You are currently viewing a new version of our website. To view the old version click .
International Journal of Molecular Sciences
  • Review
  • Open Access

5 March 2021

Inhibition of Phosphodiesterase-4 in Psoriatic Arthritis and Inflammatory Bowel Diseases

,
,
,
and
1
Department of Clinical and Molecular Medicine, S. Andrea University Hospital, “Sapienza” University, 00189 Rome, Italy
2
Reumatologia, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, “Sapienza” Università di Roma, 00161 Rome, Italy
3
Consultant in Immunology, 00125 Rome, Italy
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Autoimmune Arthritis and Inflammatory Bowel Diseases

Abstract

Phosphodiesterases (PDEs) are a heterogeneous superfamily of enzymes which catalyze the degradation of the intracellular second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Among PDEs, PDE4 is the most widely studied and characterized isoenzyme. PDE4 blocking can lead to increased levels of intracellular cAMP, which results in down-regulation of inflammatory responses by reducing the expression of tumor necrosis factor (TNF), interleukin (IL)-23, IL-17, interferon-γ, while increasing regulatory cytokines, such as IL-10. Therefore, PDE4 has been explored as a therapeutic target for the treatment of different chronic inflammatory conditions such as psoriatic arthritis (PsA) and inflammatory bowel disease (IBD). PsA shares clinical, genetic, and pathogenic features with IBD such as ulcerative colitis (UC) and Crohn’s disease (CD), and enteropathic spondyloarthritis (eSpA) represent a frequent clinical evidence of the overlap between gut and joint diseases. Current therapeutic options in PsA patients and underlying UC are limited to synthetic immunosuppressants and anti-TNF. Apremilast is an oral PDE4 inhibitor approved for the treatment of active PsA patients with inadequate response to synthetic immunosuppressants. The efficacy and a good safety profile observed in randomized clinical trials with apremilast in PsA patients have been confirmed by few studies in a real-life scenario. In addition, apremilast led to significant improvement in clinical and endoscopic features in UC patients in a phase II RCT. By now there are no available data regarding its role in eSpA patients. In view of the above, the use of apremilast in eSpA patients is a route that deserves to be deepened.

1. Introduction

Phosphodiesterases (PDEs) are a heterogeneous and large family of enzymes, first described about 60 years ago by Ashman et al. [], which catalyze the degradation of the intracellular second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Several isoforms of PDEs have been described encompassing, by now, 11 isoenzyme groups and 50 isoforms []. The nomenclature of these gene families has been standardized [] and classified according to their functional characteristic such as affinities for cAMP and cGMP, inhibitor sensitivities, responses to specific effectors and mechanisms of regulation []. cAMP and cGMP modulate several intracellular signal transduction pathways, thus playing a pivotal role in the regulation of different physiologic processes including apoptosis, cell proliferation, inflammation, immune response, and bone remodeling []. Conversely, the inhibition of cAMP and cGMP biological effects by PDEs seems to be a pathogenic mechanism involved in the onset and maintenance of different pathologies including chronic obstructive pulmonary disorder (COPD), depression, diabetes, erectile dysfunction, inflammatory bowel diseases (IBD), and psoriatic arthritis (PsA).
IBD and PsA are chronic, immune mediated diseases that can lead to reduce quality of life and shorten life expectancy, if not timely and adequately treated. IBD include Crohn’s disease (CD) and ulcerative colitis (UC) which may onset at any age, with a peak of incidence between 20–40 and 50–60 years, and a prevalence in Western countries of 300/100.000 subjects []. PsA belongs to the heterogeneous group of spondyloarthritis (SpA), it can manifest at any age, with a predominant onset in the late third decade, affecting men and women equally, with a worldwide estimated prevalence around 1% [].
Enteropathic SpA (eSpA) represent the clinical evidence of the bidirectional relationship between gut and joint diseases. This association is quite common; indeed, arthritis is the most frequent extra-intestinal manifestation in patients with IBD, and, on the other hand, up to 60% of patients with SpA has subclinical gut inflammation [,,,]. SpA and IBD are closely interconnected, sharing some clinical features, genetic predisposition (HLA B27) [,] and dysregulation of immunologic pathways and inflammatory cytokines such as the IL-23/IL-17 axis and the TNF. In particular, IL-23 is responsible for the activation of T and of the “so called” type 3 innate cells (ILC3) to produce IL-17 and IL-22. Both, IBD and SpA patients often showed, in the peripheral blood, an increased frequency of Th-17 and ILC3 cells that are frequently found also in peripheral joints, axial skeleton and on the cutaneous lesions of psoriatic patients [,] ILC3 cells are critical for the tight junction formation and proliferation of skin and mucosal epithelial cells but once out of the mucosal microenvironment cause a noxious pro-inflammatory milieu []. The reasons why these cells traffic from the gut to the articulations are not well defined but one possibility is that bacterial products such LPS cross the epithelial barrier and accumulates in the joints. In addition, breaches in the intestinal mucosa could lead to a disruption of the basal membrane, hyperplasia of goblet cells, activation of Paneth cells, with subsequent increased bacterial translocation and susceptibility to colitis or pathogen infection []. The dysfunction of the gut epithelial mucosa can have downstream effect also on the microbiota composition and several shifts in the gut microbiota composition have been reported both in patients with IBD, SpA and psoriasis [,,,,]. The increasing knowledge of the “skin–gut–joint axis”, the frequency and complexity of this clinical overlap has pushed to develop multidisciplinary approaches coordinated by both the rheumatologist, gastroenterologist, and dermatologist, in order to improve the diagnostic and therapeutic management.
