F5 6665A>G Polymorphism Is Associated with Increased Risk of Venous Thromboembolism in Females
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Participants
4.2. Data Collection and Genotyping
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crous-Bou, M.; Harrington, L.B.; Kabrhel, C. Environmental and Genetic Risk Factors Associated with Venous Thromboembolism. Semin. Thromb. Hemost. 2016, 42, 808–820. [Google Scholar] [CrossRef] [PubMed]
- Colucci, G.; Tsakiris, D.A. Thrombophilia screening revisited: An issue of personalized medicine. J. Thromb. Thrombolysis 2020, 49, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.; Hangge, P.; Albadawi, H.; Wallace, A.; Shamoun, F.; Knuttien, M.G.; Naidu, S.; Oklu, R. Deep vein thrombosis: Pathogenesis, diagnosis, and medical management. Cardiovasc. Diagn. Ther. 2017, 7, S276–S284. [Google Scholar] [CrossRef] [PubMed]
- White, R.H. The Epidemiology of Venous Thromboembolism. Circulation 2003, 107, I-4–I-8. [Google Scholar] [CrossRef] [PubMed]
- Bezemer, I.D.; Bare, L.A.; Doggen, C.J.M.; Arellano, A.R.; Tong, C.; Rowland, C.M.; Catanese, J.; Young, B.A.; Reitsma, P.H.; Devlin, J.J.; et al. Gene Variants Associated With Deep Vein Thrombosis. JAMA 2008, 299, 1306–1314. [Google Scholar] [CrossRef]
- Ghouse, J.; Tragante, V.; Ahlberg, G.; Rand, S.A.; Jespersen, J.B.; Leinøe, E.B.; Vissing, C.R.; Trudsø, L.; Jonsdottir, I.; Banasik, K.; et al. Genome-wide meta-analysis identifies 93 risk loci and enables risk prediction equivalent to monogenic forms of venous thromboembolism. Nat. Genet. 2023, 55, 399–409. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H.; Weng, H.; Zhou, G.; Chen, H.; Yang, G.; Zhang, P.; Zhang, X.; Ji, Y.; Ying, K.; et al. Genome-wide association analyses identified novel susceptibility loci for pulmonary embolism among Han Chinese population. BMC Med. 2023, 21, 153. [Google Scholar] [CrossRef]
- Herm, J.; Hoppe, B.; Siegerink, B.; Nolte, C.H.; Koscielny, J.; Haeusler, K.G. A Prothrombotic Score Based on Genetic Polymorphisms of the Hemostatic System Differs in Patients with Ischemic Stroke, Myocardial Infarction, or Peripheral Arterial Occlusive Disease. Front. Cardiovasc. Med. 2017, 4, 39. [Google Scholar] [CrossRef]
- Baylis, R.A.; Smith, N.L.; Klarin, D.; Fukaya, E. Epidemiology and Genetics of Venous Thromboembolism and Chronic Venous Disease. Circ. Res. 2021, 128, 1988–2002. [Google Scholar] [CrossRef]
- Girolami, A.; Ferrari, S.; Cosi, E.; Santarossa, C.; Randi, M.L. Vitamin K-Dependent Coagulation Factors That May be Responsible for Both Bleeding and Thrombosis (FII, FVII, and FIX). Clin. Appl. Thromb. 2018, 24, 42S–47S. [Google Scholar] [CrossRef]
- Duga, S.; Asselta, R.; Tenchini, M.L. Coagulation factor V. Int. J. Biochem. Cell Biol. 2004, 36, 1393–1399. [Google Scholar] [CrossRef]
