Do GWAS-Identified Risk Variants for Chronic Lymphocytic Leukemia Influence Overall Patient Survival and Disease Progression?
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Participants
4.2. SNP Selection and Genotyping
4.3. Statistical Analysis and Meta-Analysis
4.4. Functional Effect of the GWAS-Identified Risk Variants on Immune Responses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Lin, X.; Li, F.; Jin, J.; Wang, H. The global burden and attributable risk factors of chronic lymphocytic leukemia in 204 countries and territories from 1990 to 2019: Analysis based on the global burden of disease study 2019. Biomed. Eng. Online 2022, 21, 4. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.A.; Rabe, K.G.; Kay, N.E.; Call, T.G.; Ding, W.; Schwager, S.M.; Bowen, D.A.; Conte, M.; Jelinek, D.F.; Slager, S.L.; et al. Chronic lymphocytic leukemia in young (≤55 years) patients: A comprehensive analysis of prognostic factors and outcomes. Haematologica 2014, 99, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Alrawashdh, N.; Sweasy, J.; Erstad, B.; McBride, A.; Persky, D.O.; Abraham, I. Survival trends in chronic lymphocytic leukemia across treatment eras: US SEER database analysis (1985–2017). Ann. Hematol. 2021, 100, 2501–2512. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M.; Al-Sawaf, O. Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures. Am. J. Hematol. 2021, 96, 1679–1705. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.; Rasi, S.; Spina, V.; Bruscaggin, A.; Monti, S.; Ciardullo, C.; Deambrogi, C.; Khiabanian, H.; Serra, R.; Bertoni, F.; et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013, 121, 1403–1412. [Google Scholar] [CrossRef] [PubMed]
- Berndt, S.I.; Camp, N.J.; Skibola, C.F.; Vijai, J.; Wang, Z.; Gu, J.; Nieters, A.; Kelly, R.S.; Smedby, K.E.; Monnereau, A.; et al. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia. Nat. Commun. 2016, 7, 10933. [Google Scholar] [CrossRef] [PubMed]
- Law, P.J.; Berndt, S.I.; Speedy, H.E.; Camp, N.J.; Sava, G.P.; Skibola, C.F.; Holroyd, A.; Joseph, V.; Sunter, N.J.; Nieters, A.; et al. Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia. Nat. Commun. 2017, 8, 14175. [Google Scholar] [CrossRef] [PubMed]
- Slager, S.L.; Rabe, K.G.; Achenbach, S.J.; Vachon, C.M.; Goldin, L.R.; Strom, S.S.; Lanasa, M.C.; Spector, L.G.; Rassenti, L.Z.; Leis, J.F.; et al. Genome-wide association study identifies a novel susceptibility locus at 6p21.3 among familial CLL. Blood 2011, 117, 1911–1916. [Google Scholar] [CrossRef] [PubMed]
- Di Bernardo, M.C.; Crowther-Swanepoel, D.; Broderick, P.; Webb, E.; Sellick, G.; Wild, R.; Sullivan, K.; Vijayakrishnan, J.; Wang, Y.; Pittman, A.M.; et al. A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat. Genet. 2008, 40, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Call, T.G.; Phyliky, R.L.; Noel, P.; Habermann, T.M.; Beard, C.M.; O’Fallon, W.M.; Kurland, L.T. Incidence of chronic lymphocytic leukemia in Olmsted County, Minnesota, 1935 through 1989, with emphasis on changes in initial stage at diagnosis. Mayo Clin. Proc. 1994, 69, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.Y.; Fordham, S.E.; Sunter, N.; Elstob, C.; Rahman, T.; Willmore, E.; Shepherd, C.; Strathdee, G.; Mainou-Fowler, T.; Piddock, R.; et al. Genome-wide association study identifies risk loci for progressive chronic lymphocytic leukemia. Nat. Commun. 2021, 12, 665. [Google Scholar] [CrossRef] [PubMed]