The close pathophysiology of IBD and SpA is also demonstrated by the use of conventional targeted synthetic, and biologic immunosuppressive drugs with common mechanism of action. Separate international recommendations are available for the treatment of SpA and UC patients [,]. However, when IBD and SpA coexist, the therapeutic strategy should be tailored, according to the variable features of IBD and the clinical manifestations of SpA []. In particular, the correct treatment choice should be driven by the predominantly active disease (SpA or IBD) and its clinical subtype (i.e., peripheral/axial; CD/UC, disease extension). Consequently, in patients with active SpA and IBD in remission, the drug has to be selected following rheumatologic recommendations. Last EULAR recommendations involves the use of conventional synthetic Disease Modifying Anti-Rheumatic Drugs (csDMARDs) (i.e., methotrexate, sulphasalazine) as first line therapy for active peripheral SpA. Biological DMARDs (bDMARDs), such as anti-TNF agents, the anti-IL-17A secukinumab and ixekizumab, and the IL-12/IL-23 inhibitor ustekinumab, as well as targeted synthetic (ts)DMARDs, such as JAK inhibitors and the PDE4 inhibitor apremilast, can be adopted in patients inadequately responder to csDMARDs []. However, the therapeutic options are more limited in patients with eSpA. Indeed, the pegylated anti-TNF agent certolizumab and ustekinumab are scheduled in CD but not in UC, whereas etanercept and anti-IL-17A agents are not indicated in IBD patients. Finally, the only approved JAK inhibitor for both UC and PsA tofacitinib, has not yet the redeemability in Italy.
Apremilast is an oral PDE4 inhibitor which modulates different inflammatory mediators []. It has shown efficacy and a good safety profile in different randomized clinical trials (RCTs) in PsA patients [,,,]; thus, it has been approved for the treatment of active PsA in subjects who cannot take or have responded inadequately to synthetic immunosuppressive agents []. Apremilast has been studied also in one RCT in active UC patients; although, the primary endpoint of clinical remission was not met, the drug determined a significant improvement in clinical and endoscopic features, and markers of inflammation [].
By critically reviewing the mechanism of action and the most recent data on the literature, here we provide a review of the pathogenic role of PDE4 in PsA and IBD, pointing out the therapeutic potential of PDE4 inhibition in these autoimmune chronic inflammatory diseases.

3. Conclusions

PDEs are a heterogeneous and large family of enzymes catalyzing the degradation of cAMP and cGMP; among PDEs, PDE4 is the most well characterized. It is inhibition elevates intracellular cAMP levels, reducing the expression of inflammatory cytokines among which TNF, IL-17, IFN- γ, IL-23, while increasing regulatory cytokines, such as IL-10. Therefore, PDE4 inhibition has been evaluated as a therapeutic target in the treatment of different chronic inflammatory conditions such as PsA and IBD.
PsA share clinical, genetic, and pathogenic features with IBD, and eSpA represent a frequent clinical evidence of the overlap between gut and joint diseases.
Current therapeutic options in PsA patients and underlying UC are limited to csDMARDs and anti-TNF agents. Apremilast is a PDE4 inhibitor that demonstrated efficacy and a good safety profile in PsA patients both in RCTs and in real-life settings; it also led to a significant improvement in clinical and endoscopic features in UC patients in a phase II RCT.
In view of the above data, the use of apremilast in patients with eSpA seems to be a valuable therapeutic option that should not be overlooked.

Author Contributions

A.P.-D., F.R.S. and B.L. conceived the manuscript; A.P.-D., F.R.S. and M.M.R. wrote the manuscript. F.C. and B.L. critically revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

The authors declare no financial support related to the manuscript.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest related to the manuscript.