- Pozzi, N.; Di Cera, E. Prothrombin structure: Unanticipated features and opportunities. Expert Rev. Proteom. 2014, 11, 653–655. [Google Scholar] [CrossRef] [PubMed]
- Danckwardt, S.; Hentze, M.W.; Kulozik, A.E. Pathologies at the nexus of blood coagulation and inflammation: Thrombin in hemostasis, cancer, and beyond. J. Mol. Med. 2013, 91, 1257–1271. [Google Scholar] [CrossRef] [PubMed]
- Poort, S.; Rosendaal, F.; Reitsma, P.; Bertina, R. A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996, 88, 3698–3703. [Google Scholar] [CrossRef]
- Limperger, V.; Kenet, G.; Kiesau, B.; Köther, M.; Schmeiser, M.; Langer, F.; Juhl, D.; Shneyder, M.; Franke, A.; Klostermeier, U.K.; et al. Role of prothrombin 19911 A>G polymorphism, blood group and male gender in patients with venous thromboembolism: Results of a German cohort study. J. Thromb. Thrombolysis 2020, 51, 494–501. [Google Scholar] [CrossRef]
- Martinelli, I.; Battaglioli, T.; Tosetto, A.; Legnani, C.; Sottile, L.; Ghiotto, R.; Mannucci, P. Prothrombin A19911G polymorphism and the risk of venous thromboembolism. J. Thromb. Haemost. 2006, 4, 2582–2586. [Google Scholar] [CrossRef]
- von Ahsen, N.; Oellerich, M.; Klion, A.D.; Robyn, J.; Akin, C.; Noel, P.; Brown, M.; Law, M.; Metcalfe, D.D.; Dunbar, C.; et al. The intronic prothrombin 19911A>G polymorphism influences splicing efficiency and modulates effects of the 20210G>A polymorphism on mRNA amount and expression in a stable reporter gene assay system. Blood 2004, 103, 586–593. [Google Scholar] [CrossRef]
- Nicolaes, G.A.; Dahlbäck, B. Factor V and Thrombotic Disease. Arter. Thromb. Vasc. Biol. 2002, 22, 530–538. [Google Scholar] [CrossRef]
- Asselta, R.; Tenchini, M.L.; Duga, S. Inherited defects of coagulation factor V: The hemorrhagic side. J. Thromb. Haemost. 2006, 4, 26–34. [Google Scholar] [CrossRef]
- Schreuder, M.; Reitsma, P.H.; Bos, M.H. Blood coagulation factor Va’s key interactive residues and regions for prothrombinase assembly and prothrombin binding. J. Thromb. Haemost. 2019, 17, 1229–1239. [Google Scholar] [CrossRef]
- Dahlbäck, B.; Guo, L.J.; Livaja-Koshiar, R.; Tran, S. Factor V-short and protein S as synergistic tissue factor pathway inhibitor (TFPIα) cofactors. Res. Pr. Thromb. Haemost. 2018, 2, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.N.; Koerper, M.A. Factor V deficiency: A concise review. Haemophilia 2008, 14, 1164–1169. [Google Scholar] [CrossRef]
- Dahlbäck, B.; O Villoutreix, B. The anticoagulant protein C pathway. FEBS Lett. 2005, 579, 3310–3316. [Google Scholar] [CrossRef] [PubMed]
- Ayombil, F.; Petrillo, T.; Kim, H.; Camire, R.M. Regulation of factor V by the anticoagulant protease activated protein C: Influence of the B-domain and TFPIα. J. Biol. Chem. 2022, 298, 102558. [Google Scholar] [CrossRef] [PubMed]
- Nicolaes, G.A.F.; Dahlbäck, B. Congenital and Acquired Activated Protein C Resistance. Semin. Vasc. Med. 2003, 03, 033–046. [Google Scholar] [CrossRef]
