Kringle-Dependent Inhibition of Plasmin-Mediated Fibrinolysis by Native and Citrullinated Core Histones
Abstract
1. Introduction
2. Results
2.1. Characterization of Native and Citrullinated Histones by Mass Spectrometry
2.2. Modulation of the Fibrin Structure by Histones
2.3. Effects of Histones on the Biomechanical Properties of Fibrin
2.4. Kinetics of Fibrin Formation and Resolution in the Presence of Histones
2.5. The Role of Kringle Domains in the Interplay of Histones and Plasmin in the Resolution of Fibrin Clots
2.6. Effects of Histones on the Fibrinogen Susceptibility to Plasmin Digestion
2.7. Effects of Histones on Plasma Clot Formation and Lysis
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Preparation and Characterization of Citrullinated Histones
5.2. Characterization of the Structure of Fibrin Clots
5.3. Fibrin(ogen)olytic Assays
5.3.1. Fibrinolysis with Plasmin and Miniplasmin Incorporated in Fibrin
5.3.2. Fibrinolysis with tPA Incorporated in Fibrin
5.3.3. Extrinsic Fibrinolysis with Plasmin Applied on the Surface of the Clots
5.3.4. Formation and Extrinsic Lysis of Plasma Clots
5.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
tPA | Tissue plasminogen activator |
NET | neutrophil extracellular trap |
PAD4 | Peptidyl Arginine Deiminase Type 4 |
SEM | Scanning Electron Microscopy |
References
- Khorasanizadeh, S. The nucleosome. From genomic organization to genomic regulation. Cell 2004, 116, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Millán-Zambrano, G.; Burton, A.; Bannister, A.J.; Schneider, R. Histone post-translational modifications—Cause and consequence of genome function. Nat. Rev. Genet. 2022, 23, 563–580. [Google Scholar] [CrossRef]
- Andrés, M.; Garcia-Gomis, D.; Ponte, I.; Suau, P.; Roque, A. Histone H1 Post-Translational Modifications: Update and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 5941. [Google Scholar] [CrossRef]
- Arita, K.; Shimizu, T.; Hashimoto, H.; Hidaka, Y.; Yamada, M.; Sato, M. Structural basis for histone N-terminal recognition by human peptidylarginine deiminase 4. Proc. Natl. Acad. Sci. USA 2006, 103, 5291–5296. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, T.; Hidaka, Y.; Yamada, M. Deimination of histone H2A and H4 at arginine 3 in HL-60 granulocytes. Biochemistry 2005, 44, 5827–5834. [Google Scholar] [CrossRef]
- Dwivedi, N.; Neeli, I.; Schall, N.; Wan, H.; Desiderio, D.M.; Csernok, E.; Thompson, P.R.; Dali, H.; Briand, J.P.; Muller, S.; et al. Deimination of linker histones links neutrophil extracellular trap release with autoantibodies in systemic autoimmunity. FASEB J. 2014, 28, 2840–2851. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Konig, M.F.; Andrade, F. A critical reappraisal of neutrophil extracellular traps and NETosis mimics based on differential requirements for protein citrullination. Front. Immunol. 2016, 7, 461. [Google Scholar] [CrossRef]
- Tan, C.; Aziz, M.; Wang, P. The vitals of NETs. J. Leukoc. Biol. 2021, 110, 797–808. [Google Scholar] [CrossRef]