References

  1. Ashman, D.F.; Lipton, R.; Melicow, M.M.; Price, T.D. Isolation of adenosine 3’, 5’-monophosphate and guanosine 3’, 5’-monophosphate from rat urine. Biochem. Biophys. Res. Commun. 1963, 11, 330–334. [Google Scholar] [CrossRef]
  2. Wallace, D.A.; Johnston, L.A.; Huston, E.; MacMaster, D.; Houslay, T.M.; Cheung, Y.F.; Campbell, L.; Millen, J.E.; Smith, R.A.; Gall, I.; et al. Identification and characterization of PDE4A11, a novel, widely expressed long isoform encoded by the human PDE4A cAMP phosphodiesterase gene. Mol. Pharmacol. 2005, 67, 1920–1934. [Google Scholar] [CrossRef]
  3. Beavo, J.A. Cyclic nucleotide phosphodiesterases: Functional implications of multiple isoforms. Physiol. Rev. 1995, 75, 725–748. [Google Scholar] [CrossRef] [PubMed]
  4. Ahmad, F.; Murata, T.; Shimizu, K.; Degerman, E.; Maurice, D.; Manganiello, V. Cyclic nucleotide phosphodiesterases: Important signaling modulators and therapeutic targets. Oral Dis. 2015, 21, e25–e50. [Google Scholar] [CrossRef]
  5. Abraham, C.; Cho, J.H. IL-23 and autoimmunity: New insights into the pathogenesis of inflammatory bowel disease. Annu. Rev. Med. 2009, 60, 97–110. [Google Scholar] [CrossRef] [PubMed]
  6. Zachariae, R.; Zachariae, H.; Blomqvist, K.; Davidsson, S.; Molin, L.; Mork, C.; Sigurgeirsson, B. Quality of life in 6497 Nordic patients with psoriasis. Br. J. Dermatol. 2002, 146, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
  7. De Vos, M.; Mielants, H.; Cuvelier, C.; Elewaut, A.; Veys, E. Long-term evolution of gut inflammation in patients with spondyloarthropathy. Gastroenterology 1996, 110, 1696–1703. [Google Scholar] [CrossRef]
  8. Olivieri, I.; Cantini, F.; Castiglione, F.; Felice, C.; Gionchetti, P.; Orlando, A.; Salvarani, C.; Scarpa, R.; Vecchi, M.; Armuzzi, A. Italian Expert Panel on the management of patients with coexisting spondyloarthritis and inflammatory bowel disease. Autoimmun. Rev. 2014, 13, 822–830. [Google Scholar] [CrossRef]
  9. Mielants, H.; Veys, E.M.; Cuvelier, C.; De Vos, M.; Goemaere, S.; De Clercq, L.; Schatteman, L.; Gyselbrecht, L.; Elewaut, D. The evolution of spondyloarthropathies in relation to gut histology. III. Relation between gut and joint. J. Rheumatol. 1995, 22, 2279–2284. [Google Scholar] [PubMed]
  10. Picchianti-Diamanti, A.; Lorenzetti, R.; Chimenti, M.S.; Luchetti, M.M.; Conigliaro, P.; Canofari, C.; Benfaremo, D.; Bruzzese, V.; Lagana, B.; Perricone, R.; et al. Enteropathic spondyloarthritis: Results from a large nationwide database analysis. Autoimmun. Rev. 2020, 19, 102457. [Google Scholar] [CrossRef] [PubMed]
  11. Roberti, R.; Iannone, L.F.; Palleria, C.; De Sarro, C.; Spagnuolo, R.; Barbieri, M.A.; Vero, A.; Manti, A.; Pisana, V.; Fries, W.; et al. Safety profiles of biologic agents for inflammatory bowel diseases: A prospective pharmacovigilance study in Southern Italy. Curr. Med. Res. Opin. 2020, 36, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
  12. Iannone, L.F.; Bennardo, L.; Palleria, C.; Roberti, R.; De Sarro, C.; Naturale, M.D.; Dastoli, S.; Donato, L.; Manti, A.; Valenti, G.; et al. Safety profile of biologic drugs for psoriasis in clinical practice: An Italian prospective pharmacovigilance study. PLoS ONE 2020, 15, e0241575. [Google Scholar] [CrossRef] [PubMed]
  13. Ciccia, F.; Rizzo, A.; Accardo-Palumbo, A.; Giardina, A.; Bombardieri, M.; Guggino, G.; Taverna, S.; Leo, G.D.; Alessandro, R.; Triolo, G. Increased expression of interleukin-32 in the inflamed ileum of ankylosing spondylitis patients. Rheumatology 2012, 51, 1966–1972. [Google Scholar] [CrossRef] [PubMed]
  14. Dyring-Andersen, B.; Honore, T.V.; Madelung, A.; Bzorek, M.; Simonsen, S.; Clemmensen, S.N.; Clark, R.A.; Borregaard, N.; Skov, L. Interleukin (IL)-17A and IL-22-producing neutrophils in psoriatic skin. Br. J. Dermatol. 2017, 177, e321–e322. [Google Scholar] [CrossRef]