- Macauda, A.; Clay-Gilmour, A.; Hielscher, T.; Hildebrandt, M.A.T.; Kruszewski, M.; Orlowski, R.Z.; Kumar, S.K.; Ziv, E.; Orciuolo, E.; Brown, E.E.; et al. Does a Multiple Myeloma Polygenic Risk Score Predict Overall Survival of Patients with Myeloma? Cancer Epidemiol. Biomark. Prev. 2022, 31, 1863–1866. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Martin, P.; Diez, A.M.; Maldonado, J.M.S.; Serrano, A.J.C.; Ter Horst, R.; Benavente, Y.; Landi, S.; Macauda, A.; Clay-Gilmour, A.; Hernandez-Mohedo, F.; et al. Validation and functional characterization of GWAS-identified variants for chronic lymphocytic leukemia: A CRuCIAL study. Blood Cancer J. 2022, 12, 79. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Fan, B.; Guo, Q.; Li, Y.; Chen, R.; Lv, N.; Diao, Y.; Luo, Y. Knockdown of SETDB1 inhibits breast cancer progression by miR-381-3p-related regulation. Biol. Res. 2018, 51, 39. [Google Scholar] [CrossRef] [PubMed]
- Canzian, F.; Piredda, C.; Macauda, A.; Zawirska, D.; Andersen, N.F.; Nagler, A.; Zaucha, J.M.; Mazur, G.; Dumontet, C.; Watek, M.; et al. A polygenic risk score for multiple myeloma risk prediction. Eur. J. Hum. Genet. 2022, 30, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Oosting, M.; Smeekens, S.P.; Jaeger, M.; Aguirre-Gamboa, R.; Le, K.T.T.; Deelen, P.; Ricano-Ponce, I.; Schoffelen, T.; Jansen, A.F.M.; et al. A Functional Genomics Approach to Understand Variation in Cytokine Production in Humans. Cell 2016, 167, 1099–1110.e14. [Google Scholar] [CrossRef] [PubMed]
- Orru, V.; Steri, M.; Sole, G.; Sidore, C.; Virdis, F.; Dei, M.; Lai, S.; Zoledziewska, M.; Busonero, F.; Mulas, A.; et al. Genetic variants regulating immune cell levels in health and disease. Cell 2013, 155, 242–256. [Google Scholar] [CrossRef] [PubMed]
CRuCIAL Cohort (1039 CLL Cases for OS Analysis) | CRuCIAL Cohort (354 CLL Cases for TTFT Analysis) | ||
---|---|---|---|
Age (years) | 65.87 ± 11.05 | Age (years) | 65.03 ± 10.94 |
Sex ratio (male/female) | 1.57 (636/403) | Sex ratio (male/female) | 1.62 (219/135) |
Country of origin (alive/decesead) | Country of origin | ||
Spain | 754 (536/218) | Spain | 227 (174/73) |
Italy | 285 (216/69) | Italy | 127 (86/41) |
Median follow-up time (months) | 76.77 (50–123) | Median TTFT (days) | 759.49 (31–1148.74) |
Alive | 76 (52.1–123) | Alive | 830.81 (44.13–1308.93) |
Deceased | 77 (44–123) | Deceased | 564.83 (13.10–800) |
Status at follow-up | Status at follow-up | ||
Alive | 752 (72.38) | Alive | 239 (68.29) |
Deceased | 287 (27.62) | Deceased | 111 (31.71) |
Binet Stage | Binet stage | ||
A | 647 (81.48) | A | 201 (64.84) |
B | 99 (12.46) | B | 68 (21.94) |
C | 48 (06.04) | C | 41 (13.23) |
Rai Stage | Rai stage | ||
0 | 597 (65.67) | 0 | 124 (37.35) |
I | 152 (16.72) | I | 105 (31.63) |
II | 114 (12.57) | II | 63 (18.98) |
III | 12 (01.31) | III | 16 (04.82) |
IV | 34 (03.73) | IV | 24 (07.23) |
