Genotypic and Phenotypic Characterization of Lactic Acid Bacteria Associated with Silage Fermentation of Pineapple Residue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Characterization of LAB from Pineapple Residue Silage
2.2. Morphological, Physiological and Biochemical Tests of LAB
2.3. 16S rRNA Gene Sequencing and RecA Gene Polymerase Chain Reaction (PCR) Amplification
2.4. Nucleotide Sequence Accession Number
2.5. Chemical Composition and Fermentation Characteristics Analysis of Pineapple Residue Silage
2.6. Statistical Analysis
3. Results
3.1. The Microbial Composition, Chemical Component and Fermentation Characteristics of Pineapple Residue
3.2. The Morphological and Physiological Properties of Representative Strains Isolated from Pineapple Residue Silage
3.3. 16S rRNA Gene Sequence Analysis
3.4. Amplification Products Obtained from the recA Gene Multiplex Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gowda, N.; Vallesha, N.C.; Awachat, V.B.; Anandan, S.; Pal, D.T.; Prasad, C.S. Study on evaluation of silage from pineapple (Ananas comosus) fruit residue as livestock feed. Trop. Anim. Health Prod. 2015, 47, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Tan, H.; Cai, Y. Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues. J. Dairy Sci. 2016, 99, 5325–5334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Yates, M.; Aung, H.; Cheng, Y.S.; Yu, C.; Guo, H.; Zhang, R.; Vandergheynst, J.; Jenkins, B.M. Influence of moisture content on microbial activity and silage quality during ensilage of food processing residues. Bioprocess Biosyst. Eng. 2011, 34, 987–995. [Google Scholar] [CrossRef]
- Cai, Y.M.; Benno, Y.; Ogawa, M.; Ohmomo, S.; Nakase, T. Influence of Lactobacillus spp. from an Inoculant and of Weissella and Leuconostoc spp. from forage crops on silage fermentation. Appl. Environ. Microbiol. 1998, 64, 2982–2987. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y. Identification and characterization of Enterococcus species isolated from forage crops and their influence on silage fermentation. J. Dairy Sci. 1999, 82, 2466–2471. [Google Scholar] [CrossRef]
- Ren, H.W.; Zhao, T.; Li, J.P.; Li, X.Y.; Li, Z.Z.; Xu, N.; Wang, Y.G.; Yu, C.L.; Gao, X.H.; Wang, X.L. Identification of lactic acid bacteria and fermentation characteristics of mixed ensilages of corn stover and cabbage waste. Pratacultural Sci. 2015, 9, 1508–1517. [Google Scholar]
- Zheng, M.; Xu, C. Phylogenetic diversity of lactic acid bacteria associated with soybean curd residue silage as determined by 16S ribosomal DNA analysis. In Proceedings of the International Conference on Bioinformatics & Computational Intelligence, Ottawa, ON, Canada, 15–17 August 2017; pp. 16–20. [Google Scholar]
- Pang, H.; Qin, G.; Tan, Z.; Li, Z.; Wang, Y.; Cai, Y. Natural populations of lactic acid bacteria associated with silage fermentation as determined by phenotype, 16S ribosomal RNA and recA gene analysis. Syst. Appl. Microbiol. 2011, 34, 235–241. [Google Scholar] [CrossRef]
- Pang, H.; Zhang, M.; Qin, G.; Tan, Z.; Li, Z.; Wang, Y.; Cai, Y. Identification of lactic acid bacteria isolated from corn stovers. Anim. Sci. J. 2011, 82, 642–653. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Ge, Y.; Lan, R.; Fan, C.; Liu, J.; Wu, H.; Yin, F. Effect of fermentation time on the quality of pineapple residue silage. Pratacultural Sci. 2019, 6, 1668–1673. [Google Scholar]
- Acaína, K.S.E.; Kaliandra, S.A.; Luis, R.S.O.; Darley, O.C.; Daiany, I.G. Carcass yield, cuts and body components in lambs fed a pineapple by-product silage diet. Afr. J. Agric. Res. 2017, 12, 2351–2357. [Google Scholar] [CrossRef] [Green Version]
- Man, J.; Rogosa, M.; Sharpe, M.E. A Medium for the Cultivation of Lactobacilli. J. Appl. Microbiol. 1960, 23, 130–135. [Google Scholar]