- Paraboschi, E.M.; Menegatti, M.; Rimoldi, V.; Borhany, M.; Abdelwahab, M.; Gemmati, D.; Peyvandi, F.; Duga, S.; Asselta, R. Profiling the mutational landscape of coagulation factor V deficiency. Haematologica 2019, 105, e180–e185. [Google Scholar] [CrossRef]
- Vos, H.L. Inherited defects of coagulation Factor V: The thrombotic side. J. Thromb. Haemost. 2006, 4, 35–40. [Google Scholar] [CrossRef]
- Efthymiou, C.; Print, E.H.; Simmons, A.; Perkins, S.J. Analysis of 363 Genetic Variants in F5 via an Interactive Web Database Reveals New Insights into FV Deficiency and FV Leiden. TH Open 2022, 7, e30–e41. [Google Scholar] [CrossRef]
- Kujovich, J.L. Factor V Leiden thrombophilia. Anesthesia Analg. 2011, 13, 1–16. [Google Scholar] [CrossRef]
- Bertina, R.M.; Koeleman, B.P.C.; Koster, T.; Rosendaal, F.R.; Dirven, R.J.; de Ronde, H.; van der Velden, P.A.; Reitsma, P.H. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994, 369, 64–67. [Google Scholar] [CrossRef]
- Gemmati, D.; Longo, G.; Franchini, E.; Silva, J.A.; Gallo, I.; Lunghi, B.; Moratelli, S.; Maestri, I.; Serino, M.L.; Tisato, V. Cis-Segregation of c.1171C>T Stop Codon (p.R391*) in SERPINC1 Gene and c.1691G>A Transition (p.R506Q) in F5 Gene and Selected GWAS Multilocus Approach in Inherited Thrombophilia. Genes 2021, 12, 934. [Google Scholar] [CrossRef] [PubMed]
- Magavern, E.F.; Smedley, D.; Caulfield, M.J. Factor V Leiden, estrogen, and multimorbidity association with venous thromboembolism in a British-South Asian cohort. iScience 2023, 26, 107795. [Google Scholar] [CrossRef] [PubMed]
- Franchini, M.; Lippi, G. Factor V Leiden and hemophilia. Thromb. Res. 2010, 125, 119–123. [Google Scholar] [CrossRef]
- Segers, O.; Simioni, P.; Tormene, D.; Bulato, C.; Gavasso, S.; Rosing, J.; Castoldi, E. Genetic modulation of the FVLeiden/normal FV ratio and risk of venous thrombosis in factor V Leiden heterozygotes. J. Thromb. Haemost. 2011, 10, 73–80. [Google Scholar] [CrossRef]
- Luddington, R.; Jackson, A.; Pannerselvam, S.; Brown, K.; Baglin, T. The Factor V R2 Allele: Risk of Venous Thromboembolism, Factor V Levels and Resistance to Activated Protein C. Thromb. Haemost. 2000, 83, 204–208. [Google Scholar] [CrossRef]
- Muszbek, L.; Bereczky, Z.; Bagoly, Z.; Komáromi, I.; Katona, É. Factor XIII: A Coagulation Factor With Multiple Plasmatic and Cellular Functions. Physiol. Rev. 2011, 91, 931–972. [Google Scholar] [CrossRef]
- Korte, W. Catridecacog: A breakthrough in the treatment of congenital factor XIII A-subunit deficiency? J. Blood Med. 2014, 5, 107–112. [Google Scholar] [CrossRef]
- Catto, A.J.; Kohler, H.P.; Coore, J.; Mansfield, M.W.; Stickland, M.H.; Grant, P.J. Association of a common polymorphism in the factor XIII gene with venous thrombosis. Blood J. Am. Soc. Hematol. 1999, 93, 906–908. [Google Scholar]
