Polycondensation of Tetrahydrofuran with Phthalic Anhydride Induced By a Proton Exchanged Montmorillonite Clay
Abstract
:Introduction
Experimental
A. Materials
- 1)
- “H-Maghnite xM”: The acid forms of “raw-Maghnite” is prepared by shaking the material raw (raw-Maghnite) with solution of sulfuric acid until saturation achieved over two days at room temperature, washing the mineral with water until sulfate-free and drying. The concentrations 0.05M, 0.10M, 0.15M, 0.20M, 0.25M, 0.30M and 0.35M of sulfuric acid treatment solutions were used to prepare “H-Maghnite0.05M”, “H-Maghnite0.10M”, “H-Maghnite0.15M” , “H-Maghnite0.20M”, “H-Maghnite0.25M”, ”H-Maghnite0.30M” and “H-Maghnite0.35M” respectively.
- 2)
- Tetrahydrofuran (THF 99%) was used as received.
- 3)
- Phthalic anhydride (98%) was used as received.
- 4)
- Acetic anhydride (98%) was used as received.
- 5)
- Ethanol (98%) was used as received.
B. “Maghnite” and “H-Maghnite” characterization
- 1)
- Samples for XRF analysis were prepared using the LiB4O7 fusion method. The resulting beads were analyzed on a Philips PW 2400XRF spectrometer in Laboratory of Inorganic Chemistry, Granada University, Spain.
- 2)
- XRD profiles for pressed powder samples were recorded on a Philips PW 1710 diffractometer using Cu-Ka radiation (ν = 1.5418Å).
- 3)
- IR absorption spectra were recorded on a ATI Matson FTIR N°9501165 spectrometer using the KBr pressed-disc technique, 0.5mg of sample was added to 300mg KBr and mixed for 3min in a vibratory grinder prior to pressing a 13mm disc.
- 4)
- High-resolution solid-state 29Si and 27Al MAS NMR spectra of untreated (raw-Maghnite) and acid treated (H-Maghnite0.25M) samples were recorded on a Brüker ASX 500 spectrometer at 59.6 and 130.3 MHz respectively. The sample spinning frequency was 4 KHz for 29Si and 11.5 KHz for 27Al.
C. Procedure and polymer characterization
Results and Discussion
Catalyst structure
Compositions wt% | conver-sion % | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
sample | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | TiO2 | SO3 | As | PF* | |
Raw-Maghnite | 69.39 | 14.67 | 1.16 | 0.30 | 1.07 | 0.50 | 0.79 | 0.16 | 0.91 | 0.05 | 11.0 | 0.0 |
H-Mag0.05M | 70.75 | 14.67 | 1.05 | 0.30 | 1.01 | 0.49 | 0.78 | 0.16 | 0.75 | 0.04 | 10.0 | 1.0 |
H-Mag0.10M | 71.00 | 14.60 | 1.00 | 0.30 | 0.98 | 0.39 | 0.78 | 0.16 | 0.55 | 0.04 | 10.2 | 2.51 |
H-Mag0.15M | 71.58 | 14.45 | 0.95 | 0.29 | 0.91 | 0.35 | 0.77 | 0.15 | 0.42 | 0.03 | 10.1 | 9.38 |
H-Mag0.20M | 71.65 | 14.20 | 0.80 | 0.28 | 0.85 | 0.30 | 0.77 | 0.15 | 0.39 | 0.01 | 10.6 | 12.27 |
H-Mag0.25M | 71.70 | 14.03 | 0.71 | 0.28 | 0.80 | 0.21 | 0.77 | 0.15 | 0.34 | 0.01 | 11.0 | 28.32 |
H-Mag0.30M | 73.20 | 13.85 | 0.70 | 0.27 | 0.78 | 0.20 | 0.76 | 0.13 | 0.31 | 0.02 | 9.78 | 20.57 |
H-Mag0.35M | 75.31 | 13.52 | 0.71 | 0.26 | 0.78 | 0.18 | 0.75 | 0.13 | 0.32 | 0.01 | 8.03 | 17.26 |
Samples | dhkl (Å) | hkl | Naure of samples |
---|---|---|---|
Raw-Maghnite | 12.50 | 001 | Montmorillonite |
4.47 | 110 | Montmorillonite | |
4.16 | ,, | Quartz | |
3.35 | ,, | Quartz | |
3.21 | ,, | Feldspath | |
3.03 | ,, | Calcite | |
2.55 | 200 | Montmorillonite | |
1.68 | 009 | Montmorillonite | |
1.49 | 060 | Montmorillonite | |
H-Maghnite 0.25M | 15.02 | 001 | Montmorillonite |
4.47 | 110 | Montmorillonite | |
4.16 | ,, | Quartz | |
3.35 | ,, | Quartz | |
3.21 | ,, | Feldspath | |
3.03 | ,, | Calcite | |
2.55 | 200 | Montmorillonite | |
1.68 | 009 | Montmorillonite | |
1.49 | 060 | Montmorillonite |
Polymerization and products characterization
