Melatonin-Activated Receptor Signaling Pathways Mediate Protective Effects on Surfactant-Induced Increase in Jejunal Mucosal Permeability in Rats
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemicals and Drugs
4.2. Study Formulations
4.3. Animals, Anesthesia and Surgery
4.4. Perfusion Study
4.5. Determination of Blood-to-Lumen Jejunal Mucosal 51Cr-EDTA Clearance
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schoultz, I.; Keita, Å.V. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells 2020, 9, 1909. [Google Scholar] [CrossRef] [PubMed]
- Chelakkot, C.; Ghim, J.; Ryu, S.H. Mechanisms Regulating Intestinal Barrier Integrity and Its Pathological Implications. Exp. Mol. Med. 2018, 50, 1–9. [Google Scholar] [CrossRef]
- Barker, N. Adult Intestinal Stem Cells: Critical Drivers of Epithelial Homeostasis and Regeneration. Nat. Rev. Mol. Cell Biol. 2014, 15, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Dey, I.; Bradbury, N.A. Chapter Ten-Physiology of the Gut: Experimental Models for Investigating Intestinal Fluid and Electrolyte Transport. In Current Topics in Membranes; Levitane, I., Delpire, E., Rasgado-Flores, H., Eds.; Cell Volume Regulation; Academic Press: Cambridge, MA, USA, 2018; Volume 81, pp. 337–381. [Google Scholar]
- Buckley, A.; Turner, J.R. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harb Perspect Biol 2018, 10, a029314. [Google Scholar] [CrossRef]
- Odenwald, M.A.; Turner, J.R. The Intestinal Epithelial Barrier: A Therapeutic Target? Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M. Leaky Gut: Mechanisms, Measurement and Clinical Implications in Humans. Gut 2019, 68, 1516–1526. [Google Scholar] [CrossRef]
- Camilleri, M.; Gorman, H. Intestinal Permeability and Irritable Bowel Syndrome. Neurogastroenterol. Motil. 2007, 19, 545–552. [Google Scholar] [CrossRef]
- Sangild, P.T.; Shen, R.L.; Pontoppidan, P.; Rathe, M. Animal Models of Chemotherapy-Induced Mucositis: Translational Relevance and Challenges. Am. J. Physiol.-Gastrointest. Liver Physiol. 2018, 314, G231–G246. [Google Scholar] [CrossRef]
- Zhou, Q.; Verne, G.N. Intestinal Hyperpermeability: A Gateway to Multi-Organ Failure? Available online: https://www.jci.org/articles/view/124366/pdf (accessed on 29 August 2021).
- Odenwald, M.A.; Turner, J.R. Intestinal Permeability Defects: Is It Time to Treat? Clin. Gastroenterol. Hepatol. 2013, 11, 1075–1083. [Google Scholar] [CrossRef]
- Thomsen, M.; Vitetta, L. Adjunctive Treatments for the Prevention of Chemotherapy- and Radiotherapy-Induced Mucositis. Integr. Cancer 2018, 17, 1027–1047. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.-D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M. Intestinal Permeability–a New Target for Disease Prevention and Therapy. BMC Gastroenterol. 2014, 14, 1–25. [Google Scholar] [CrossRef]
- Zisapel, N.; Tarrasch, R.; Laudon, M. The Relationship between Melatonin and Cortisol Rhythms: Clinical Implications of Melatonin Therapy. Drug Dev. Res. 2005, 65, 119–125. [Google Scholar] [CrossRef]