- Franco, R.F.; Reitsma, P.H.; Lourenço, D.; Maffei, F.H.; Morelli, V.; Tavella, M.H.; Araújo, A.G.; E Piccinato, C.; A Zago, M. Factor XIII Val34Leu is a genetic factor involved in the etiology of venous thrombosis. Thromb. Haemost. 1999, 81, 676–679. [Google Scholar]
- Balogh, I.; Szôke, G.; Kárpáti, L.; Wartiovaara, U.; Katona, E.; Komáromi, I.; Haramura, G.; Pfliegler, G.; Mikkola, H.; Muszbek, L. Val34Leu polymorphism of plasma factor XIII: Biochemistry and epidemiology in familial thrombophilia. Blood J. Am. Soc. Hematol. 2000, 96, 2479–2486. [Google Scholar]
- Mann, K.G.; Kalafatis, M. Factor V: A combination of Dr Jekyll and Mr Hyde. Blood 2003, 101, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Bergsagel, D.E.; Nockolds, E.R. The Activation of Proaccelerin. Br. J. Haematol. 1965, 11, 395–410. [Google Scholar] [CrossRef] [PubMed]
- Ortel, T.; Devore-Carter, D.; Quinn-Allen, M.; Kane, W. Deletion analysis of recombinant human factor V. Evidence for a phosphatidylserine binding site in the second C-type domain. J. Biol. Chem. 1992, 267, 4189–4198. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Shima, M.; Nogami, K.; Sakurai, Y.; Nishiya, K.; Saenko, E.L.; Tanaka, I.; Yoshioka, A. Factor V C2 domain contains a major thrombin-binding site responsible for thrombin-catalyzed factor V activation. J. Thromb. Haemost. 2006, 4, 1354–1360. [Google Scholar] [CrossRef]
- Chen, S.-W.W.; Pellequer, J.-L. Identification of Functionally Important Residues in Proteins Using Comparative Models. Curr. Med. Chem. 2004, 11, 595–605. [Google Scholar] [CrossRef]
- Krishnaswamy, S.; Williams, E.B.; Mann, K.G. The binding of activated protein C to factors V and Va. J. Biol. Chem. 1986, 261, 9684–9693. [Google Scholar] [CrossRef]
- Macedo-Ribeiro, S.; Bode, W.; Huber, R.; Quinn-Allen, M.A.; Kim, S.W.; Ortel, T.L.; Bourenkov, G.P.; Bartunik, H.D.; Stubbs, M.T.; Kane, W.H.; et al. Crystal structures of the membrane-binding C2 domain of human coagulation factor V. Nature 1999, 402, 434–439. [Google Scholar] [CrossRef]
- Bernardi, F.; Faioni, E.M.; Castoldi, E.; Lunghi, B.; Castaman, G.; Sacchi, E.; Mannucci, P.M. A factor V genetic component differing from factor V R506Q contributes to the activated protein C resistance phenotype. Blood J. Am. Soc. Hematol. 1997, 90, 1552–1557. [Google Scholar]
- Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martin, F.J.; Amode, M.R.; Aneja, A.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2023. Nucleic Acids Res. 2023, 51, D933–D941. [Google Scholar] [CrossRef]
- Lunghi, B.; Iacoviello, L.; Gemmati, D.; Dilasio, M.G.; Castoldi, E.; Pinotti, M.; Castaman, G.; Redaelli, R.; Mariani, G.; Marchetti, G.; et al. Detection of New Polymorphic Markers in the Factor V Gene: Association with Factor V Levels in Plasma. Thromb. Haemost. 1996, 75, 045–048. [Google Scholar] [CrossRef]