Experiment | [THF] | [PA] | [AA] | “H-Maghnite 0.25M” (%) | Yield % | Mn | Mw | Mw/Mn |
---|---|---|---|---|---|---|---|---|
1 | 10.75 | 5.67 | 1.28 | 10.0 | 28.32 | 513 | 2637 | 5.14 |
2 | 10.75 | 5.67 | 1.28 | 2.5 | 8.25 | 582 | 3271 | 5.62 |
3 | 10.75 | 5.67 | 0.19 | 2.5 | 5.32 | 638 | 3879 | 6.08 |
Effect of “H-Maghnite 0.25M” proportion
Yield(%) | Time(hours) | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
a | 0.81 | 1.12 | 2.34 | 3.42 | 6.98 | 8.25 |
b | 2.93 | 3.15 | 5.08 | 6.72 | 13.24 | 18.15 |
c | 3.46 | 4.85 | 9.14 | 12.67 | 19.42 | 28.32 |
Effect of acetic anhydride proportion
Yield(%) | Time | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
0.81 | 1.12 | 2.34 | 3.42 | 6.98 | 8.25 | |
2.85 | 3.92 | 5.17 | 9.76 | 13.12 | 17.23 |
Characterization of products
Proton type | a | b | c | d | e |
---|---|---|---|---|---|
δ in ppm | 1.64 | 2.01 | 3.86 | 7.58 | 7.85 |
|
Mechanism of the reaction
Conclusion
References
- Thomas, C.L.; Hickey, J.; Stecker, G. Ind. Eng. Chem. 1950, 42, 866. [CrossRef]
- Kaplan, H. U.S. Patent. 3287422 1966. [Google Scholar]
- Hojabri, F. J. Appl. Chem. Biotechnol. 1971, 21, 87. [CrossRef]
- Ballantine, J.A.; Davies, M.; Purnell, H. Chemical conversions using sheet silicates: novel interlamellar dehydrations of alcohols to ethers and polymers. J. C. S. Chem. Comm. 1981, 427–428. [Google Scholar] [CrossRef]
- Odian, G. La Polymérisation: Principes et Applications; Ed.Technica: New York, 1994; pp. 222–226. [Google Scholar]
- Breen, C.; Madejovà, J.; Komadel, P. J. Mater. Chem. 1995, 5, 496–474.
- Farmer, V.C. Infrared Spectra of Minerals; Farmer, V.C., Ed.; Mineralogical Society: London, 1974; p. 331. [Google Scholar]
- Moeke, H.H.W. Infrared Spectra of Minerals; Farmer, V.C., Ed.; Mineralogical Society: London, 1974; p. 365. [Google Scholar]
- Madejovà, J.; Bednànikovà, E.; Komadel, P.; Cicel, B. Proc.11th Conf. Chem. Miner. Petrol. Ceske Budéjovica 1990; Konta, J., Ed.; Charles University: Prague, 1993; p. 267. [Google Scholar]
- Komarneni, S.; Fyfe, C.A.; Kennedy, G. J.; Strobhl, H. J. Am. Ceram. Soc. 1986, 69, 645.
- Samajovà, E.; Kraus, I.; Lajcàkovà, A. Geol. Carpath. Ser. Clays. 1992, 42, 21.
- Thompson, J.G. Clay Miner. 1984, 19, 169.
- Tkàc, I.; Komadel, P.; Müle, D. Clay Miner. 1994, 29, 11.
- Espartero, J.L.I.; Rashkov, M. Vert. Macromol. 1996, 29, 3535. [CrossRef]
- Khalid, A. M.; Thakur, R.T.; Kean, E.S. Hal. Macromol. 1997, 30, 2422. [CrossRef]
© 2003 by MDPI (http://www.mdpi.org). Reproduction for noncommercial purposes permitted.
Share and Cite
Ferrahi, M.I.; Belbachir, M. Polycondensation of Tetrahydrofuran with Phthalic Anhydride Induced By a Proton Exchanged Montmorillonite Clay. Int. J. Mol. Sci. 2003, 4, 312-325. https://doi.org/10.3390/i4060312
Ferrahi MI, Belbachir M. Polycondensation of Tetrahydrofuran with Phthalic Anhydride Induced By a Proton Exchanged Montmorillonite Clay. International Journal of Molecular Sciences. 2003; 4(6):312-325. https://doi.org/10.3390/i4060312
Chicago/Turabian StyleFerrahi, Mohammed Issam, and Mohammed Belbachir. 2003. "Polycondensation of Tetrahydrofuran with Phthalic Anhydride Induced By a Proton Exchanged Montmorillonite Clay" International Journal of Molecular Sciences 4, no. 6: 312-325. https://doi.org/10.3390/i4060312
APA StyleFerrahi, M. I., & Belbachir, M. (2003). Polycondensation of Tetrahydrofuran with Phthalic Anhydride Induced By a Proton Exchanged Montmorillonite Clay. International Journal of Molecular Sciences, 4(6), 312-325. https://doi.org/10.3390/i4060312