- Bubenik, G.A. REVIEW: Gastrointestinal Melatonin: Localization, Function, and Clinical Relevance. Dig. Dis. Sci. 2002, 47, 2336–2348. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Mayo, J.C.; Tan, D.-X.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an Antioxidant: Under Promises but over Delivers. J. Pineal. Res. 2016, 61, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Pieri, C.; Marra, M.; Moroni, F.; Recchioni, R.; Marcheselli, F. Melatonin: A Peroxyl Radical Scavenger More Effective than Vitamin E. Life Sci. 1994, 55, PL271–PL276. [Google Scholar] [CrossRef]
- Slominski, R.M.; Reiter, R.J.; Schlabritz-Loutsevitch, N.; Ostrom, R.S.; Slominski, A.T. Melatonin Membrane Receptors in Peripheral Tissues: Distribution and Functions. Mol. Cell Endocrinol 2012, 351, 152–166. [Google Scholar] [CrossRef] [PubMed]
- Sommansson, A.; Saudi, W.S.W.; Nylander, O.; Sjöblom, M. Melatonin Inhibits Alcohol-Induced Increases in Duodenal Mucosal Permeability in Rats in Vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 305, 95–105. [Google Scholar] [CrossRef]
- Monobe, M.; Hino, M.; Sumi, M.; Uzawa, A.; Hirayama, R.; Ando, K.; Kojima, S. Protective Effects of Melatonin on γ-Ray Induced Intestinal Damage. Int. J. Radiat. Biol. 2005, 81, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Sommansson, A.; Nylander, O.; Sjöblom, M. Melatonin Decreases Duodenal Epithelial Paracellular Permeability via a Nicotinic Receptor-Dependent Pathway in Rats in Vivo. J. Pineal Res. 2013, 54, 282–291. [Google Scholar] [CrossRef]
- Maher, S.; Brayden, D.J. Formulation Strategies to Improve the Efficacy of Intestinal Permeation Enhancers. Adv. Drug Deliv. Rev. 2021, 113925. [Google Scholar] [CrossRef] [PubMed]
- Dahlgren, D.; Roos, C.; Lundqvist, A.; Tannergren, C.; Sjöblom, M.; Sjögren, E.; Lennernäs, H. Effect of Absorption-Modifying Excipients, Hypotonicity, and Enteric Neural Activity in an in Vivo Model for Small Intestinal Transport. Int. J. Pharm. 2018, 549, 239–248. [Google Scholar] [CrossRef]
- Dahlgren, D.; Cano-Cebrián, M.J.; Hellström, P.M.; Wanders, A.; Sjöblom, M.; Lennernäs, H. Prevention of Rat Intestinal Injury with a Drug Combination of Melatonin and Misoprostol. Int. J. Mol. Sci. 2020, 21, 6771. [Google Scholar] [CrossRef] [PubMed]
- Galligan, J.J.; North, R.A. Pharmacology and Function of Nicotinic Acetylcholine and P2X Receptors in the Enteric Nervous System. Neurogastroenterol. Motil. 2004, 16, 64–70. [Google Scholar] [CrossRef]
- Furness, J.B. The Enteric Nervous System and Neurogastroenterology. Nat. Rev. Gastroenterol Hepatol 2012, 9, 286–294. [Google Scholar] [CrossRef]
- Fihn, B.-M.; Sjöqvist, A.; Jodal, M. Involvement of Enteric Nerves in Permeability Changes Due to Deoxycholic Acid in Rat Jejunum in Vivo. Acta Physiol. Scand. 2003, 178, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Nylander, O.; Pihl, L.; Perry, M. Hypotonicity-Induced Increases in Duodenal Mucosal Permeability Facilitates Adjustment of Luminal Osmolality. Am. J. Physiol. Gastrointest. Liver Physiol. 2003, 285, G360–G370. [Google Scholar] [CrossRef][Green Version]
- Zhou, H.; Liang, H.; Li, Z.-F.; Xiang, H.; Liu, W.; Li, J.-G. Vagus Nerve Stimulation Attenuates Intestinal Epithelial Tight Junctions Disruption in Endotoxemic Mice Through A7 Nicotinic Acetylcholine Receptors. Shock 2013, 40, 144–151. [Google Scholar] [CrossRef]