SNP | Chr. | Nearby Gene | Risk Allele | HR (95%CI) δ | p | HR (95%CI) Ϯ | p | HR (95%CI) ¥ | p |
---|---|---|---|---|---|---|---|---|---|
rs4368253 | 18 | AC107990.1||NFE2L3P1 | C | 0.94 (0.78–1.14) | 0.539 | 0.93 (0.59–1.45) | 0.746 | 0.93 (0.73–1.18) | 0.545 |
rs1439287 | 2 | ACOXL | T | 1.03 (0.88–1.21) | 0.700 | 0.99 (0.76–1.29) | 0.957 | 1.10 (0.84–1.44) | 0.481 |
rs58055674 | 2 | ACOXL | C | 1.08 (0.90–1.30) | 0.424 | 1.12 (0.89–1.42) | 0.335 | 1.02 (0.64–1.61) | 0.936 |
rs7944004 | 11 | ASCL2||C11orf21 | T | 0.97 (0.82–1.15) | 0.735 | 1.06 (0.79–1.43) | 0.699 | 0.89 (0.69–1.16) | 0.394 |
rs4987855 | 18 | BCL2 | G | 0.97 (0.71–1.32) | 0.848 | 0.68 (0.10–4.87) | 0.701 | 0.98 (0.71–1.34) | 0.886 |
rs2651823 | 11 | C11orf21|TSPAN32 | A | 0.95 (0.81–1.12) | 0.523 | 1.03 (0.78–1.36) | 0.857 | 0.85 (0.65–1.11) | 0.233 |
rs1476569 | 4 | CAMK2D | G | 1.12 (0.95–1.32) | 0.176 | 1.31 (1.03–1.67) | 0.028 | 0.92 (0.64–1.32) | 0.643 |
rs3769825 | 2 | CASP8 | T | 1.20 (1.02–1.43) | 0.033 | 1.23 (0.93–1.63) | 0.150 | 1.32 (1.01–1.73) | 0.041 |
rs7558911 | 2 | CFLAR | A | 1.19 (1.01–1.41) | 0.040 | 1.22 (0.91–1.63) | 0.175 | 1.30 (1.00–1.67) | 0.046 |
rs1036935 | 18 | CXXC1 | A | 1.27 (1.07–1.51) | 0.008 | 1.34 (1.06–1.70) | 0.015 | 1.43 (0.98–2.10) | 0.066 |
rs1359742 | 9 | DMRTA1 | G | 1.05 (0.89–1.23) | 0.575 | 1.02 (0.78–1.34) | 0.875 | 1.11 (0.85–1.45) | 0.441 |
rs6546149 | 2 | DTNB | G | 1.09 (0.91–1.31) | 0.356 | 1.06 (0.84–1.35) | 0.607 | 1.29 (0.86–1.93) | 0.222 |
rs9880772 | 3 | EOMES|LINC01980 | T | 0.98 (0.84–1.14) | 0.787 | 1.04 (0.80–1.34) | 0.787 | 0.90 (0.69–1.18) | 0.455 |
rs13015798 | 2 | FAM126B | A | 1.06 (0.88–1.28) | 0.548 | 1.00 (0.64–1.54) | 0.989 | 1.10 (0.87–1.39) | 0.444 |
rs6586163 | 10 | FAS | A | 0.99 (0.84–1.17) | 0.916 | 1.08 (0.80–1.45) | 0.631 | 0.92 (0.71–1.20) | 0.554 |
rs2267708 | 7 | GPR37 | T | 0.86 (0.72–1.02) | 0.081 | 0.91 (0.70–1.19) | 0.504 | 0.70 (0.51–0.97) | 0.030 |
rs2953196 | 11 | GRAMD1B | G | 0.85 (0.70–1.04) | 0.123 | 0.70 (0.42–1.17) | 0.176 | 0.85 (0.67–1.09) | 0.203 |
rs35923643 | 11 | GRAMD1B | G | 0.88 (0.72–1.07) | 0.192 | 0.80 (0.63–1.02) | 0.068 | 1.12 (0.71–1.78) | 0.631 |
rs3800461 | 6 | ILRUN | C | 0.92 (0.67–1.27) | 0.620 | 0.91 (0.65–1.27) | 0.562 | 1.20 (0.30–4.86) | 0.795 |
rs9392504 | 6 | IRF4 | A | 0.88 (0.74–1.04) | 0.143 | 0.80 (0.60–1.08) | 0.145 | 0.88 (0.68–1.13) | 0.322 |
rs391855 | 16 | IRF8 | A | 0.87 (0.74–1.03) | 0.104 | 0.99 (0.72–1.36) | 0.946 | 0.74 (0.58–0.96) | 0.021 |
rs898518 | 4 | LEF1 | A | 1.12 (0.94–1.33) | 0.215 | 1.50 (1.00–2.26) | 0.049 | 1.04 (0.82–1.33) | 0.721 |
rs34676223 | 1 | MDS2 | C | 0.99 (0.83–1.18) | 0.899 | 0.88 (0.61–1.27) | 0.491 | 1.03 (0.81–1.30) | 0.803 |
rs57214277 | 4 | MYL12BP2||LINC02363 | T | 1.02 (0.86–1.21) | 0.805 | 1.01 (0.79–1.29) | 0.926 | 1.06 (0.77–1.46) | 0.729 |
rs10936599 | 3 | MYNN | C | 0.91 (0.74–1.11) | 0.344 | 0.57 (0.36–0.90) | 0.016 | 0.99 (0.77–1.26) | 0.922 |
rs11715604 | 3 | NCK1 | T | 0.98 (0.80–1.20) | 0.831 | 1.06 (0.61–1.85) | 0.842 | 0.96 (0.74–1.23) | 0.723 |
rs6489882 | 12 | OAS3 | G | 1.09 (0.92–1.29) | 0.309 | 1.16 (0.90–1.50) | 0.240 | 1.06 (0.78–1.45) | 0.696 |