- Silk, E.; Zhao, H.; Ma, D. The role of extracellular histone in organ injury. Cell Death Dis. 2017, 8, e2812. [Google Scholar] [CrossRef]
- Ciesielski, O.; Biesiekierska, M.; Panthu, B.; Soszynski, M.; Pirola, L.; Balcerczyk, A. Citrullination in the pathology of inflammatory and autoimmune disorders: Recent advances and future perspectives. Cell. Mol. Life Sci. 2022, 79, 94. [Google Scholar] [CrossRef]
- Tsoneva, D.K.; Ivanov, M.N.; Conev, N.V.; Manev, R.; Stoyanov, D.S.; Vinciguerra, M. Circulating histones to detect and monitor the progression of cancer. Int. J. Mol. Sci. 2023, 24, 942. [Google Scholar] [CrossRef]
- Mauracher, L.M.; Posch, F.; Martinod, K.; Grilz, E.; Daullary, T.; Hell, L.; Brostjan, C.; Zielinski, C.; Az, C.; Wagner, D.D.; et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J. Thromb. Haemost. 2018, 16, 508–518. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Ito, T.; Yasuda, T.; Furubeppu, H.; Kamikokuryo, C.; Yamada, S.; Maruyama, I.; Kakihana, Y. Circulating histone H3 levels in septic patients are associated with coagulopathy, multiple organ failure, and death: A single-center observational study. Thromb. J. 2019, 17, 1. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, X.; Pelayo, R.; Monestier, M.; Ammollo, C.T.; Semeraro, F.; Taylor, F.B.; Esmon, N.; Lupu, F.; Esmon, C.T. Extracellular histones are major mediators of death and sepsis. Nat. Med. 2009, 15, 1318–1321. [Google Scholar] [CrossRef]
- Keulen, G.M.; Huckriede, J.; Wichapong, K.; Nicolaes, G.A.F. Histone activities in the extracelllular environment: Regulation and prothrombotic implications. Curr. Opin. Hematol. 2024, 31, 230–237. [Google Scholar] [CrossRef]
- Mangold, A.; Alias, S.; Scherz, T.; Hofbauer, T.M.; Jakowitsch, J.; Panzenböck, A.; Simon, D.; Laimer, D.; Bangert, C.; Kammerlander, A.; et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ. Res. 2015, 116, 1182–1192. [Google Scholar] [CrossRef]
- Laridan, E.; Martinod, K.; De Meyer, S.F. Neutrophil extracellular traps in arterial and venous thrombosis. Semin. Thromb. Hemost. 2019, 45, 86–93. [Google Scholar] [CrossRef]
- Martinod, K.; Demers, M.; Fuchs, T.A.; Wong, S.L.; Brill, A.; Gallant, M.; Hung, J.; Wang, Y.; Wagner, D.D. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc. Natl. Acad. Sci. USA 2013, 110, 8674–8679. [Google Scholar] [CrossRef]
- Ammollo, C.T.; Semeraro, F.; Xu, J.; Esmon, N.L.; Esmon, C.T. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J. Thromb. Haemost. 2011, 9, 1795–1803. [Google Scholar] [CrossRef]
- Semeraro, F.; Ammollo, C.T.; Morrissey, J.H.; Dale, G.L.; Friese, P.; Esmon, N.L.; Esmon, C.T. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: Involvement of platelet TLR2 and TLR4. Blood 2011, 118, 1952–1961. [Google Scholar] [CrossRef]
- Longstaff, C.; Varjú, I.; Sótonyi, P.; Szabó, L.; Krumrey, M.; Hoell, A.; Bóta, A.; Varga, Z.; Komorowicz, E.; Kolev, K. Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. J. Biol. Chem. 2013, 288, 6946–6956. [Google Scholar] [CrossRef]
