Skip Content
You are currently on the new version of our website. Access the old version .
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

30 January 2026

TP-ARMS: A Cost-Effective PCR-Based Genotyping System for Precision Breeding of Small InDels in Crops

,
and
1
School of Biological Science and Technology, University of Jinan, Jinan 250022, China
2
Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai Agrobiological Gene Center, Shanghai 201106, China
*
Authors to whom correspondence should be addressed.
These authors contribute equally to this work.
This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Molecular Plant Sciences

Abstract

Accurate genotyping of small insertions and deletions (InDels; <5 bp) remains technically challenging in routine molecular breeding, largely due to the limited resolution of agarose gel electrophoresis and the labor-intensive nature of polyacrylamide-based assays. Here, we present the Tri-Primer Amplification Refractory Mutation System (TP-ARMS), a simple and cost-effective PCR-based strategy that enables high-resolution genotyping of small InDels using standard agarose gels. The TP-ARMS employs a universal reverse primer in combination with two allele-specific forward primers targeting insertion and deletion alleles, respectively. This design allows clear discrimination of homozygous and heterozygous genotypes using a two-tube PCR workflow. The method showed complete concordance with Sanger sequencing in detecting 1–5 bp InDels across multiple crop species, including rice (Oryza sativa) and quinoa (Chenopodium quinoa). In addition, using a TP-ARMS reduced experimental time by approximately 90% compared with PAGE-based approaches and avoided the high equipment and DNA quality requirements of fluorescence-based assays. The practical applicability of the TP-ARMS was demonstrated in breeding populations, including efficient genotyping of a 3-bp InDel in OsNRAMP5 associated with cadmium accumulation and a 6-bp promoter InDel in OsSPL10 underlying natural variation in rice trichome density across 370 accessions. Collectively, the TP-ARMS provides a robust, scalable, and low-cost solution for precise small InDel genotyping, with broad applicability in marker-assisted breeding and functional genetic studies.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.