124 * | |||
TW | 0.28216 * | 0.21757 * | 0.05603 * | 0.33814 * | ||
SF | 0.64456 * | 0.66215 * | 0.64043 * | 0.52975 * | 0.80788 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, S.; Ruhul, A.; Li, J.; Yang, G.; Yi, S.; Xia, Z.; Cai, M.; Deng, Y.; Tang, Q. Genetic Diversity of Selective Breeding Populations of Giant Freshwater Prawn (Macrobrachium rosenbergii) Based on SSR and Mitochondrial D-Loop Gene. Diversity 2025, 17, 437. https://doi.org/10.3390/d17070437
Ibrahim S, Ruhul A, Li J, Yang G, Yi S, Xia Z, Cai M, Deng Y, Tang Q. Genetic Diversity of Selective Breeding Populations of Giant Freshwater Prawn (Macrobrachium rosenbergii) Based on SSR and Mitochondrial D-Loop Gene. Diversity. 2025; 17(7):437. https://doi.org/10.3390/d17070437
Chicago/Turabian StyleIbrahim, Salifu, Amin Ruhul, Jingfen Li, Guoliang Yang, Shaokui Yi, Zhenglong Xia, Miaoying Cai, Yuewen Deng, and Qiongying Tang. 2025. "Genetic Diversity of Selective Breeding Populations of Giant Freshwater Prawn (Macrobrachium rosenbergii) Based on SSR and Mitochondrial D-Loop Gene" Diversity 17, no. 7: 437. https://doi.org/10.3390/d17070437
APA StyleIbrahim, S., Ruhul, A., Li, J., Yang, G., Yi, S., Xia, Z., Cai, M., Deng, Y., & Tang, Q. (2025). Genetic Diversity of Selective Breeding Populations of Giant Freshwater Prawn (Macrobrachium rosenbergii) Based on SSR and Mitochondrial D-Loop Gene. Diversity, 17(7), 437. https://doi.org/10.3390/d17070437