- Varjú, I.; Longstaff, C.; Szabó, L.; Farkas, Á.Z.; Varga-Szabó, V.J.; Tanka-Salamon, A.; Machovich, R.; Kolev, K. DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment. Thromb. Haemost. 2015, 113, 1289–1298. [Google Scholar] [CrossRef]
- Locke, M.; Longstaff, C. Extracellular histones inhibit fibrinolysis through noncovalent and covalent interactions with fibrin. Thromb. Haemost. 2021, 121, 464–476. [Google Scholar] [CrossRef]
- Ammollo, C.T.; Semeraro, N.; Carratù, M.R.; Colucci, M.; Semeraro, F. Histones Differentially Modulate the Anticoagulant and Profibrinolytic Activities of Heparin, Heparin Derivatives, and Dabigatran. J. Pharmacol. Exp. Ther. 2016, 356, 305–313. [Google Scholar] [CrossRef]
- Semeraro, F.; Ammollo, C.T.; Semeraro, N.; Colucci, M. Extracellular histones promote fibrinolysis by single-chain urokinase-type plasminogen activator in a factor seven activating protease-dependent way. Thromb. Res. 2020, 196, 193–199. [Google Scholar] [CrossRef]
- Machovich, R.; Owen, W.G. The elastase-mediated pathway of fibrinolysis. Blood Coagul. Fibrinolysis 1990, 1, 79–90. [Google Scholar] [CrossRef]
- Lijnen, H.R.; Collen, D. Mechanisms of physiological fibrinolysis. Baillieres Clin. Haematol. 1995, 8, 277–290. [Google Scholar] [CrossRef]
- Komorowicz, E.; Kolev, K.; Machovich, R. Fibrinolysis with Des-Kringle Derivatives of Plasmin and Its Modulation by Plasma Protease Inhibitors. Biochemistry 1998, 37, 9112–9118. [Google Scholar] [CrossRef]
- Li, Q.; Ye, J.; Li, Z.; Xiao, Q.; Tan, S.; Hu, B.; Jin, H. The role of neutrophils in tPA thrombolysis after stroke: A malicious troublemaker. Front. Immunol. 2024, 15, 1477669. [Google Scholar] [CrossRef]
- Vallés, J.; Lago, A.; Santos, M.T.; Latorre, A.M.; Tembl, J.I.; Salom, J.B.; Nieves, C.; Moscardó, A. Neutrophil extracellular traps are increased in patients with acute ischemic stroke: Prognostic significance. Thromb. Haemost. 2017, 117, 1919–1929. [Google Scholar] [CrossRef]
- Zhao, Z.; Pan, Z.; Zhang, S.; Ma, G.; Zhang, W.; Song, J.; Wang, Y.; Kong, L.; Du, G. Neutrophil extracellular traps: A novel target for the treatment of stroke. Pharmacol. Ther. 2023, 241, 108328. [Google Scholar] [CrossRef]
- Yang, T.; Peng, J.; Zhang, Z.; Chen, Y.; Liu, Z.; Jiang, L.; Jin, L.; Han, M.; Su, B.; Li, Y. Emerging therapeutic strategies targeting extracellular histones for critical and inflammatory diseases: An updated narrative review. Front. Immunol. 2024, 15, 1438984. [Google Scholar] [CrossRef] [PubMed]
- Locke, M.; Francis, R.J.; Tsaousi, E.; Longstaff, C. Fibrinogen protects neutrophils from the cytotoxic effects of histones and delays neutrophil extracellular trap formation induced by ionomycin. Sci. Rep. 2020, 10, 11694. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, M.; Lindberg, M.R.; Kennett, M.J.; Xiong, N.; Wang, Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 2010, 207, 1853–1862. [Google Scholar] [CrossRef] [PubMed]
- Wegner, N.; Lundberg, K.; Kinloch, A.; Fisher, B.; Malmström, V.; Feldmann, M.; Venables, P.J. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol. Rev. 2010, 233, 34–54. [Google Scholar] [CrossRef]