rs140522 | 22 | ODF3B | T | 1.02 (0.86–1.20) | 0.854 | 1.11 (0.87–1.41) | 0.410 | 0.87 (0.61–1.24) | 0.431 |
rs2236256 | 6 | OPRM1||IPCEF1 | C | 1.03 (0.87–1.21) | 0.752 | 0.96 (0.74–1.23) | 0.729 | 1.14 (0.86–1.51) | 0.348 |
rs11637565 | 15 | PCAT29|LOC107984788 | G | 0.97 (0.82–1.16) | 0.753 | 0.96 (0.74–1.25) | 0.753 | 0.97 (0.71–1.33) | 0.842 |
rs17246404 | 7 | POT1 | C | 0.95 (0.79–1.14) | 0.572 | 0.95 (0.61–1.47) | 0.818 | 0.93 (0.74–1.18) | 0.557 |
rs2511714 | 8 | POU5F1P2||ODF1 | G | 0.91 (0.77–1.08) | 0.268 | 0.92 (0.72–1.17) | 0.485 | 0.82 (0.59–1.14) | 0.240 |
rs11083846 | 19 | PRKD2 | A | 1.20 (0.99–1.45) | 0.061 | 1.16 (0.92–1.47) | 0.209 | 1.62 (1.06–2.50) | 0.027 |
rs888096 | 2 | QPCT||RNU6-1116P | A | 0.95 (0.81–1.13) | 0.590 | 0.97 (0.76–1.24) | 0.837 | 0.88 (0.63–1.23) | 0.454 |
rs41271473 | 1 | RHOU | G | 0.96 (0.74–1.25) | 0.770 | 1.46 (0.64–3.32) | 0.366 | 0.88 (0.64–1.21) | 0.432 |
rs73718779 | 6 | SERPINB6 | A | 1.03 (0.78–1.37) | 0.823 | 1.04 (0.77–1.40) | 0.806 | 0.97 (0.24–3.94) | 0.970 |
rs12638862 | 3 | TERC | A | 0.89 (0.73–1.08) | 0.229 | 0.62 (0.40–0.97) | 0.037 | 0.94 (0.74–1.19) | 0.602 |
rs7705526 | 5 | TERT | A | 1.07 (0.90–1.27) | 0.468 | 1.00 (0.78–1.28) | 0.997 | 1.25 (0.91–1.70) | 0.163 |
rs61904987 | 11 | TMPRSS5||DRD2 | T | 0.94 (0.71–1.23) | 0.632 | 0.94 (0.70–1.28) | 0.712 | 0.73 (0.23–2.30) | 0.588 |
rs926070 | 6 | TSBP1-AS1 | A | 1.11 (0.92–1.33) | 0.285 | 1.19 (0.77–1.82) | 0.433 | 1.12 (0.88–1.42) | 0.343 |
rs7254272 | 19 | ZBTB7A|MAP2K2 | A | 0.82 (0.66–1.02) | 0.078 | 0.78 (0.61–1.00) | 0.051 | 0.92 (0.50–1.69) | 0.794 |
Polygenic Risk Scores (n = 891) | AUROC | |||
---|---|---|---|---|
Quintiles | HR 95%CI a | p | AUROC (95%CI) | |
Unweighted, subjects with 100% call rate | 1 | 1.00 | - | |
2 | 1.06 (0.70–1.60) | 0.787 | ||
3 | 1.67 (1.15–2.43) | 0.007 | ||
4 | 1.42 (0.99–2.03) | 0.053 | ||
5 | 2.36 (1.56–3.58) | 5.30 × 10−5 | ||
Continuous b | 1.20 (1.09–1.31) | 8.70 × 10−5 | 0.56 (0.52–0.60) | |
Weighted, subjects with 100% call rate | 1 | 1.00 | - | |
2 | 1.33 (0.85–2.09) | 0.206 | ||
3 | 2.05 (1.34–3.15) | 0.001 | ||
4 | 1.68 (1.08–2.59) | 0.020 | ||
5 | 2.50 (1.63–3.83) | 2.40 × 10−5 | ||
Continuous b | 1.22 (1.11–1.33) | 1.80 × 10−5 | 0.57 (0.53–0.61) | |
Polygenic Risk Scores (n = 1003) | AUROC | |||
Quintiles | HR 95%CI a | p | AUROC (95%CI) | |
Unweighted, subjects with 80% call rate | 1 | 1.00 | - | |
2 | 0.99 (0.66–1.46) | 0.948 | ||
3 | 1.48 (1.05–2.11) | 0.027 | ||
4 | 1.36 (0.98–1.90) | 0.066 | ||
5 | 2.08 (1.41–3.07) | 2.41 × 10−4 | ||
Continuous b | 1.17 (1.08–1.28) | 2.32 × 10−4 | 0.55 (0.51–0.59) | |
Weighted, subjects with 80% call rate | 1 | 1.00 | - | |
2 | 1.29 (0.85–1.95) | 0.224 | ||
3 | 1.78 (1.19–2.67) | 0.005 | ||
4 | 1.57 (1.05–2.35) | 0.028 | ||
5 | 2.19 (1.48–3.26) | 9.80 × 10−5 | ||
Continuous b | 1.19 (1.09–1.29) | 7.61 × 10−5 | 0.56 (0.52–0.60) |
SNP | Chr. | Nearby Gene | Risk Allele | HR (95%CI) δ | p | HR (95%CI) Ϯ | p | HR (95%CI) ¥ | p |
---|---|---|---|---|---|---|---|---|---|
rs4368253 | 18 | AC107990.1||NFE2L3P1 | C | 1.03 (0.74–1.42) | 0.871 | 0.62 (0.31–1.25) | 0.184 | 1.18 (0.80–1.74) | 0.413 |