- Pecheniuk, N.M.; Morris, C.P.; Walsh, T.P.; Marsh, N.A. The factor V HR2 haplotype: Prevalence and association of the A4070G and A6755G polymorphisms. Blood Coagul. Fibrinolysis 2001, 12, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T.; Nicolaes, G.A.F.; Sørensen, K.W.; Dahlbäck, B. Molecular basis of quantitative factor V deficiency associated with factor V R2 haplotype. Blood 2002, 100, 2515–2521. [Google Scholar] [CrossRef] [PubMed]
- Cook, K.M.; Hogg, P.J. Post-Translational Control of Protein Function by Disulfide Bond Cleavage. Antioxid. Redox Signal. 2013, 18, 1987–2015. [Google Scholar] [CrossRef] [PubMed]
- Miteva, M.; Brugge, J.; Rosing, J.; Nicolaes, G.; Villoutreix, B. Theoretical and Experimental Study of the D2194G Mutation in the C2 Domain of Coagulation Factor V. Biophys. J. 2004, 86, 488–498. [Google Scholar] [CrossRef]
- Hoekema, L.; Castoldi, E.; Tans, G.; Girelli, D.; Gemmati, D.; Bernardi, F.; Rosing, J. Functional Properties of Factor V and Factor Va Encoded by the R2-gene. Thromb. Haemost. 2001, 85, 75–81. [Google Scholar] [CrossRef]
- Castoldi, E.; Rosing, J.; Girelli, D.; Hoekema, L.; Lunghi, B.; Mingozzi, F.; Ferraresi, P.; Friso, S.; Corrocher, R.; Tans, G.; et al. Mutations in the R2 FV Gene Affect the Ratio between the Two FV Isoforms in Plasma. Thromb. Haemost. 2000, 83, 362–365. [Google Scholar] [CrossRef]
- Roach, R.E.J.; Cannegieter, S.C.; Lijfering, W.M. Differential risks in men and women for first and recurrent venous thrombosis: The role of genes and environment. J. Thromb. Haemost. 2014, 12, 1593–1600. [Google Scholar] [CrossRef]
- Scheres, L.J.; Vlieg, A.v.H.; Cannegieter, S.C. Sex-specific aspects of venous thromboembolism: What is new and what is next? Res. Pr. Thromb. Haemost. 2022, 6, e12722. [Google Scholar] [CrossRef]
- Zöller, B.; Svensson, P.J.; Dahlbäck, B.; Lind-Hallden, C.; Hallden, C.; Elf, J. Genetic risk factors for venous thromboembolism. Expert Rev. Hematol. 2020, 13, 971–981. [Google Scholar] [CrossRef]
- Martinelli, I.; De Stefano, V.; Mannucci, P.M. Inherited risk factors for venous thromboembolism. Nat. Rev. Cardiol. 2014, 11, 140–156. [Google Scholar] [CrossRef] [PubMed]
- Bhopale, G.M.; Nanda, R.K. Blood coagulation factor VIII: An overview. J. Biosci. 2003, 28, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Garagiola, I.; Mortarino, M.; Siboni, S.M.; Boscarino, M.; Mancuso, M.E.; Biganzoli, M.; Santagostino, E.; Peyvandi, F. X Chromosome inactivation: A modifier of factor VIII and IX plasma levels and bleeding phenotype in Haemophilia carriers. Eur. J. Hum. Genet. 2020, 29, 241–249. [Google Scholar] [CrossRef]
- Heard, E.; Chaumeil, J.; Masui, O.; Okamoto, I. Mammalian X-Chromosome Inactivation: An Epigenetics Paradigm. Cold Spring Harb. Symp. Quant. Biol. 2004, 69, 89–102. [Google Scholar] [CrossRef]