- Cheng, Z.; Abrams, S.T.; Alhamdi, Y.; Toh, J.; Yu, W.; Wang, G.; Toh, C.H. Circulating Histones Are Major Mediators of Multiple Organ Dysfunction Syndrome in Acute Critical Illnesses. Crit. Care Med. 2019, 47, e677–e684. [Google Scholar] [CrossRef]
- Abrams, S.T.; Zhang, N.; Manson, J.; Liu, T.; Dart, C.; Baluwa, F.; Wang, S.S.; Brohi, K.; Kipar, A.; Yu, W.; et al. Circulating histones are mediators of trauma-associated lung injury. Am. J. Respir. Crit. Care Med. 2013, 187, 160–169. [Google Scholar] [CrossRef]
- Thålin, C.; Aguilera, K.; Hall, N.W.; Marunde, M.R.; Burg, J.M.; Rosell, A.; Daleskog, M.; Månsson, M.; Hisada, Y.; Meiners, M.J.; et al. Quantification of citrullinated histones: Development of an improved assay to reliably quantify nucleosomal H3Cit in human plasma. J. Thromb. Haemost. 2020, 18, 2732–2743. [Google Scholar] [CrossRef]
- Liou, T.G.; Campbell, E.J. Nonisotropic enzyme--inhibitor interactions: A novel nonoxidative mechanism for quantum proteolysis by human neutrophils. Biochemistry 1995, 34, 16171–16177. [Google Scholar] [CrossRef]
- Song, K.S.; Kim, H.K.; Kim, H.S.; Song, J.W. Plasma granulocyte elastase levels and its relation to D-dimer in liver cirrhosis. Fibrinol. Proteolysis 2000, 14, 300–304. [Google Scholar] [CrossRef]
- Komorowicz, E.; Balázs, N.; Tanka-Salamon, A.; Varga, Z.; Szabó, L.; Bóta, A.; Longstaff, C.; Kolev, K. Size- and charge-dependent modulation of the lytic susceptibility and mechanical stability of fibrin-histone clots by heparin and polyphosphate variants. J. Thromb. Haemost. 2021, 19, 1307–1318. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.A.; Mockros, L.F.; Weisel, J.W.; Lorand, L. Structural origins of fibrin clot rheology. Biophys. J. 1999, 77, 2813–2826. [Google Scholar] [CrossRef]
- Bannish, B.E.; Chernysh, I.N.; Keener, J.P.; Fogelson, A.L.; Weisel, J.W. Molecular and Physical Mechanisms of Fibrinolysis and Thrombolysis from Mathematical Modeling and Experiments. Sci. Rep. 2017, 7, 6914. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.; Mirshahi, S.; Valinattaj Omran, A.; Aldybiat, I.; Crepaux, S.; Soria, J.; Contant, G.; Pocard, M.; Mirshahi, M. Blood Clot Dynamics and Fibrinolysis Impairment in Cancer: The Role of Plasma Histones and DNA. Cancers 2024, 16, 928. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Cao, Y.; Du, J.; Liu, H.; Chen, X.; Li, M.; Xiang, M.; Wang, C.; Wu, X.; Liu, L.; et al. Neutrophil extracellular traps contribute to tissue plasminogen activator resistance in acute ischemic stroke. FASEB J. 2021, 35, e21835. [Google Scholar] [CrossRef]
- van der Linden, M.; Kumari, S.; Montizaan, D.; van Dalen, S.; Kip, A.; Foster, M.; Reinieren-Beeren, I.; Neubert, E.; Erpenbeck, L.; Waaijenberg, K.; et al. Anti-citrullinated histone monoclonal antibody CIT-013, a dual action therapeutic for neutrophil extracellular trap-associated autoimmune diseases. MAbs 2023, 15, 2281763. [Google Scholar] [CrossRef]