rs1439287 | 2 | ACOXL | T | 1.05 (0.81–1.37) | 0.708 | 0.98 (0.65–1.50) | 0.943 | 1.18 (0.76–1.83) | 0.469 |
rs58055674 | 2 | ACOXL | C | 1.39 (1.02–1.90) | 0.036 | 1.60 (1.08–2.38) | 0.019 | 1.18 (0.51–2.73) | 0.696 |
rs7944004 | 11 | ASCL2||C11orf21 | T | 1.04 (0.78–1.39) | 0.769 | 1.01 (0.61–1.67) | 0.967 | 1.09 (0.71–1.68) | 0.684 |
rs4987855 | 18 | BCL2 | G | 0.75 (0.44–1.27) | 0.281 | NA | NA | 0.73 (0.43–1.25) | 0.256 |
rs2651823 | 11 | C11orf21|TSPAN32 | A | 1.12 (0.85–1.46) | 0.418 | 1.13 (0.73–1.76) | 0.591 | 1.20 (0.77–1.85) | 0.423 |
rs1476569 | 4 | CAMK2D | G | 1.01 (0.76–1.35) | 0.951 | 1.02 (0.69–1.51) | 0.915 | 0.99 (0.54–1.82) | 0.971 |
rs3769825 | 2 | CASP8 | T | 1.41 (1.06–1.87) | 0.017 | 1.56 (0.98–2.47) | 0.059 | 1.58 (1.00–2.48) | 0.048 |
rs7558911 | 2 | CFLAR | A | 1.21 (0.93–1.58) | 0.163 | 1.23 (0.78–1.95) | 0.375 | 1.35 (0.89–2.05) | 0.155 |
rs1036935 | 18 | CXXC1 | A | 1.13 (0.83–1.53) | 0.446 | 1.14 (0.77–1.69) | 0.503 | 1.24 (0.59–2.61) | 0.568 |
rs1359742 | 9 | DMRTA1 | G | 0.98 (0.74–1.30) | 0.884 | 0.85 (0.54–1.32) | 0.468 | 1.11 (0.72–1.73) | 0.636 |
rs6546149 | 2 | DTNB | G | 0.95 (0.69–1.31) | 0.769 | 0.90 (0.61–1.33) | 0.587 | 1.14 (0.55–2.36) | 0.723 |
rs9880772 | 3 | EOMES|LINC01980 | T | 0.96 (0.73–1.24) | 0.735 | 0.96 (0.64–1.43) | 0.831 | 0.91 (0.56–1.48) | 0.717 |
rs13015798 | 2 | FAM126B | A | 0.92 (0.68–1.23) | 0.567 | 0.88 (0.45–1.70) | 0.695 | 0.90 (0.61–1.33) | 0.605 |
rs6586163 | 10 | FAS | A | 0.81 (0.62–1.07) | 0.139 | 0.80 (0.51–1.26) | 0.339 | 0.72 (0.45–1.13) | 0.150 |
rs2267708 | 7 | GPR37 | T | 0.76 (0.58–1.00) | 0.052 | 0.69 (0.46–1.03) | 0.069 | 0.71 (0.43–1.16) | 0.172 |
rs2953196 | 11 | GRAMD1B | G | 0.82 (0.59–1.14) | 0.240 | 0.85 (0.34–2.10) | 0.724 | 0.76 (0.50–1.16) | 0.202 |
rs35923643 | 11 | GRAMD1B | G | 0.71 (0.52–0.98) | 0.040 | 0.68 (0.46–1.02) | 0.061 | 0.54 (0.23–1.28) | 0.164 |
rs3800461 | 6 | ILRUN | C | 0.97 (0.61–1.54) | 0.881 | 0.94 (0.55–1.60) | 0.808 | 1.17 (0.27–5.08) | 0.832 |
rs9392504 | 6 | IRF4 | A | 0.94 (0.72–1.23) | 0.648 | 1.07 (0.63–1.81) | 0.800 | 0.83 (0.55–1.26) | 0.380 |
rs391855 | 16 | IRF8 | A | 1.14 (0.87–1.49) | 0.336 | 1.28 (0.77–2.14) | 0.341 | 1.15 (0.77–1.72) | 0.503 |
rs898518 | 4 | LEF1 | A | 1.16 (0.87–1.54) | 0.310 | 1.58 (0.82–3.04) | 0.172 | 1.09 (0.74–1.62) | 0.650 |
rs34676223 | 1 | MDS2 | C | 1.28 (0.96–1.71) | 0.098 | 1.96 (0.94–4.07) | 0.073 | 1.24 (0.84–1.82) | 0.280 |
rs57214277 | 4 | MYL12BP2||LINC02363 | T | 1.10 (0.85–1.43) | 0.456 | 1.28 (0.86–1.91) | 0.225 | 0.97 (0.58–1.61) | 0.897 |
rs10936599 | 3 | MYNN | C | 1.03 (0.73–1.46) | 0.866 | 0.42 (0.21–0.83) | 0.013 | 1.30 (0.85–1.98) | 0.222 |
rs11715604 | 3 | NCK1 | T | 0.78 (0.55–1.10) | 0.158 | 0.59 (0.24–1.48) | 0.263 | 0.77 (0.51–1.17) | 0.225 |
rs6489882 | 12 | OAS3 | G | 1.01 (0.76–1.34) | 0.929 | 1.06 (0.70–1.59) | 0.797 | 0.96 (0.56–1.63) | 0.868 |
rs140522 | 22 | ODF3B | T | 0.88 (0.66–1.18) | 0.391 | 0.86 (0.58–1.28) | 0.452 | 0.81 (0.43–1.53) | 0.523 |
rs2236256 | 6 | OPRM1||IPCEF1 | C | 1.06 (0.79–1.41) | 0.704 | 0.79 (0.52–1.21) | 0.279 | 1.50 (0.97–2.33) | 0.070 |
rs11637565 | 15 | PCAT29|LOC107984788 | G | 0.90 (0.68–1.20) | 0.482 | 1.04 (0.67–1.61) | 0.874 | 0.67 (0.38–1.16) | 0.155 |