- Werner, J.M.; Ballouz, S.; Hover, J.; Gillis, J. Variability of cross-tissue X-chromosome inactivation characterizes timing of human embryonic lineage specification events. Dev. Cell 2022, 57, 1995–2008.e5. [Google Scholar] [CrossRef]
- Peeters, S.B.; Posynick, B.J.; Brown, C.J. Out of the Silence: Insights into How Genes Escape X-Chromosome Inactivation. Epigenomes 2023, 7, 29. [Google Scholar] [CrossRef]
- Hermanns, M.I.; Grossmann, V.; Spronk, H.M.; Schulz, A.; Jünger, C.; Laubert-Reh, D.; Mazur, J.; Gori, T.; Zeller, T.; Pfeiffer, N.; et al. Distribution, genetic and cardiovascular determinants of FVIII:c—Data from the population-based Gutenberg Health Study. Int. J. Cardiol. 2015, 187, 166–174. [Google Scholar] [CrossRef]
- Chavin, S.I. Factor VIII: Structure and function in blood clotting. Am. J. Hematol. 1984, 16, 297–306. [Google Scholar] [CrossRef]
- Rietveld, I.M.; Lijfering, W.M.; le Cessie, S.; Bos, M.H.A.; Rosendaal, F.R.; Reitsma, P.H.; Cannegieter, S.C. High levels of coagulation factors and venous thrombosis risk: Strongest association for factor VIII and von Willebrand factor. J. Thromb. Haemost. 2018, 17, 99–109. [Google Scholar] [CrossRef]
- Orlova, N.A.; Kovnir, S.V.; Vorobiev, I.I.; Gabibov, A.G.; Vorobiev, A.I. Blood Clotting Factor VIII: From Evolution to Therapy. Acta Naturae 2013, 5, 19–39. [Google Scholar] [CrossRef]
- Radosavljevic, I.; Stojanovic, B.; Spasic, M.; Jankovic, S.; Djordjevic, N. CFTR IVS8 Poly-T Variation Affects Severity of Acute Pancreatitis in Women. J. Gastrointest. Surg. 2018, 23, 975–981. [Google Scholar] [CrossRef]
- Matic, S.; Milovanovic, D.; Mijailovic, Z.; Djurdjevic, P.; Sazdanovic, P.; Stefanovic, S.; Todorovic, D.; Popovic, S.; Vitosevic, K.; Vukicevic, V.; et al. Its all about IFN-λ4: Protective role of IFNL4 polymorphism against COVID-19-related pneumonia in females. J. Med. Virol. 2023, 95, e29152. [Google Scholar] [CrossRef] [PubMed]
- Gohil, R.; Peck, G.; Sharma, P. The genetics of venous thromboembolism. Thromb. Haemost. 2009, 102, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Kroep, S.; Chuang, L.-H.; Cohen, A.; Gumbs, P.; van Hout, B.; Monreal, M.; Willich, S.N.; Gitt, A.; Bauersachs, R.; Agnelli, G. The impact of co-morbidity on the disease burden of VTE. J. Thromb. Thrombolysis 2018, 46, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Khidri, F.F.; Waryah, Y.M.; Ali, F.K.; Shaikh, H.; Ujjan, I.D.; Waryah, A.M. MTHFR and F5 genetic variations have association with preeclampsia in Pakistani patients: A case control study. BMC Med Genet. 2019, 20, 163. [Google Scholar] [CrossRef] [PubMed]
Basic Characteristics | Patients | Controls | Total | OR * (95%CI) | p |
---|---|---|---|---|---|
Sex | |||||
Males | 49 (47.6%) | 53 (50.0%) | 102 (48.8%) | 1.10 (0.64–1.90) | 0.726 |
Females | 54 (52.4%.) | 53 (50.0%) | 107 (51.2%) | ||