  15. Gracey, E.; Dumas, E.; Yerushalmi, M.; Qaiyum, Z.; Inman, R.D.; Elewaut, D. The ties that bind: Skin, gut and spondyloarthritis. Curr. Opin. Rheumatol. 2019, 31, 62–69. [Google Scholar] [CrossRef]
  16. Chen, L.; Li, J.; Zhu, W.; Kuang, Y.; Liu, T.; Zhang, W.; Chen, X.; Peng, C. Skin and Gut Microbiome in Psoriasis: Gaining Insight Into the Pathophysiology of It and Finding Novel Therapeutic Strategies. Front. Microbiol. 2020, 11, 589726. [Google Scholar] [CrossRef]
  17. Picchianti-Diamanti, A.; Panebianco, C.; Salemi, S.; Sorgi, M.L.; Di Rosa, R.; Tropea, A.; Sgrulletti, M.; Salerno, G.; Terracciano, F.; D’Amelio, R.; et al. Analysis of Gut Microbiota in Rheumatoid Arthritis Patients: Disease-Related Dysbiosis and Modifications Induced by Etanercept. Int. J. Mol. Sci. 2018, 19, 2938. [Google Scholar] [CrossRef]
  18. Picchianti-Diamanti, A.; Rosado, M.M.; D’Amelio, R. Infectious Agents and Inflammation: The Role of Microbiota in Autoimmune Arthritis. Front. Microbiol. 2017, 8, 2696. [Google Scholar] [CrossRef]
  19. Myers, B.; Brownstone, N.; Reddy, V.; Chan, S.; Thibodeaux, Q.; Truong, A.; Bhutani, T.; Chang, H.W.; Liao, W. The gut microbiome in psoriasis and psoriatic arthritis. Best Pract. Res. Clin. Rheumatol. 2019, 33, 101494. [Google Scholar] [CrossRef]
  20. Scher, J.U.; Ubeda, C.; Artacho, A.; Attur, M.; Isaac, S.; Reddy, S.M.; Marmon, S.; Neimann, A.; Brusca, S.; Patel, T.; et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015, 67, 128–139. [Google Scholar] [CrossRef]
  21. Gossec, L.; Baraliakos, X.; Kerschbaumer, A.; de Wit, M.; McInnes, I.; Dougados, M.; Primdahl, J.; McGonagle, D.G.; Aletaha, D.; Balanescu, A.; et al. EULAR recommendations for the management of psoriatic arthritis with pharmacological therapies: 2019 update. Ann. Rheum. Dis. 2020, 79, 700–712. [Google Scholar] [CrossRef]
  22. Harbord, M.; Annese, V.; Vavricka, S.R.; Allez, M.; Barreiro-de Acosta, M.; Boberg, K.M.; Burisch, J.; De Vos, M.; De Vries, A.M.; Dick, A.D.; et al. The First European Evidence-based Consensus on Extra-intestinal Manifestations in Inflammatory Bowel Disease. J. Crohns Colitis 2016, 10, 239–254. [Google Scholar] [CrossRef]
  23. Schafer, P. Apremilast mechanism of action and application to psoriasis and psoriatic arthritis. Biochem. Pharmacol. 2012, 83, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
  24. Edwards, C.J.; Blanco, F.J.; Crowley, J.; Birbara, C.A.; Jaworski, J.; Aelion, J.; Stevens, R.M.; Vessey, A.; Zhan, X.; Bird, P. Apremilast, an oral phosphodiesterase 4 inhibitor, in patients with psoriatic arthritis and current skin involvement: A phase III, randomised, controlled trial (PALACE 3). Ann. Rheum. Dis. 2016, 75, 1065–1073. [Google Scholar] [CrossRef]
  25. Wells, A.F.; Edwards, C.J.; Kivitz, A.J.; Bird, P.; Nguyen, D.; Paris, M.; Teng, L.; Aelion, J.A. Apremilast monotherapy in DMARD-naive psoriatic arthritis patients: Results of the randomized, placebo-controlled PALACE 4 trial. Rheumatology 2018, 57, 1253–1263. [Google Scholar] [CrossRef]
  26. Cutolo, M.; Myerson, G.E.; Fleischmann, R.M.; Liote, F.; Diaz-Gonzalez, F.; Van den Bosch, F.; Marzo-Ortega, H.; Feist, E.; Shah, K.; Hu, C.; et al. A Phase III, Randomized, Controlled Trial of Apremilast in Patients with Psoriatic Arthritis: Results of the PALACE 2 Trial. J. Rheumatol. 2016, 43, 1724–1734. [Google Scholar] [CrossRef]
  27. Kavanaugh, A.; Mease, P.J.; Gomez-Reino, J.J.; Adebajo, A.O.; Wollenhaupt, J.; Gladman, D.D.; Lespessailles, E.; Hall, S.; Hochfeld, M.; Hu, C.; et al. Treatment of psoriatic arthritis in a phase 3 randomised, placebo-controlled trial with apremilast, an oral phosphodiesterase 4 inhibitor. Ann. Rheum Dis. 2014, 73, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
  28. Otezla, INN-apremilast-europa.eu. Available online: www.ema.europa.eu>otezla-epar-product-information_it (accessed on 21 February 2021).
