Evaluating Apelin as a Potential Biomarker in Major Depressive Disorder: Its Correlation with Clinical Symptomatology
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berk, M.; Köhler-Forsberg, O.; Turner, M.; Penninx, B.W.; Wrobel, A.; Firth, J.; Loughman, A.; Reavley, N.J.; McGrath, J.J.; Momen, N.C.; et al. Comorbidity between major depressive disorder and physical diseases: A comprehensive review of epidemiology, mechanisms and management. World Psychiatry 2023, 22, 366–387. [Google Scholar] [CrossRef]
- Cui, L.; Li, S.; Wang, S.; Wu, X.; Liu, Y.; Yu, W.; Wang, Y.; Tang, Y.; Xia, M.; Li, B. Major depressive disorder: Hypothesis, mechanism, prevention and treatment. Signal Transduct. Target. Ther. 2024, 9, 30. [Google Scholar] [CrossRef]
- Bhatt, S.; Devadoss, T.; Manjula, S.N.; Rajangam, J. 5-HT3 Receptor Antagonism: A Potential Therapeutic Approach for the Treatment of Depression and other Disorders. Curr. Neuropharmacol. 2021, 19, 1545–1559. [Google Scholar] [CrossRef]
- Bekhbat, M.; Bekhbat, M.; Li, Z.; Li, Z.; Mehta, N.D.; Mehta, N.D.; Treadway, M.T.; Treadway, M.T.; Lucido, M.J.; Lucido, M.J.; et al. Correction to: Functional connectivity in reward circuitry and symptoms of anhedonia as therapeutic targets in depression with high inflammation: Evidence from a dopamine challenge study. Mol. Psychiatry 2022, 27, 4122. [Google Scholar] [CrossRef]
- Pasco, J.A.; Jacka, F.N.; Williams, L.J.; Henry, M.J.; Nicholson, G.C.; Kotowicz, M.A.; Berk, M. Leptin in depressed women: Cross-sectional and longitudinal data from an epidemiologic study. J. Affect. Disord. 2008, 107, 221–225. [Google Scholar] [CrossRef]
- Arinami, H.; Suzuki, Y.; Tajiri, M.; Tsuneyama, N.; Someya, T. Role of insulin-like growth factor 1, sex and corticosteroid hormones in male major depressive disorder. BMC Psychiatry 2021, 21, 157. [Google Scholar] [CrossRef] [PubMed]
- Paul, E.R.; Schwieler, L.; Erhardt, S.; Boda, S.; Trepci, A.; Kämpe, R.; Asratian, A.; Holm, L.; Yngve, A.; Dantzer, R.; et al. Peripheral and central kynurenine pathway abnormalities in major depression. Brain Behav. Immun. 2022, 101, 136–145. [Google Scholar] [CrossRef]
- Pasco, J.A.; Nicholson, G.C.; Williams, L.J.; Jacka, F.N.; Henry, M.J.; Kotowicz, M.A.; Schneider, H.G.; Leonard, B.E.; Berk, M. Association of high-sensitivity C-reactive protein with de novo major depression. Br. J. Psychiatry 2010, 197, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Rawdin, B.; Mellon, S.; Dhabhar, F.; Epel, E.; Puterman, E.; Su, Y.; Burke, H.; Reus, V.; Rosser, R.; Hamilton, S.; et al. Dysregulated relationship of inflammation and oxidative stress in major depression. Brain Behav. Immun. 2013, 31, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Bonifacio, K.L.; Morelli, N.R.; Vargas, H.O.; Barbosa, D.S.; Carvalho, A.F.; Nunes, S.O.V. Major Differences in Neurooxidative and Neuronitrosative Stress Pathways Between Major Depressive Disorder and Types I and II Bipolar Disorder. Mol. Neurobiol. 2019, 56, 141–156. [Google Scholar] [CrossRef]
- Lohoff, F.W. Overview of the Genetics of Major Depressive Disorder. Curr. Psychiatry Rep. 2010, 12, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Kendall, K.M.; Van Assche, E.; Andlauer, T.F.M.; Choi, K.W.; Luykx, J.J.; Schulte, E.C.; Lu, Y. The genetic basis of major depression. Psychol. Med. 2021, 51, 2217–2230. [Google Scholar] [CrossRef] [PubMed]
- Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014, 140, 774–815. [Google Scholar] [CrossRef]
- Holsboer, F. The Corticosteroid Receptor Hypothesis of Depression. Neuropsychopharmacology 2000, 23, 477–501. [Google Scholar] [CrossRef] [PubMed]