rs17246404 | 7 | POT1 | C | 1.14 (0.83–1.56) | 0.425 | 1.63 (0.70–3.79) | 0.257 | 1.08 (0.72–1.61) | 0.702 |
rs2511714 | 8 | POU5F1P2||ODF1 | G | 0.97 (0.72–1.31) | 0.838 | 0.93 (0.61–1.40) | 0.721 | 1.03 (0.57–1.86) | 0.914 |
rs11083846 | 19 | PRKD2 | A | 1.34 (1.00–1.80) | 0.050 | 1.21 (0.82–1.78) | 0.331 | 2.31 (1.31–4.08) | 0.004 |
rs888096 | 2 | QPCT||RNU6-1116P | A | 1.02 (0.76–1.35) | 0.912 | 0.96 (0.64–1.44) | 0.851 | 1.14 (0.66–1.96) | 0.631 |
rs41271473 | 1 | RHOU | G | 0.76 (0.50–1.13) | 0.176 | 0.85 (0.26–2.76) | 0.786 | 0.69 (0.42–1.13) | 0.139 |
rs73718779 | 6 | SERPINB6 | A | 1.15 (0.74–1.78) | 0.536 | 1.09 (0.68–1.74) | 0.734 | 2.86 (0.69–11.9) | 0.148 |
rs12638862 | 3 | TERC | A | 0.94 (0.66–1.33) | 0.715 | 0.40 (0.19–0.84) | 0.015 | 1.12 (0.74–1.69) | 0.601 |
rs7705526 | 5 | TERT | A | 0.92 (0.70–1.23) | 0.589 | 0.79 (0.53–1.17) | 0.240 | 1.13 (0.69–1.86) | 0.633 |
rs61904987 | 11 | TMPRSS5||DRD2 | T | 1.28 (0.86–1.92) | 0.228 | 1.35 (0.85–2.16) | 0.203 | 1.23 (0.30–5.10) | 0.776 |
rs926070 | 6 | TSBP1-AS1 | A | 1.00 (0.74–1.35) | 0.987 | 0.87 (0.45–1.69) | 0.684 | 1.04 (0.71–1.54) | 0.835 |
rs7254272 | 19 | ZBTB7A|MAP2K2 | A | 0.74 (0.51–1.07) | 0.110 | 0.62 (0.41–0.96) | 0.030 | 1.34 (0.58–3.09) | 0.497 |
SNP | Chr. | Nearby Gene | Risk Allele | CRuCIAL Consortium (354 CLL Cases) | Lin et al. (2021) [12] (755 CLL Cases) | Meta-Analysis (1109 CLL Cases) | ||||
---|---|---|---|---|---|---|---|---|---|---|
HR (95%CI) δ | p | HR (95%CI) δ | p | HR (95%CI) δ | p | phet | ||||
rs4368253 | 18 | AC107990.1||NFE2L3P1 | C | 1.03 (0.74–1.42) | 0.871 | 1.03 (0.87–1.17) | 0.684 | 1.03 (0.85–1.19) | 0.726 | 0.985 |
rs1439287 | 2 | ACOXL | T | 1.05 (0.81–1.37) | 0.708 | 1.00 (0.86–1.12) | 0.990 | 1.01 (1.16–0.88) | 0.858 | 0.765 |
rs58055674 | 2 | ACOXL | C | 1.39 (1.02–1.90) | 0.036 | 0.98 (0.84–1.15) | 0.837 | 1.08 (0.89–1.23) | 0.398 | 0.096 |
rs7944004 | 11 | ASCL2||C11orf21 | T | 1.04 (0.78–1.39) | 0.769 | - | - | 1.04 (1.35–0.80) | 0.783 | 1.000 |
rs4987855 | 18 | BCL2 | G | 0.75 (0.44–1.27) | 0.281 | 0.82 (0.45–1.10) | 0.230 | 0.78 (0.33–1.10) | 0.205 | 0.734 |
rs2651823 | 11 | C11orf21|TSPAN32 | A | 1.12 (0.85–1.46) | 0.418 | 0.93 (0.80–1.07) | 0.302 | 0.98 (1.14–0.84) | 0.796 | 0.303 |
rs1476569 | 4 | CAMK2D | G | 1.01 (0.76–1.35) | 0.951 | 0.99 (0.85–1.15) | 0.898 | 1.00 (0.83–1.14) | 0.955 | 0.917 |
rs3769825 | 2 | CASP8 | T | 1.41 (1.06–1.87) | 0.017 | 1.10 (0.96–1.22) | 0.149 | 1.01 (1.18–0.87) | 0.870 | 0.018 |
rs7558911 | 2 | CFLAR | A | 1.21 (0.93–1.58) | 0.163 | 0.81 (0.63–0.97) | 0.019 | 0.94 (1.10–0.80) | 0.421 | 0.048 |
rs1036935 | 18 | CXXC1 | A | 1.13 (0.83–1.53) | 0.446 | 0.96 (0.83–1.13) | 0.660 | 1.01 (1.19–0.85) | 0.949 | 0.444 |
rs1359742 | 9 | DMRTA1 | G | 0.98 (0.74–1.30) | 0.884 | 0.93 (0.76–1.07) | 0.344 | 0.94 (0.77–1.10) | 0.506 | 0.778 |
rs6546149 | 2 | DTNB | G | 0.95 (0.69–1.31) | 0.769 | 0.86 (0.73–1.01) | 0.067 | 0.87 (0.64–1.06) | 0.192 | 0.652 |
rs9880772 | 3 | EOMES|LINC01980 | T | 0.96 (0.73–1.24) | 0.735 | 1.00 (0.87–1.12) | 0.954 | 0.98 (1.13–0.86) | 0.828 | 0.815 |
rs13015798 | 2 | FAM126B | A | 0.92 (0.68–1.23) | 0.567 | 0.78 (0.57–0.96) | 0.015 | 0.85 (1.02–0.71) | 0.076 | 0.556 |