  29. Danese, S.; Neurath, M.F.; Kopon, A.; Zakko, S.F.; Simmons, T.C.; Fogel, R.; Siegel, C.A.; Panaccione, R.; Zhan, X.; Usiskin, K.; et al. Effects of Apremilast, an Oral Inhibitor of Phosphodiesterase 4, in a Randomized Trial of Patients With Active Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2020, 18, 2526–2534. [Google Scholar] [CrossRef]
  30. Ledbetter, J.A.; Parsons, M.; Martin, P.J.; Hansen, J.A.; Rabinovitch, P.S.; June, C.H. Antibody binding to CD5 (Tp67) and Tp44 T cell surface molecules: Effects on cyclic nucleotides, cytoplasmic free calcium, and cAMP-mediated suppression. J. Immunol. 1986, 137, 3299–3305. [Google Scholar]
  31. Boussiotis, V.A.; Freeman, G.J.; Taylor, P.A.; Berezovskaya, A.; Grass, I.; Blazar, B.R.; Nadler, L.M. p27kip1 functions as an anergy factor inhibiting interleukin 2 transcription and clonal expansion of alloreactive human and mouse helper T lymphocytes. Nat. Med. 2000, 6, 290–297. [Google Scholar] [CrossRef] [PubMed]
  32. Cone, R.E.; Cochrane, R.; Lingenheld, E.G.; Clark, R.B. Elevation of intracellular cyclic AMP induces an anergic-like state in Th1 clones. Cell Immunol. 1996, 173, 246–251. [Google Scholar] [CrossRef]
  33. Abrahamsen, H.; Baillie, G.; Ngai, J.; Vang, T.; Nika, K.; Ruppelt, A.; Mustelin, T.; Zaccolo, M.; Houslay, M.; Tasken, K. TCR- and CD28-mediated recruitment of phosphodiesterase 4 to lipid rafts potentiates TCR signaling. J. Immunol. 2004, 173, 4847–4858. [Google Scholar] [CrossRef] [PubMed]
  34. Li, L.; Yee, C.; Beavo, J.A. CD3- and CD28-dependent induction of PDE7 required for T cell activation. Science 1999, 283, 848–851. [Google Scholar] [CrossRef]
  35. Giembycz, M.A.; Corrigan, C.J.; Seybold, J.; Newton, R.; Barnes, P.J. Identification of cyclic AMP phosphodiesterases 3, 4 and 7 in human CD4+ and CD8+ T-lymphocytes: Role in regulating proliferation and the biosynthesis of interleukin-2. Br. J. Pharmacol. 1996, 118, 1945–1958. [Google Scholar] [CrossRef]
  36. Gonzalez-Garcia, C.; Bravo, B.; Ballester, A.; Gomez-Perez, R.; Eguiluz, C.; Redondo, M.; Martinez, A.; Gil, C.; Ballester, S. Comparative assessment of PDE 4 and 7 inhibitors as therapeutic agents in experimental autoimmune encephalomyelitis. Br. J. Pharmacol. 2013, 170, 602–613. [Google Scholar] [CrossRef] [PubMed]
  37. Houslay, M.D.; Schafer, P.; Zhang, K.Y. Keynote review: Phosphodiesterase-4 as a therapeutic target. Drug Discov. Today 2005, 10, 1503–1519. [Google Scholar] [CrossRef]
  38. Alves, A.C.; Pires, A.L.; Cruz, H.N.; Serra, M.F.; Diaz, B.L.; Cordeiro, R.S.; Lagente, V.; Martins, M.A. Selective inhibition of phosphodiesterase type IV suppresses the chemotactic responsiveness of rat eosinophils in vitro. Eur. J. Pharmacol. 1996, 312, 89–96. [Google Scholar] [CrossRef]
  39. Jones, N.A.; Boswell-Smith, V.; Lever, R.; Page, C.P. The effect of selective phosphodiesterase isoenzyme inhibition on neutrophil function in vitro. Pulm Pharmacol. Ther. 2005, 18, 93–101. [Google Scholar] [CrossRef] [PubMed]
  40. Schafer, P.H.; Parton, A.; Capone, L.; Cedzik, D.; Brady, H.; Evans, J.F.; Man, H.W.; Muller, G.W.; Stirling, D.I.; Chopra, R. Apremilast is a selective PDE4 inhibitor with regulatory effects on innate immunity. Cell Signal. 2014, 26, 2016–2029. [Google Scholar] [CrossRef]
  41. Eigler, A.; Siegmund, B.; Emmerich, U.; Baumann, K.H.; Hartmann, G.; Endres, S. Anti-inflammatory activities of cAMP-elevating agents: Enhancement of IL-10 synthesis and concurrent suppression of TNF production. J. Leukoc. Biol. 1998, 63, 101–107. [Google Scholar] [CrossRef] [PubMed]