- Tatemoto, K.; Hosoya, M.; Habata, Y.; Fujii, R.; Kakegawa, T.; Zou, M.-X.; Kawamata, Y.; Fukusumi, S.; Hinuma, S.; Kitada, C.; et al. Isolation and Characterization of a Novel Endogenous Peptide Ligand for the Human APJ Receptor. Biochem. Biophys. Res. Commun. 1998, 251, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.; Kenward, C.; Rainey, J.K. Apelinergic System Structure and Function. Compr. Physiol. 2017, 8, 407–450. [Google Scholar] [CrossRef]
- Wang, G.; Anini, Y.; Wei, W.; Qi, X.; O’carroll, A.-M.; Mochizuki, T.; Wang, H.-Q.; Hellmich, M.R.; Englander, E.W.; Greeley, G.H. Apelin, a new enteric peptide: Localization in the gastrointestinal tract, ontogeny, and stimulation of gastric cell proliferation and of cholecystokinin secretion. Endocrinology 2004, 145, 1342–1348. [Google Scholar] [CrossRef]
- Medhurst, A.D.; Jennings, C.A.; Robbins, M.J.; Davis, R.P.; Ellis, C.; Winborn, K.Y.; Lawrie, K.W.M.; Hervieu, G.; Riley, G.; Bolaky, J.E.; et al. Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J. Neurochem. 2003, 84, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.K.; Cheng, R.; Nguyen, T.; Fan, T.; Kariyawasam, A.P.; Liu, Y.; Osmond, D.H.; George, S.R.; O’Dowd, B.F. Characterization of apelin, the ligand for the APJ receptor. J. Neurochem. 2000, 74, 34–41. [Google Scholar] [CrossRef]
- Dray, C.; Debard, C.; Jager, J.; Disse, E.; Daviaud, D.; Martin, P.; Attané, C.; Wanecq, E.; Guigné, C.; Bost, F.; et al. Apelin and APJ regulation in adipose tissue and skeletal muscle of type 2 diabetic mice and humans. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E1161–E1169. [Google Scholar] [CrossRef]
- Hosoya, M.; Kawamata, Y.; Fukusumi, S.; Fujii, R.; Habata, Y.; Hinuma, S.; Kitada, C.; Honda, S.; Kurokawa, T.; Onda, H.; et al. Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J. Biol. Chem. 2000, 275, 21061–21067. [Google Scholar] [CrossRef] [PubMed]
- Katugampola, S.D.; Maguire, J.J.; Matthewson, S.R.; Davenport, A.P. [(125)I]-(Pyr(1))Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br. J. Pharmacol. 2001, 132, 1255–1260. [Google Scholar] [CrossRef]
- Wu, L.; Chen, L.; Li, L. Apelin/APJ system: A novel promising therapy target for pathological angiogenesis. Clin. Chim. Acta 2017, 466, 78–84. [Google Scholar] [CrossRef] [PubMed]
- O’Carroll, A.M.; Selby, T.L.; Palkovits, M.; Lolait, S.J. Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues. Biochim. Biophys. Acta (BBA)-Gene Struct. Expr. 2000, 1492, 72–80. [Google Scholar] [CrossRef]
- Kleinz, M.J.; Davenport, A.P. Emerging roles of apelin in biology and medicine. Pharmacol. Ther. 2005, 107, 198–211. [Google Scholar] [CrossRef]
- Xin, Q.; Cheng, B.; Pan, Y.; Liu, H.; Yang, C.; Chen, J.; Bai, B. Neuroprotective effects of apelin-13 on experimental ischemic stroke through suppression of inflammation. Peptides 2015, 63, 55–62. [Google Scholar] [CrossRef]
- Chu, H.; Yang, X.; Huang, C.; Gao, Z.; Tang, Y.; Dong, Q. Apelin-13 Protects against Ischemic Blood-Brain Barrier Damage through the Effects of Aquaporin-4. Cerebrovasc. Dis. 2017, 44, 10–25. [Google Scholar] [CrossRef]
- Bao, H.J.; Zhang, L.; Han, W.C.; Dai, D.K. Apelin-13 Attenuates Traumatic Brain Injury-Induced Damage by Suppressing Autophagy. Neurochem. Res. 2015, 40, 89–97. [Google Scholar] [CrossRef]
- Haghparast, E.; Esmaeili-Mahani, S.; Abbasnejad, M.; Sheibani, V. Apelin-13 ameliorates cognitive impairments in 6-hydroxydopamine-induced substantia nigra lesion in rats. Neuropeptides 2018, 68, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Wan, T.; Fu, M.; Jiang, Y.; Jiang, W.; Li, P.; Zhou, S. Research Progress on Mechanism of Neuroprotective Roles of Apelin-13 in Prevention and Treatment of Alzheimer’s Disease. Neurochem. Res. 2022, 47, 205–217. [Google Scholar] [CrossRef]