rs6586163 | 10 | FAS | A | 0.81 (0.62–1.07) | 0.139 | 1.00 (0.86–1.13) | 0.972 | 0.95 (1.11–0.82) | 0.527 | 0.249 |
rs2267708 | 7 | GPR37 | T | 0.76 (0.58–1.00) | 0.052 | 0.98 (0.85–1.12) | 0.743 | 0.91 (1.07–0.78) | 0.273 | 0.176 |
rs2953196 | 11 | GRAMD1B | G | 0.82 (0.59–1.14) | 0.240 | 1.16 (0.99–1.31) | 0.065 | 1.06 (0.84–1.23) | 0.596 | 0.102 |
rs35923643 | 11 | GRAMD1B | G | 0.71 (0.52–0.98) | 0.040 | 1.18 (1.00–1.39) | 0.049 | 1.03 (0.84–1.19) | 0.760 | 0.021 |
rs3800461 | 6 | ILRUN | C | 0.97 (0.61–1.54) | 0.881 | 1.19 (0.96–1.47) | 0.105 | 1.12 (1.41–0.88) | 0.363 | 0.426 |
rs9392504 | 6 | IRF4 | A | 0.94 (0.72–1.23) | 0.648 | 1.03 (0.88–1.16) | 0.678 | 1.00 (1.16–0.87) | 0.970 | 0.597 |
rs391855 | 16 | IRF8 | A | 1.14 (0.87–1.49) | 0.336 | 1.00 (0.85–1.13) | 0.967 | 1.04 (1.21–0.89) | 0.624 | 0.477 |
rs898518 | 4 | LEF1 | A | 1.16 (0.87–1.54) | 0.310 | 0.92 (0.76–1.06) | 0.282 | 0.98 (1.14–0.84) | 0.818 | 0.234 |
rs34676223 | 1 | MDS2 | C | 1.28 (0.96–1.71) | 0.098 | 1.06 (0.90–1.19) | 0.467 | 1.11 (0.93–1.25) | 0.210 | 0.347 |
rs57214277 | 4 | MYL12BP2||LINC02363 | T | 1.10 (0.85–1.43) | 0.456 | 0.92 (0.79–1.06) | 0.228 | 0.97 (1.13–0.84) | 0.728 | 0.286 |
rs10936599 | 3 | MYNN | C | 1.03 (0.73–1.46) | 0.866 | 0.91 (0.70–1.08) | 0.314 | 0.94 (0.72–1.13) | 0.586 | 0.587 |
rs11715604 | 3 | NCK1 | T | 0.78 (0.55–1.10) | 0.158 | 1.05 (0.87–1.27) η | 0.614 | 0.96 (0.73–1.15) | 0.719 | 0.207 |
rs6489882 | 12 | OAS3 | G | 1.01 (0.76–1.34) | 0.929 | 1.10 (0.95–1.27) | 0.213 | 1.06 (0.91–1.18) | 0.450 | 0.588 |
rs140522 | 22 | ODF3B | T | 0.88 (0.66–1.18) | 0.391 | 1.04 (0.90–1.20) | 0.641 | 0.99 (1.16–0.85) | 0.927 | 0.397 |
rs2236256 | 6 | OPRM1||IPCEF1 | C | 1.06 (0.79–1.41) | 0.704 | 1.04 (0.91–1.20) | 0.568 | 1.04 (0.88–1.18) | 0.580 | 0.930 |
rs11637565 | 15 | PCAT29|LOC107984788 | G | 0.90 (0.68–1.20) | 0.482 | 0.89 (0.77–1.03) | 0.112 | 0.88 (0.68–1.05) | 0.182 | 0.958 |
rs17246404 | 7 | POT1 | C | 1.14 (0.83–1.56) | 0.425 | 1.01 (0.85–1.15) | 0.872 | 1.04 (0.86–1.19) | 0.636 | 0.577 |
rs2511714 | 8 | POU5F1P2||ODF1 | G | 0.97 (0.72–1.31) | 0.838 | 1.00 (0.87–1.14) | 0.962 | 0.99 (0.83–1.13) | 0.895 | 0.883 |
rs11083846 | 19 | PRKD2 | A | 1.34 (1.00–1.80) | 0.050 | 1.11 (0.94–1.30) | 0.228 | 1.17 (1.41–0.98) | 0.088 | 0.342 |
rs888096 | 2 | QPCT||RNU6-1116P | A | 1.02 (0.76–1.35) | 0.912 | 1.08 (0.93–1.24) | 0.324 | 1.06 (1.26–0.90) | 0.484 | 0.801 |
rs41271473 | 1 | RHOU | G | 0.76 (0.50–1.13) | 0.176 | 0.92 (0.71–1.09) | 0.368 | 0.87 (0.61–1.08) | 0.247 | 0.453 |
rs73718779 | 6 | SERPINB6 | A | 1.15 (0.74–1.78) | 0.536 | 0.74 (0.42–0.99) | 0.040 | 1.23 (1.59–0.95) | 0.113 | 0.750 |
rs12638862 | 3 | TERC | A | 0.94 (0.66–1.33) | 0.715 | 0.95 (0.76–1.11) | 0.567 | 0.95 (1.14–0.79) | 0.582 | 0.958 |
rs7705526 | 5 | TERT | A | 0.92 (0.70–1.23) | 0.589 | - | - | 0.92 (1.27–0.67) | 0.621 | 1.000 |
rs61904987 | 11 | TMPRSS5||DRD2 | T | 1.28 (0.86–1.92) | 0.228 | 1.06 (0.87–1.29) | 0.570 | 1.11 (1.40–0.89) | 0.357 | 0.481 |
rs926070 | 6 | TSBP1-AS1 | A | 1.00 (0.74–1.35) | 0.987 | 1.07 (0.91–1.19) | 0.382 | 1.05 (1.25–0.89) | 0.570 | 0.742 |