- Kohno, I.; Inuzuka, K.; Itoh, Y.; Nakahara, K.; Eguchi, Y.; Sugo, T.; Soe, G.; Sakata, Y.; Murayama, H.; Matsuda, M. A monoclonal antibody specific to the granulocyte-derived elastase-fragment D species of human fibrinogen and fibrin: Its application to the measurement of granulocyte-derived elastase digests in plasma. Blood 2000, 95, 1721–1728. [Google Scholar] [CrossRef]
- Madoiwa, S.; Tanaka, H.; Nagahama, Y.; Dokai, M.; Kashiwakura, Y.; Ishiwata, A.; Sakata, A.; Yasumoto, A.; Ohmori, T.; Mimuro, J.; et al. Degradation of cross-linked fibrin by leukocyte elastase as alternative pathway for plasmin-mediated fibrinolysis in sepsis-induced disseminated intravascular coagulation. Thromb. Res. 2011, 127, 349–355. [Google Scholar] [CrossRef]
- Cruz, D.B.D.; Helms, J.; Aquino, L.R.; Stiel, L.; Cougourdan, L.; Broussard, C.; Chafey, P.; Riès-Kautt, M.; Meziani, F.; Toti, F.; et al. DNA-bound elastase of neutrophil extracellular traps degrades plasminogen, reduces plasmin formation, and decreases fibrinolysis: Proof of concept in septic shock plasma. FASEB J. 2019, 33, 14270–14280. [Google Scholar] [CrossRef]
- Lundblad, R.L.; Kingdon, H.S.; Mann, K.G. Thrombin. Methods Enzymol. 1976, 45, 156–176. [Google Scholar] [CrossRef] [PubMed]
- Longstaff, C. Measuring fibrinolysis: From research to routine diagnostic assays. J. Thromb. Haemost. 2018, 16, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Komorowicz, E.; Kolev, K.; Léránt, I.; Machovich, R. Flow-rate modulated dissolution of fibrin with clot-embedded and circulating proteases. Circ. Res. 1998, 82, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Rottenberger, Z.; Komorowicz, E.; Szabó, L.; Bóta, A.; Varga, Z.; Machovich, R.; Longstaff, C.; Kolev, K. Lytic and mechanical stability of clots composed of fibrin and blood vessel wall components. J. Thromb. Haemost. 2013, 11, 529–538. [Google Scholar] [CrossRef]
- Longstaff, C.; Thelwell, C.; Williams, S.C.; Silva, M.M.; Szabó, L.; Kolev, K. The interplay between tissue plasminogen activator domains and fibrin structures in the regulation of fibrinolysis: Kinetic and microscopic studies. Blood 2011, 117, 661–668. [Google Scholar] [CrossRef]
- Nikolova, N.D.; Toneva-Zheynova, D.; Kolev, K.; Tenekedjiev, K. Monte Carlo statistical tests for identity of theoretical and empirical distributions of experimental data. In Theory and Applications of Monte Carlo Simulations; Chan, W.K., Ed.; InTech: London, UK, 2013; pp. 1–26. [Google Scholar] [CrossRef]
- Farkas, Á.Z.; Farkas, V.J.; Szabó, L.; Wacha, A.; Bóta, A.; Csehi, L.; Kolev, K.; Thelwell, C. Structure, mechanical and lytic stability of fibrin and plasma coagulum generated by Staphylocoagulase from Staphylococcus aureus. Front. Immunol. 2019, 10, 2967. [Google Scholar] [CrossRef]
None | H1 Linker Histone | Core Histone | Citrullinated H1 | Citrullinated Core | |
---|---|---|---|---|---|
fiber diameter, nm | 95.1 [44.6] | 109.1 * [62.4] | 72.1 * [34.5] | 91.0 *# [49.1] | 77.8 *# [42.7] |
Ks 10−9 cm2 | 0.29 (0.06) | 0.62 * (0.17) | 0.36 * (0.08) | 0.43 *# (0.17) | 0.29 # (0.05) |
maximal turbidity | 1.00 (0.06) | 2.32 * (0.17) | 1.55 * (0.25) | 1.42 *# (0.30) | 0.92 *# (0.18) |
G′ (Pa) | G″ (Pa) | G″/G′ (-) | γmax (-) | τ0 (Pa) | |