  42. Platzer, C.; Fritsch, E.; Elsner, T.; Lehmann, M.H.; Volk, H.D.; Prosch, S. Cyclic adenosine monophosphate-responsive elements are involved in the transcriptional activation of the human IL-10 gene in monocytic cells. Eur. J. Immunol. 1999, 29, 3098–3104. [Google Scholar] [CrossRef]
  43. Essayan, D.M.; Huang, S.K.; Kagey-Sobotka, A.; Lichtenstein, L.M. Differential efficacy of lymphocyte- and monocyte-selective pretreatment with a type 4 phosphodiesterase inhibitor on antigen-driven proliferation and cytokine gene expression. J. Allergy Clin. Immunol. 1997, 99, 28–37. [Google Scholar] [CrossRef]
  44. Bopp, T.; Dehzad, N.; Reuter, S.; Klein, M.; Ullrich, N.; Stassen, M.; Schild, H.; Buhl, R.; Schmitt, E.; Taube, C. Inhibition of cAMP degradation improves regulatory T cell-mediated suppression. J. Immunol. 2009, 182, 4017–4024. [Google Scholar] [CrossRef]
  45. Ma, R.; Yang, B.Y.; Wu, C.Y. A selective phosphodiesterase 4 (PDE4) inhibitor Zl-n-91 suppresses IL-17 production by human memory Th17 cells. Int. Immunopharmacol. 2008, 8, 1408–1417. [Google Scholar] [CrossRef]
  46. Sanz, M.J.; Alvarez, A.; Piqueras, L.; Cerda, M.; Issekutz, A.C.; Lobb, R.R.; Cortijo, J.; Morcillo, E.J. Rolipram inhibits leukocyte-endothelial cell interactions in vivo through P- and E-selectin downregulation. Br. J. Pharmacol. 2002, 135, 1872–1881. [Google Scholar] [CrossRef] [PubMed]
  47. Favot, L.; Keravis, T.; Holl, V.; Le Bec, A.; Lugnier, C. VEGF-induced HUVEC migration and proliferation are decreased by PDE2 and PDE4 inhibitors. Thromb. Haemost. 2003, 90, 334–343. [Google Scholar] [CrossRef]
  48. Netherton, S.J.; Maurice, D.H. Vascular endothelial cell cyclic nucleotide phosphodiesterases and regulated cell migration: Implications in angiogenesis. Mol. Pharmacol. 2005, 67, 263–272. [Google Scholar] [CrossRef] [PubMed]
  49. Spadaccini, M.; D’Alessio, S.; Peyrin-Biroulet, L.; Danese, S. PDE4 Inhibition and Inflammatory Bowel Disease: A Novel Therapeutic Avenue. Int. J. Mol. Sci. 2017, 18, 1276. [Google Scholar] [CrossRef] [PubMed]
  50. Gordon, J.N.; Prothero, J.D.; Thornton, C.A.; Pickard, K.M.; Di Sabatino, A.; Goggin, P.M.; Pender, S.L.; Macdonald, T.T. CC-10004 but not thalidomide or lenalidomide inhibits lamina propria mononuclear cell TNF-alpha and MMP-3 production in patients with inflammatory bowel disease. J. Crohns Colitis 2009, 3, 175–182. [Google Scholar] [CrossRef]
  51. Li, H.; Fan, C.; Feng, C.; Wu, Y.; Lu, H.; He, P.; Yang, X.; Zhu, F.; Qi, Q.; Gao, Y.; et al. Inhibition of phosphodiesterase-4 attenuates murine ulcerative colitis through interference with mucosal immunity. Br. J. Pharmacol. 2019, 176, 2209–2226. [Google Scholar] [CrossRef] [PubMed]
  52. Schafer, P.H.; Chen, P.; Fang, L.; Wang, A.; Chopra, R. The pharmacodynamic impact of apremilast, an oral phosphodiesterase 4 inhibitor, on circulating levels of inflammatory biomarkers in patients with psoriatic arthritis: Substudy results from a phase III, randomized, placebo-controlled trial (PALACE 1). J. Immunol. Res. 2015, 2015, 906349. [Google Scholar] [CrossRef] [PubMed]
  53. Chen, W.; Wang, J.; Xu, Z.; Huang, F.; Qian, W.; Ma, J.; Wee, H.B.; Lewis, G.S.; June, R.R.; Schafer, P.H.; et al. Apremilast Ameliorates Experimental Arthritis via Suppression of Th1 and Th17 Cells and Enhancement of CD4(+)Foxp3(+) Regulatory T Cells Differentiation. Front. Immunol. 2018, 9, 1662. [Google Scholar] [CrossRef] [PubMed]
  54. Mavropoulos, A.; Zafiriou, E.; Simopoulou, T.; Brotis, A.G.; Liaskos, C.; Roussaki-Schulze, A.; Katsiari, C.G.; Bogdanos, D.P.; Sakkas, L.I. Apremilast increases IL-10-producing regulatory B cells and decreases proinflammatory T cells and innate cells in psoriatic arthritis and psoriasis. Rheumatology 2019, 58, 2240–2250. [Google Scholar] [CrossRef]