- Masoumi, J.; Abbasloui, M.; Parvan, R.; Mohammadnejad, D.; Pavon-Djavid, G.; Barzegari, A.; Abdolalizadeh, J. Apelin, a promising target for Alzheimer disease prevention and treatment. Neuropeptides 2018, 70, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.W.; Xu, F.; Gui, S.J. Apelin-13 reverses memory impairment and depression-like behavior in chronic social defeat stressed rats. Peptides 2018, 108, 1–6. [Google Scholar] [CrossRef]
- Zhang, Z.-X.; Li, E.; Yan, J.-P.; Fu, W.; Shen, P.; Tian, S.-W.; You, Y. Apelin attenuates depressive-like behavior and neuroinflammation in rats co-treated with chronic stress and lipopolysaccharide. Neuropeptides 2019, 77, 101959. [Google Scholar] [CrossRef]
- Li, E.; Deng, H.; Wang, B.; Fu, W.; You, Y.; Tian, S. Apelin-13 exerts antidepressant-like and recognition memory improving activities in stressed rats. Eur. Neuropsychopharmacol. 2016, 26, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.; Yue, Q.; Fu, W.; Tian, S.W.; You, Y. Apelin-13 ameliorates chronic water-immersion restraint stress-induced memory performance deficit through upregulation of BDNF in rats. Neurosci. Lett. 2019, 696, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.T.; Wang, B.; Xiao, Z.Y.; You, Y.; Tian, S.W. Apelin-13 Upregulates BDNF Against Chronic Stress-induced Depression-like Phenotypes by Ameliorating HPA Axis and Hippocampal Glucocorticoid Receptor Dysfunctions. Neuroscience 2018, 390, 151–159. [Google Scholar] [CrossRef]
- Puşuroğlu, M.; Bahçeci, İ.; Baltacıoğlu, M.; Bahçeci, B.; İbik, Y.E. Blood Apelin-36 Level in Patients with Depression. Rize Tıp Derg. 2024, 1, 1–8. [Google Scholar]
- Acikel, S.B.; Artik, A.; Hosoglu, E.; Yerlikaya, F.H. Serum Apelin-13 Levels Are Decreased Among Adolescents Diagnosed with Major Depressive Disorder. Psychiatr. Danub. 2022, 34, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Oguz, E.G.; Akoglu, H.; Okyay, G.U.; Yayar, O.; Gursoy, G.K.; Buyukbakkal, M.; Canbakan, B.; Ayli, M.D. Serum apelin is associated with affective disorders in peritoneal dialysis patients. Ren Fail. 2016, 38, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Dede, S.; Sahpolat, M.; Kokacya, M.H.; Ari, M.; Sesliokuyucu, C.; Yonden, Z. Serum Apelin And Nesfatin-1 Levels in Depression Patients and Their Relationship with Treatment. Düşünen Adam J. Psychiatry Neurol. Sci. 2017, 30, 39. [Google Scholar] [CrossRef]
- Bullich, S.; Barreto, P.d.S.; Dortignac, A.; He, L.; Dray, C.; Valet, P.; Guiard, B. Apelin controls emotional behavior in age- and metabolic state-dependent manner. Psychoneuroendocrinology 2022, 140, 105711. [Google Scholar] [CrossRef]
- Lv, S.Y.; Qin, Y.J.; Wang, H.T.; Xu, N.; Yang, Y.J.; Chen, Q. Centrally administered apelin-13 induces depression-like behavior in mice. Brain Res. Bull. 2012, 88, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Quilty, L.C.; Robinson, J.J.; Rolland, J.P.; Fruyt FDe Rouillon, F.; Bagby, R.M. The structure of the Montgomery–Åsberg depression rating scale over the course of treatment for depression. Int. J. Methods Psychiatr. Res. 2013, 22, 175. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.-Y.; Yang, Y.-J.; Qin, Y.-J.; Mo, J.-R.; Wang, N.-B.; Wang, Y.-J.; Chen, Q. Central apelin-13 inhibits food intake via the CRF receptor in mice. Peptides 2012, 33, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Ziora, K.; Oświęcimska, J.; Świętochowska, E.; Ziora, D.; Ostrowska, Z.; Stojewska, M.; Klimacka-Nawrot, E.; Dyduch, A.; Błońska-Fajfrowska, B. Assessment of Serum Apelin Levels in Girls with Anorexia Nervosa. J. Clin. Endocrinol. Metab. 2010, 95, 2935–2941. [Google Scholar] [CrossRef]