- Logan, N.A.; Berkeley, R.C.W. Identification of Bacillus Strains Using the API System. J. Gen. Microbiol. 1984, 130, 1871–1882. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.S.; Ren, J.; Dunn, N.W. Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses. FEMS Microbiol. Lett. 1999, 171, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Nomura, M.; Kimoto, H.; Someya, Y.; Suzuki, I. Novel characteristic for distinguishing Lactococcus lactis subsp. lactis from subsp. cremoris. Int. J. Syst. Bacteriol. 1999, 49, 163–166. [Google Scholar] [CrossRef] [Green Version]
- Torriani, S.; Felis, G.E.; Dellaglio, F. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA Gene. Appl. Environ. Microbiol. 2001, 67, 3450–3454. [Google Scholar] [CrossRef] [Green Version]
- A.O.A.C. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemist: Washington, DC, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Saarisalo, E.; Skyttä, E.; Haikara, A.; Jalava, T.; Jaakkola, S. Screening and selection of lactic acid bacteria strains suitable for ensiling grass. J. Appl. Microbiol. 2007, 102, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Tan, Z.; Qin, G.; Wang, Y.; Li, Z.; Cai, J.Y. Phenotypic and phylogenetic analysis of lactic acid bacteria isolated from forage crops and grasses in the Tibetan Plateau. J. Microbiol. 2012, 50, 63–71. [Google Scholar] [CrossRef]
- Tohno, M.; Kobayashi, H.; Tajima, K.; Uegaki, R. Strain-dependent effects of inoculation of Lactobacillus plantarum subsp. plantarum on fermentation quality of paddy rice (Oryza sativa L. subsp. japonica) silage. FEMS Microbiol. Lett. 2012, 337, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Tan, Z.; Wang, Y.; Li, Z.; Li, Z.; Qin, G.; Huo, Y.; Cai, Y. Identification and characterization of Lactic Acid Bacteria isolated from Tibetan Qula cheese. J. Gen. Appl. Microbiol. 2008, 54, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Ennahar, S.; Cai, Y.; Fujita, Y. Phylogenetic Diversity of Lactic Acid Bacteria Associated with Paddy Rice Silage as Determined by 16S Ribosomal DNA Analysis. Appl. Environ. Microbiol. 2003, 69, 444–451. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Haruta, S.; Wang, P.; Ishii, M.; Igarashi, Y.; Cui, Z. Diversity of a stable enrichment culture which is useful for silage inoculant and its succession in alfalfa silage. FEMS Microbiol. Ecol. 2006, 57, 106–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanganurat, W.; Quinquis, B.; Leelawatcharamas, V.; Bolotin, A. Genotypic and phenotypic characterization of Lactobacillus plantarum strains isolated from Thai fermented fruits and vegetables. J. Basic Microbiol. 2010, 49, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, X.; Zhao, M.; Yu, Z. Lactic acid bacteria strains for enhancing the fermentation quality and aerobic stability of Leymus chinensis silage. Grass Forage Sci. 2016, 71, 472–481. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Zhang, Y.; Lin, Y.; Yang, F. Evaluation of lactic acid bacteria isolated from alfalfa for silage fermentation. Grassl. Sci. 2018, 64, 190–198. [Google Scholar] [CrossRef]
- Mcallister, T.A.; Dunière, L.; Drouin, P.; Xu, S.; Wang, Y.; Munns, K.; Zaheer, R. Silage review: Using molecular approaches to define the microbial ecology of silage. J. Dairy Sci. 2018, 101, 4060–4074. [Google Scholar] [CrossRef] [Green Version]
- Driehuis, F.S.; Elferink, S.; Wikselaar, P. Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria. Grass Forage 2010, 57, 330–343. [Google Scholar] [CrossRef]
- Contreras-Govea, F.E.; Muck, R.E.; Broderick, G.A.; Weimer, P.J. Lactobacillus plantarum effects on silage fermentation and in vitro microbial yield. Anim. Feed. Sci. Technol. 2013, 179, 61–68. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, J.; Shi, S.; Sun, Q. The effects of wilting and storage temperatures on the fermentation quality and aerobic stability of stylo silage. Anim. Sci. J. 2011, 82, 549–553. [Google Scholar] [CrossRef]