  55. McCann, F.E.; Palfreeman, A.C.; Andrews, M.; Perocheau, D.P.; Inglis, J.J.; Schafer, P.; Feldmann, M.; Williams, R.O.; Brennan, F.M. Apremilast, a novel PDE4 inhibitor, inhibits spontaneous production of tumour necrosis factor-alpha from human rheumatoid synovial cells and ameliorates experimental arthritis. Arthritis Res. Ther. 2010, 12, R107. [Google Scholar] [CrossRef]
  56. Perez-Aso, M.; Montesinos, M.C.; Mediero, A.; Wilder, T.; Schafer, P.H.; Cronstein, B. Apremilast, a novel phosphodiesterase 4 (PDE4) inhibitor, regulates inflammation through multiple cAMP downstream effectors. Arthritis Res. Ther. 2015, 17, 249. [Google Scholar] [CrossRef]
  57. Kragstrup, T.W.; Adams, M.; Lomholt, S.; Nielsen, M.A.; Heftdal, L.D.; Schafer, P.; Deleuran, B. IL-12/IL-23p40 identified as a downstream target of apremilast in ex vivo models of arthritis. Ther. Adv. Musculoskelet Dis. 2019, 11, 1759720X19828669. [Google Scholar] [CrossRef]
  58. Kavanaugh, A.; Gladman, D.D.; Edwards, C.J.; Schett, G.; Guerette, B.; Delev, N.; Teng, L.; Paris, M.; Mease, P.J. Long-term experience with apremilast in patients with psoriatic arthritis: 5-year results from a PALACE 1-3 pooled analysis. Arthritis Res. Ther. 2019, 21, 118. [Google Scholar] [CrossRef]
  59. Mease, P.J.; Gladman, D.D.; Gomez-Reino, J.J.; Hall, S.; Kavanaugh, A.; Lespessailles, E.; Schett, G.; Paris, M.; Delev, N.; Teng, L.; et al. Long-Term Safety and Tolerability of Apremilast Versus Placebo in Psoriatic Arthritis: A Pooled Safety Analysis of Three Phase III, Randomized, Controlled Trials. ACR Open Rheumatol. 2020, 2, 459–470. [Google Scholar] [CrossRef]
  60. Nash, P.; Ohson, K.; Walsh, J.; Delev, N.; Nguyen, D.; Teng, L.; Gomez-Reino, J.J.; Aelion, J.A. Early and sustained efficacy with apremilast monotherapy in biological-naïve patients with psoriatic arthritis: A phase IIIB, randomised controlled trial (ACTIVE). Ann. Rheum. Dis. 2018, 77, 690–698. [Google Scholar] [CrossRef] [PubMed]
  61. Gladman, D.D.; Kavanaugh, A.; Gomez-Reino, J.J.; Wollenhaupt, J.; Cutolo, M.; Schett, G.; Lespessailles, E.; Guerette, B.; Delev, N.; Teng, L.; et al. Therapeutic benefit of apremilast on enthesitis and dactylitis in patients with psoriatic arthritis: A pooled analysis of the PALACE 1–3 studies. RMD Open 2018, 4, e000669. [Google Scholar] [CrossRef] [PubMed]
  62. Abignano, G.; Fadl, N.; Merashli, M.; Wenham, C.; Freeston, J.; McGonagle, D.; Marzo-Ortega, H. Apremilast for the treatment of active psoriatic arthritis: A single-centre real-life experience. Rheumatology 2018, 57, 578–580. [Google Scholar] [CrossRef]
  63. Abignano, G.; Fadl, N.; Merashli, M.; Vandevelde, C.; Freeston, J.; McGonagle, D.; Marzo-Ortega, H. A comparison of apremilast monotherapy and combination therapy for psoriatic arthritis in a real-life setting: Data from the Leeds Combined Psoriatic Service. J. Am. Acad Dermatol. 2019, 80, 1796–1798. [Google Scholar] [CrossRef] [PubMed]
  64. Metyas, S.; Tomassian, C.; Messiah, R.; Gettas, T.; Chen, C.; Quismorio, A. Combination Therapy of Apremilast and Biologic Agent as a Safe Option of Psoriatic Arthritis and Psoriasis. Curr. Rheumatol. Rev. 2019, 15, 234–237. [Google Scholar] [CrossRef]
  65. Ogdie, A.; Liu, M.; Glynn, M.; Emeanuru, K.; Harrold, L.; Richter, S.; Guerette, B.; Mease, P.J. Descriptive Comparisons of the Impact of Apremilast and Methotrexate Monotherapy in Oligoarticular Psoriatic Arthritis: The Corrona Psoriatic Arthritis/Spondyloarthritis Registry Results. J. Rheumatol. 2020. [Google Scholar] [CrossRef] [PubMed]