- Fluegge, K. Plasma apelin-13, attention-deficit hyperactivity disorder, and environmental exposure to nitrous oxide. Psychiatry Clin. Neurosci. 2016, 70, 582. [Google Scholar] [CrossRef] [PubMed]
- Bilgiç, A.; Toker, A.; Uysal, S. Exploratory study to evaluate plasma vasopressin and apelin-13 levels in children with attention-deficit hyperactivity disorder. Psychiatry Clin. Neurosci. 2016, 70, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [CrossRef]
- Montgomery, S.A.; Asberg, M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry. 1979, 134, 382–389. [Google Scholar] [CrossRef]
- Müller, M. Differentiating moderate and severe depression using the Montgomery–Åsberg depression rating scale (MADRS). J. Affect. Disord. 2003, 77, 255–260. [Google Scholar] [CrossRef]
Characteristics | HCs (n = 30) | MDD (n = 30) |
---|---|---|
Age (years) | 41.47 ± 9.801 | 44.50 ± 11.717 |
Gender | ||
Female (n, %) | 16 (53.3%) | 16 (53.3%) |
Body height (cm) | 165.36 ± 7.43 | 161.76 ± 9.13 |
Body weight (kg) | 63.18 ± 9.86 | 64.01 ± 13.04 |
BMI (kg/m2) | 23 ± 2.44 | 24.24 ± 3.52 |
Depression onset age (years) | - | 39.24 ± 11.36 |
MADRS | - | 22.28 ± 6.36 |
Imipramine * (mg/day) | - | 156.67 ± 92.37 |
HCs (30) | MDD (30) | F | p-Value | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Apelin serum (ng/mL) | 1.882 | 0.673 | 1.694 | 0.684 | 1.032 | 0.293 |
Apelin plasma (ng/mL) | 2.587 | 0.411 | 2.185 | 0.547 | 1.770 | 0.002 * |
MADRS (n = 30) | Apelin Serum (r-Value) | Apelin Plasma (r-Value) |
---|---|---|
MADRS Total | 0.290 | 0.439 * |
MADRS 1 (Apparent Sadness) | 0.135 | 0.229 |
MADRS 2 (Reported Sadness) | 0.215 | 0.378 |
MADRS 3 (Inner Tension) | 0.009 | 0.188 |
MADRS 4 (Reduced Sleep) | 0.190 | 0.246 |
MADRS 5 (Reduced Appetite) | 0.499 * | 0.512 * |
MADRS 6 (Concentration Difficulties) | 0.494 * | 0.567 * |
MADRS 7 (Lassitude) | 0.170 | 0.274 |
MADRS 8 (Inability to Feel) | 0.014 | 0.167 |
MADRS 9 (Pessimistic Thoughts) | 0.188 | 0.242 |
MADRS 10 (Suicidal Thoughts) | 0.143 | 0.304 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chibaatar, E.; Fujii, R.; Ikenouchi, A.; Okamoto, N.; Natsuyama, T.; Hayasaki, G.; Shinkai, T.; Yoshimura, R. Evaluating Apelin as a Potential Biomarker in Major Depressive Disorder: Its Correlation with Clinical Symptomatology. Int. J. Mol. Sci. 2024, 25, 13663. https://doi.org/10.3390/ijms252413663
Chibaatar E, Fujii R, Ikenouchi A, Okamoto N, Natsuyama T, Hayasaki G, Shinkai T, Yoshimura R. Evaluating Apelin as a Potential Biomarker in Major Depressive Disorder: Its Correlation with Clinical Symptomatology. International Journal of Molecular Sciences. 2024; 25(24):13663. https://doi.org/10.3390/ijms252413663
Chicago/Turabian StyleChibaatar, Enkhmurun, Rintarou Fujii, Atsuko Ikenouchi, Naomichi Okamoto, Tomoya Natsuyama, Gaku Hayasaki, Takahiro Shinkai, and Reiji Yoshimura. 2024. "Evaluating Apelin as a Potential Biomarker in Major Depressive Disorder: Its Correlation with Clinical Symptomatology" International Journal of Molecular Sciences 25, no. 24: 13663. https://doi.org/10.3390/ijms252413663
APA StyleChibaatar, E., Fujii, R., Ikenouchi, A., Okamoto, N., Natsuyama, T., Hayasaki, G., Shinkai, T., & Yoshimura, R. (2024). Evaluating Apelin as a Potential Biomarker in Major Depressive Disorder: Its Correlation with Clinical Symptomatology. International Journal of Molecular Sciences, 25(24), 13663. https://doi.org/10.3390/ijms252413663