rs7254272 | 19 | ZBTB7A|MAP2K2 | A | 0.74 (0.51–1.07) | 0.110 | 1.12 (0.93–1.35) | 0.242 | 1.00 (1.22–0.82) | 0.991 | 0.096 |
Polygenic Risk Scores (n = 290) | AUROC | |||
---|---|---|---|---|
Quintiles | HR 95%CI a | p | AUROC (95%CI) | |
Unweighted, subjects with 100% call rate | 1 | 1.00 | - | |
2 | 1.23 (0.68–2.22) | 0.487 | ||
3 | - | - | ||
4 | 1.89 (1.08–3.31) | 0.026 | ||
5 | 2.66 (1.45–4.88) | 1.50 × 10−3 | ||
Continuous b | 1.26 (1.11–1.45) | 6.20 × 10−4 | 0.59 (0.52–0.66) | |
Weighted, subjects with 100% call rate | 1 | 1.00 | - | |
2 | 2.22 (1.05–4.71) | 0.037 | ||
3 | 1.45 (0.66–3.16) | 0.353 | ||
4 | 2.34 (1.14–4.79) | 0.020 | ||
5 | 3.87 (1.89–7.94) | 2.10 × 10−4 | ||
Continuous b | 1.32 (1.13–1.54) | 5.17 × 10−4 | 0.60 (0.53–0.67) | |
Polygenic risk scores (n = 323) | AUROC | |||
Quintiles | HR 95%CI a | p | AUROC (95%CI) | |
Unweighted, subjects with 80% call rate | 1 | 1.00 | ||
2 | 1.27 (0.73–2.21) | 0.392 | ||
3 | - | - | ||
4 | 1.85 (1.07–3.19) | 0.027 | ||
5 | 3.00 (1.75–5.12) | 5.90 × 10−5 | ||
Continuous b | 1.29 (1.14–1.46) | 4.40 × 10−5 | 0.61 (0.54–0.67) | |
Weighted, subjects with 80% call rate | 1 | 1.00 | ||
2 | 1.89 (0.93–3.85) | 0.080 | ||
3 | 1.64 (0.81–3.32) | 0.172 | ||
4 | 2.64 (1.37–5.10) | 3.80 × 10−3 | ||
5 | 3.58 (1.85–6.93) | 1.50 × 10−4 | ||
Continuous b | 1.34 (1.16–1.54) | 6.60 × 10−5 | 0.61 (0.55–0.67) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera-Serrano, A.J.; Sánchez-Maldonado, J.M.; ter Horst, R.; Macauda, A.; García-Martín, P.; Benavente, Y.; Landi, S.; Clay-Gilmour, A.; Niazi, Y.; Espinet, B.; et al. Do GWAS-Identified Risk Variants for Chronic Lymphocytic Leukemia Influence Overall Patient Survival and Disease Progression? Int. J. Mol. Sci. 2023, 24, 8005. https://doi.org/10.3390/ijms24098005
Cabrera-Serrano AJ, Sánchez-Maldonado JM, ter Horst R, Macauda A, García-Martín P, Benavente Y, Landi S, Clay-Gilmour A, Niazi Y, Espinet B, et al. Do GWAS-Identified Risk Variants for Chronic Lymphocytic Leukemia Influence Overall Patient Survival and Disease Progression? International Journal of Molecular Sciences. 2023; 24(9):8005. https://doi.org/10.3390/ijms24098005
Chicago/Turabian StyleCabrera-Serrano, Antonio José, José Manuel Sánchez-Maldonado, Rob ter Horst, Angelica Macauda, Paloma García-Martín, Yolanda Benavente, Stefano Landi, Alyssa Clay-Gilmour, Yasmeen Niazi, Blanca Espinet, and et al. 2023. "Do GWAS-Identified Risk Variants for Chronic Lymphocytic Leukemia Influence Overall Patient Survival and Disease Progression?" International Journal of Molecular Sciences 24, no. 9: 8005. https://doi.org/10.3390/ijms24098005
APA StyleCabrera-Serrano, A. J., Sánchez-Maldonado, J. M., ter Horst, R., Macauda, A., García-Martín, P., Benavente, Y., Landi, S., Clay-Gilmour, A., Niazi, Y., Espinet, B., Rodríguez-Sevilla, J. J., Pérez, E. M., Maffei, R., Blanco, G., Giaccherini, M., Cerhan, J. R., Marasca, R., López-Nevot, M. Á., Chen-Liang, T., ... Sainz, J. (2023). Do GWAS-Identified Risk Variants for Chronic Lymphocytic Leukemia Influence Overall Patient Survival and Disease Progression? International Journal of Molecular Sciences, 24(9), 8005. https://doi.org/10.3390/ijms24098005