- Pieper, R.; Hackl, W.; Korn, U.; Zeyner, A.; Souffrant, W.B.; Pieper, B. Effect of ensiling triticale, barley and wheat grains at different moisture content and addition of Lactobacillus plantarum (DSMZ 8866 and 8862) on fermentation characteristics and nutrient digestibility in pigs. Anim. Feed. Sci. Technol. 2011, 164, 96–105. [Google Scholar] [CrossRef]
- Whittington, H.D.; Dagher, S.F.; Bruno-Bárcena, J.M. Production and Conservation of Starter Cultures: From “Backslopping” to Controlled Fermentations. In How Fermented Foods Feed a Healthy Gut Microbiota; Springer: Cham, Germany, 2019. [Google Scholar]
- Peleg, M. A New Look at Models of the Combined Effect of Temperature, pH, Water Activity, or Other Factors on Microbial Growth Rate. Food Eng. Rev. 2021, 14, 31–44. [Google Scholar] [CrossRef]
Item | Pineapple Residue | Silage |
---|---|---|
Microbial composition (CFU/g of FM): | ||
Lactic acid bacteria (LAB) | 4.5 × 103 | 1.0 × 107 |
Coliform bacteria | 3.0 × 106 | ND |
Yeasts | 2.0 × 107 | 5.0 × 104 |
Molds | 1.5 × 103 | ND |
Chemical composition: | ||
Dry matter, % of FM | 14.60 a | 11.50 b |
Organic matter, % of DM | 95.95 a | 92.60 b |
Crude protein, % of DM | 5.91 | 6.01 |
Ether extract, % of DM | 1.32 | 1.80 |
Ammonia-N, g/kg of DM | ND | 0.17 |
Fermentation characteristics: | ||
pH | 5.56 a | 3.65 b |
Lactic acid, g/kg of DM | 3.78 a | 75.57 b |
Acetic acid, g/kg of DM | 1.22 a | 20.12 b |
Propionic acid, g/kg of DM | ND | ND |
Butyric acid, g/kg of DM | ND | ND |
Characteristics | Group A | Group B | Group C | Group D |
---|---|---|---|---|
P 12 | P 15 | P 22 | P 24 | |
No. of isolates | 6 | 18 | 5 | 5 |
Shape | Rod | Rod | Rod | Cocci |
Gram stain | + | + | + | + |
Gas from glucose | + | + | − | − |
Catalase | − | − | − | − |
Fermentation type | Homo | Homo | Homo | Hetero |
Growth at temperature: | ||||
5 °C | − | − | − | − |
10 °C | + | + | − | − |
45 °C | + | + | − | − |
50 °C | − | − | − | − |
Growth at pH: | ||||
3.0 | - | w | − | − |
3.5 | + | + | − | − |
4.0 | + | + | + | + |
5.0 | + | + | + | + |
8.0 | + | + | + | + |
Growth in NaCl (%): | ||||
3.0 | + | + | + | + |
6.5 | + | + | − | − |
Carbohydrate fermentation: | ||||
Maltose | + | + | + | + |
D-Fructose | + | + | + | + |
D-Glucose | + | + | + | + |
L-Arabinose | + | − | + | + |
Ribose | + | + | w | + |
D-Xylose | + | + | + | + |
Galactose | + | + | + | − |
Mannitol | − | + | − | − |
α-Methy1-D-glucoside | + | − | + | − |
N-acety1 glucosamine | + | + | w | w |
Amygdaline | − | + | − | + |
Arbutine | − | + | w | w |
Esculine | − | + | − | − |
Salicine | + | + | w | w |
Lactose | − | + | w | − |
Melibiose | + | − | + | − |
Saccharose | + | + | + | + |
Trehalose | + | + | + | − |
D-Raffinose | + | − | + | − |
Starch | w | w | − | − |
β-Gentiobiose | w | + | w | − |
D-Turanose | + | − | + | − |
D-Tagatose | − | − | − | + |
Gluconate | − | w | − | w |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Du, Z.; Xiong, Y.; Wang, N.; Wang, X.; Zhou, X.; Yang, F.; Ni, K. Genotypic and Phenotypic Characterization of Lactic Acid Bacteria Associated with Silage Fermentation of Pineapple Residue. Diversity 2022, 14, 631. https://doi.org/10.3390/d14080631
Lin Y, Du Z, Xiong Y, Wang N, Wang X, Zhou X, Yang F, Ni K. Genotypic and Phenotypic Characterization of Lactic Acid Bacteria Associated with Silage Fermentation of Pineapple Residue. Diversity. 2022; 14(8):631. https://doi.org/10.3390/d14080631
Chicago/Turabian StyleLin, Yanli, Zhumei Du, Yi Xiong, Ningwei Wang, Xuekai Wang, Xiaoli Zhou, Fuyu Yang, and Kuikui Ni. 2022. "Genotypic and Phenotypic Characterization of Lactic Acid Bacteria Associated with Silage Fermentation of Pineapple Residue" Diversity 14, no. 8: 631. https://doi.org/10.3390/d14080631
APA StyleLin, Y., Du, Z., Xiong, Y., Wang, N., Wang, X., Zhou, X., Yang, F., & Ni, K. (2022). Genotypic and Phenotypic Characterization of Lactic Acid Bacteria Associated with Silage Fermentation of Pineapple Residue. Diversity, 14(8), 631. https://doi.org/10.3390/d14080631