  66. Favalli, E.G.; Conti, F.; Selmi, C.; Iannone, F.; Bucci, R.; D’Onofrio, F.; Carlino, G.; Santo, L.; Semeraro, A.; Zuccaro, C.; et al. Retrospective evaluation of patient profiling and effectiveness of apremilast in an Italian multicentric cohort of psoriatic arthritis patients. Clin. Exp. Rheumatol. 2020, 38, 19–26. [Google Scholar]
  67. Ceccarelli, F.; Lucchetti, R.; Spinelli, F.R.; Perricone, C.; Truglia, S.; Miranda, F.; Scrivo, R.; Alessandri, C.; Valesini, G.; Conti, F. Early response to apremilast treatment in psoriatic arthritis: A real-life ultrasonographic follow-up study. Rheumatology 2018, 57, 1490–1491. [Google Scholar] [CrossRef] [PubMed]
  68. Ceccarelli, F.; Lucchetti, R.; Perricone, C.; Spinelli, F.R.; Cipriano, E.; Truglia, S.; Miranda, F.; Riccieri, V.; Di Franco, M.; Scrivo, R.; et al. Musculoskeletal ultrasound in monitoring response to apremilast in psoriatic arthritis patients: Results from a longitudinal study. Clin. Rheumatol. 2019, 38, 3145–3151. [Google Scholar] [CrossRef]
  69. Balato, A.; Campione, E.; Cirillo, T.; Malara, G.; Trifiro, C.; Bianchi, L.; Fabbrocini, G. Long-term efficacy and safety of apremilast in psoriatic arthritis: Focus on skin manifestations and special populations. Dermatol. Ther. 2020, 33, e13440. [Google Scholar] [CrossRef] [PubMed]
  70. Hagberg, K.W.; Persson, R.; Vasilakis-Scaramozza, C.; Niemcryk, S.; Peng, M.; Paris, M.; Lindholm, A.; Jick, S. Herpes Zoster, Hepatitis C, and Tuberculosis Risk with Apremilast Compared to Biologics, Dmards and Corticosteroids to Treat Psoriasis and Psoriatic Arthritis. Clin. Epidemiol. 2020, 12, 153–161. [Google Scholar] [CrossRef]
  71. Mazzilli, S.; Lanna, C.; Chiaramonte, C.; Cesaroni, G.M.; Zangrilli, A.; Palumbo, V.; Cosio, T.; Dattola, A.; Gaziano, R.; Galluzzo, M.; et al. Real life experience of apremilast in psoriasis and arthritis psoriatic patients: Preliminary results on metabolic biomarkers. J. Dermatol. 2020, 47, 578–582. [Google Scholar] [CrossRef] [PubMed]
  72. Venerito, V.; Natuzzi, D.; Bizzoca, R.; Lacarpia, N.; Cacciapaglia, F.; Lopalco, G.; Iannone, F. Serum sCD40L levels are increased in patients with psoriatic arthritis and are associated with clinical response to apremilast. Clin. Exp. Immunol. 2020, 201, 200–204. [Google Scholar] [CrossRef] [PubMed]
  73. Feldman, S.R.; Pelletier, C.L.; Wilson, K.L.; Mehta, R.K.; Brouillette, M.A.; Smith, D.; Bonafede, M.M. Treatment patterns and costs among biologic-naive patients initiating apremilast or biologics for psoriatic arthritis. J. Comp. Eff. Res. 2019, 8, 699–709. [Google Scholar] [CrossRef] [PubMed]
  74. Kishimoto, M.; Komine, M.; Hioki, T.; Kamiya, K.; Sugai, J.; Ohtsuki, M. Real-world use of apremilast for patients with psoriasis in Japan. J. Dermatol. 2018, 45, 1345–1348. [Google Scholar] [CrossRef] [PubMed]
  75. Feldman, S.R.; Pelletier, C.L.; Wilson, K.L.; Mehta, R.K.; Brouillette, M.A.; Smith, D.; Bonafede, M.M. Real-world US healthcare costs of psoriasis for biologic-naive patients initiating apremilast or biologics. J. Comp. Eff. Res. 2019, 8, 45–54. [Google Scholar] [CrossRef]
  76. Wu, J.J.; Pelletier, C.; Ung, B.; Tian, M.; Khilfeh, I.; Curtis, J.R. Real-world switch patterns and healthcare costs in biologic-naive psoriasis patients initiating apremilast or biologics. J. Comp. Eff. Res. 2020, 9, 767–779. [Google Scholar] [CrossRef] [PubMed]
  77. Persson, R.; Hagberg, K.W.; Qian, Y.; Vasilakis-Scaramozza, C.; Jick, S. The risks of major cardiac events among patients with psoriatic arthritis treated with apremilast, biologics, DMARDs or corticosteroids. Rheumatology 2020. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.