---|---|---|---|---|---|
no additive | 34.6 (6.7) | 2.8 (0.4) | 0.082 (0.004) | 1.9 (0.2) | 100.4 (7.8) |
native H1 | 82.1 * (10.6) | 8.3 * (1.1) | 0.101(0.002) | 5.5 * (0.6) | 678.5 * (89.4) |
citrullinated H1 | 56.3 *# (10.5) | 5.5 *# (1.1) | 0.097 (0.010) | 5.7 * (0.3) | 412.8 *# (64.1) |
native core | 36.2 (4.1) | 2.9 (0.4) | 0.087 (0.002) | 2.1 (0.2) | 120.8 (25.8) |
None | H1 | Core | Citrullinated H1 | Citrullinated Core | |
---|---|---|---|---|---|
Surface-applied plasmin | |||||
Clotting time | 1.00 (0.04) | 0.79 * (0.11) | 0.62 * (0.29) | 0.92 *# (0.03) | 0.84 *# (0.09) |
Lysis time | 1.00 (0.13) | 0.77 * (0.09) | 0.93 (0.13) | 0.85 *# (0.15) | 1.18 # (0.39) |
Incorporated plasmin | |||||
Clotting time | 1.00 (0.10) | 0.85 * (0.13) | 1.33 * (0.22) | 0.89 * (0.13) | 1.26 * (0.23) |
Lysis time | 1.00 (0.12) | 0.89 * (0.08) | 2.40 * (0.73) | 0.98 # (0.13) | 1.49 *# (0.22) |
None | H1 | Core | Citrullinated H1 | Citrullinated Core | |
---|---|---|---|---|---|
A, turbidity | |||||
Clotting time | 1.00 (0.08) | 1.21 * (0.11) | 1.53 * (0.31) | 1.07 # (0.07) | 1.25 *# (0.19) |
Lysis time | 1.00 (0.11) | 1.01 (0.23) | 4.45 * (0.81) | 1.15 (0.39) | 2.08 *# 0.031) |
B, viscoelasticity | |||||
Clotting time | 1.00 (0.04) | 1.02 (0.04) | 1.21 * (0.01) | 1.13 * (0.08) | 1.06 # (0.14) |
Lysis time | 1.00 (0.08) | 0.97 (0.04) | 1.78 * (0.36) | 0.96 (0.24) | 1.20 *# (0.27) |
H1 | Core | DNA | H1 + DNA | Core + DNA | |
---|---|---|---|---|---|
Native histones | |||||
Clotting time | 1.85 * (0.35) | 0.77 * (0.32) | 0.80 * (0.09) | 1.79 *φ (0.31) | 0.72 * (0.19) |
Lysis time | 1.14 * (0.12) | 1.28 * (0.11) | 1.27 * (0.15) | 1.14 *φ (0.16) | 1.21 * (0.15) |
Citrullinated histones | |||||
Clotting time | 1.61 *# (0.16) | 0.76 * (0.21) | n.a. | 1.21 *#φ (0.09) | 0.49 *#φ (0.11) |
Lysis time | 1.24 *# (0.17) | 1.28 * (0.17) | n.a. | 1.18 *φ (0.16) | 1.30 *# (0.14) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komorowicz, E.; Gurabi, A.; Wacha, A.; Szabó, L.; Ozohanics, O.; Kolev, K. Kringle-Dependent Inhibition of Plasmin-Mediated Fibrinolysis by Native and Citrullinated Core Histones. Int. J. Mol. Sci. 2025, 26, 5799. https://doi.org/10.3390/ijms26125799
Komorowicz E, Gurabi A, Wacha A, Szabó L, Ozohanics O, Kolev K. Kringle-Dependent Inhibition of Plasmin-Mediated Fibrinolysis by Native and Citrullinated Core Histones. International Journal of Molecular Sciences. 2025; 26(12):5799. https://doi.org/10.3390/ijms26125799
Chicago/Turabian StyleKomorowicz, Erzsébet, Anna Gurabi, András Wacha, László Szabó, Olivér Ozohanics, and Krasimir Kolev. 2025. "Kringle-Dependent Inhibition of Plasmin-Mediated Fibrinolysis by Native and Citrullinated Core Histones" International Journal of Molecular Sciences 26, no. 12: 5799. https://doi.org/10.3390/ijms26125799
APA StyleKomorowicz, E., Gurabi, A., Wacha, A., Szabó, L., Ozohanics, O., & Kolev, K. (2025). Kringle-Dependent Inhibition of Plasmin-Mediated Fibrinolysis by Native and Citrullinated Core Histones. International Journal of Molecular Sciences, 26(12), 5799. https://doi.org/10.3390/ijms26125799