Age | |||||
Median | 40 | 43 | 42 | 0.99 (0.96–1.01) | 0.221 |
Range | 10–67 | 20–77 | 10–77 | ||
BMI | |||||
Median | 26.6 | 25.2 | 26.0 | 1.12 (1.04–1.21) | 0.003 |
Range | 17.9–38.3 | 18.7–36.0 | 17.9–38.3 | ||
Overweight | |||||
Yes | 26 (25.2%) | 9 (8.5%) | 35 (16.7%) | 3.64 (1.61–8.22) | 0.002 |
No | 77 (74.8%) | 97 (91.5%) | 174 (83.3%) | ||
Comorbidities | |||||
Yes | 52 (50.5%) | 6 (5.7%) | 58 (27.8%) | 15.12 (6.09–37.57) | <0.001 |
No | 51 (49.5%) | 100 (94.3%) | 151 (72.2%) | ||
Cigarette smoking | |||||
Ever | 37 (35.9%) | 41 (38.7%) | 77 (36.9%) | 1.05 (0.58–1.91) | 0.866 |
Never | 66 (64.1%) | 65 (61.3%) | 131 (62.7%) | ||
Coffee consumption | |||||
Yes | 82 (79.6%) | 79 (74.5%) | 161 (77.0%) | 1.42 (0.74–2.73) | 0.296 |
No | 21 (20.4%) | 27 (25.5%) | 48 (23.0%) | ||
Alcohol consumption | |||||
Yes | 16 (15.5%) | 27 (25.5%) | 43 (20.6%) | 1.03 (0.48–2.24) | 0.932 |
No | 87 (84.5%) | 79 (74.5%) | 166 (79.4%) | ||
Daily physical activity | |||||
Yes | 92 (89.3%) | 101 (95.3%) | 193 (92.3%) | 0.41 (0.14–1.24) | 0.114 |
No | 11 (10.7%) | 5 (4.7%) | 16 (7.7%) | ||
Family history of VTE | |||||
Yes | 42 (40.8%) | 15 (14.2%) | 57 (27.3%) | 4.18 (2.13–8.19) | <0.001 |
No | 61 (59.2%) | 91 (85.8%) | 152 (72.7%) |
Patients | Controls | Total | OR (95%CI) | p | |
---|---|---|---|---|---|
F2 19911A>G (rs3136516) | |||||
Allele | |||||
A | 95 (46.1%) | 102 (48.1%) | 197 (47.1%) | ||
G | 111 (53.9%) | 110 (51.9%) | 221 (52.9%) | ||
Genotype | |||||
A/A | 30 (29.1%) | 22 (20.8%) | 52 (24.9%) | ref. | NA |
A/G | 51 (49.5%) | 66 (62.3%) | 117 (56.0%) | 0.567 (0.293; 1.097) | 0.092 |
G/G | 22 (21.4%) | 18 (17.0%) | 40 (19.4%) | 0.896 (0.390; 2.058) | 0.796 |
Genotype group | |||||
Dominant genetic model | |||||
A/A | 30 (29.1) | 22 (20.8) | 52 (24.9) | ref. | NA |
A/G + G/G | 73 (70.9) | 84 (79.2) | 157 (75.1) | 0.637 (0.338; 1.201) | 0.163 |
Recessive genetic model | |||||
A/A + A/G | 81 (78.6) | 88 (83.0) | 169 (80.9) | ref. | NA |
G/G | 22 (21.4) | 18 (17.0) | 40 (19.1) | 1.328 (0.665; 2.653) | 0.422 |
F5 6665A>G (rs6027) | |||||
Allele | |||||
A | 189 (91.7) | 202 (95.3%) | 391(93.5%) | ||
G | 17 (8.3%) | 10 (4.7%) | 27 (6.5%) | ||
Genotype | |||||
A/A | 86 (83.5%) | 96 (90.6%) | 182 (87.1%) | ref. | NA |
A/G | 17 (16.5%) | 10 (9.4%) | 27 (12.9%) | 1.898 (0.825; 4.367) | 0.132 |
G/G | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | NA | NA |
Genotype group | |||||
Dominant genetic model | |||||
A/A | 86 (83.5) | 96 (90.6) | 182 (87.1) | ref. | NA |
A/G + G/G | 17 (16.5) | 10 (9.4) | 27 (12.9) | 1.898 (0.825; 4.367) | 0.132 |
Recessive genetic model | |||||
A/A + A/G | 103 (100.0) | 106 (100.0) | 209 (100.0) | ref. | NA |
G/G | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | NA | NA |
F13A 102G>T (rs5985) | |||||
Allele | |||||
G | 164(79.6%) | 150 (70.7%) | 314 (75.1%) | ||
T | 42 (20.4%) | 62 (29.3%) | 104 (24.9%) | ||
Genotype | |||||
G/G | 66 (64.1%) | 55 (51.9%) | 121 (57.9%) | ref. | NA |
G/T | 32 (31.1%) | 40 (37.7%) | 72 (34.4%) | 0.667 (0.371; 1.199) | 0.176 |
T/T | 5 (4.9%) | 11 (10.4%) | 16 (7.7%) | 0.379 (0.124; 1.156) | 0.088 |
Genotype group | |||||
Dominant genetic model | |||||
G/G | 66 (64.1%) | 55 (51.9%) | 121 (57.9%) | ref. | NA |
G/T + T/T | 37 (35.9%) | 51 (48.1%) | 88 (42.1%) | 0.605 (0.347; 1.052) | 0.075 |
Recessive genetic model | |||||
G/G + G/T | 98 (95.1%) | 95 (89.6%) | 193 (92.3%) | ref. | NA |
T/T | 5 (4.9%) | 11 (10.4%) | 16 (7.7%) | 0.441 (0.148; 1.316) | 0.142 |
Bootstrapping Analyses | ||||||||
---|---|---|---|---|---|---|---|---|
B | S.E. | Wald χ2 | p | OR | 95%CI | p | 95%CI | |
Females | ||||||||
Comorbidities | 5.284 | 1.189 | 19.751 | <0.001 | 197.10 | 19.17; 2026.19 | 0.001 | 3.537; 37.367 |
Overweight | 3.514 | 1.331 | 6.967 | 0.008 | 33.59 | 2.47; 456.65 | 0.002 | 0.794; 38.440 |
F2 20210G>A (rs1799963) a | 3.479 | 1.042 | 11.159 | 0.001 | 32.43 | 4.21; 249.77 | 0.001 | 1.382; 23.692 |
F5 1601G>A (rs6025) a | 4.975 | 1.207 | 16.989 | <0.001 | 144.80 | 13.59; 1542.63 | 0.001 | 3.283; 35.635 |
F5 6665A>G (rs6027) b | 4.160 | 1.264 | 10.824 | 0.001 | 64.06 | 5.38; 763.61 | 0.001 | 1.806; 24.682 |
Constant | −2.769 | 0.595 | 21.640 | <0.001 | 0.06 | 0.001 | ||
Males | ||||||||
Family history of VTE | 2.092 | 0.648 | 10.439 | 0.001 | 8.10 | 2.28; 28.83 | 0.002 | 0.922; 4.206 |
Comorbidities | 1.843 | 0.613 | 9.047 | 0.003 | 6.32 | 1.90; 20.98 | 0.003 | 0.632; 3.527 |
F5 1601G>A (rs6025) a | 3.001 | 1.098 | 7.466 | 0.006 | 20.10 | 2.34; 173.02 | 0.009 | 1.132; 22.140 |
Constant | −1.275 | 0.316 | 16.315 | <0.001 | 0.28 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teofilov, S.; Miljanović, O.; Vuckovic-Filipovic, J.; Djordjevic, N. F5 6665A>G Polymorphism Is Associated with Increased Risk of Venous Thromboembolism in Females. Int. J. Mol. Sci. 2025, 26, 2403. https://doi.org/10.3390/ijms26062403
Teofilov S, Miljanović O, Vuckovic-Filipovic J, Djordjevic N. F5 6665A>G Polymorphism Is Associated with Increased Risk of Venous Thromboembolism in Females. International Journal of Molecular Sciences. 2025; 26(6):2403. https://doi.org/10.3390/ijms26062403
Chicago/Turabian StyleTeofilov, Sladjana, Olivera Miljanović, Jelena Vuckovic-Filipovic, and Natasa Djordjevic. 2025. "F5 6665A>G Polymorphism Is Associated with Increased Risk of Venous Thromboembolism in Females" International Journal of Molecular Sciences 26, no. 6: 2403. https://doi.org/10.3390/ijms26062403
APA StyleTeofilov, S., Miljanović, O., Vuckovic-Filipovic, J., & Djordjevic, N. (2025). F5 6665A>G Polymorphism Is Associated with Increased Risk of Venous Thromboembolism in Females. International Journal of Molecular Sciences, 26(6), 2403. https://doi.org/10.3390/ijms26062403