- Nylander, O.; Sababí, M.; Bark, J. Characterization of 51Cr-EDTA as a Marker of Duodenal Mucosal Permeability. Acta Physiol. Scand. 1991, 143, 117–126. [Google Scholar] [CrossRef]
- Dahlgren, D.; Sjöblom, M.; Hedeland, M.; Lennernäs, H. The In Vivo Effect of Transcellular Permeation Enhancers on the Intestinal Permeability of Two Peptide Drugs Enalaprilat and Hexarelin. Pharmaceutics 2020, 12, 99. [Google Scholar] [CrossRef]
- Anosov, A.A.; Smirnova, E.Y.; Korepanova, E.A.; Shogenov, I.M. The Effects of SDS at Subsolubilizing Concentrations on the Planar Lipid Bilayer Permeability: Two Kinds of Current Fluctuations. Chem. Phys. Lipids 2019, 218, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Danielsen, E.M.; Hansen, G.H. Intestinal Surfactant Permeation Enhancers and Their Interaction with Enterocyte Cell Membranes in a Mucosal Explant System. Tissue Barriers 2017, 5, e1361900. [Google Scholar] [CrossRef]
- Anderberg, E.K.; Artursson, P. Epithelial Transport of Drugs in Cell Culture. VIII: Effects of Sodium Dodecyl Sulfate on Cell Membrane and Tight Junction Permeability in Human Intestinal Epithelial (Caco-2) Cells. J. Pharm. Sci. 1993, 82, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Swenson, E.S.; Milisen, W.B.; Curatolo, W. Intestinal Permeability Enhancement: Efficacy, Acute Local Toxicity, and Reversibility. Pharm Res. 1994, 11, 1132–1142. [Google Scholar] [CrossRef] [PubMed]
- Dahlgren, D.; Roos, C.; Lundqvist, A.; Tannergren, C.; Sjöblom, M.; Sjögren, E.; Lennernäs, H. Time-Dependent Effects on Small Intestinal Transport by Absorption-Modifying Excipients. Eur. J. Pharm. Biopharm. 2018, 132, 19–28. [Google Scholar] [CrossRef]
- Sjöblom, M.; Jedstedt, G.; Flemström, G. Peripheral Melatonin Mediates Neural Stimulation of Duodenal Mucosal Bicarbonate Secretion. J. Clin. Invest. 2001, 108, 625–633. [Google Scholar] [CrossRef]
- Sjöblom, M. The Duodenal Mucosal Bicarbonate Secretion. Ups J. Med. Sci. 2005, 110, 115–149. [Google Scholar] [CrossRef] [PubMed]
- Drago, F.; Macauda, S.; Salehi, S. Small Doses of Melatonin Increase Intestinal Motility in Rats. Dig. Dis. Sci. 2002, 47, 1969–1974. [Google Scholar] [CrossRef]
- Bacher, I.; Wu, B.; Shytle, D.R.; George, T.P. Mecamylamine–a Nicotinic Acetylcholine Receptor Antagonist with Potential for the Treatment of Neuropsychiatric Disorders. Expert Opin. Pharmacother. 2009, 10, 2709–2721. [Google Scholar] [CrossRef]
- Hällgren, A.; Wilander, E.; Nylander, O. Acid-Induced Increase in Duodenal Mucosal Permeability Is Augmented by Nitric Oxide Inhibition and Vasopressin. Acta Physiol. Scand. 1997, 160, 363–370. [Google Scholar] [CrossRef]
- Pihl, L.; Wilander, E.; Nylander, O. Comparative Study of the Effect of Luminal Hypotonicity on Mucosal Permeability in Rat Upper Gastrointestinal Tract. Acta Physiol. 2008, 193, 67–78. [Google Scholar] [CrossRef]
- Lambert, G.P.; Chang, R.T.; Xia, T.; Summers, R.W.; Gisolfi, C.V. Absorption from Different Intestinal Segments during Exercise. J. Appl. Physiol. 1997, 83, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Mora, M.J.; Petiti, J.P.; Longhi, M.R.; Torres, A.I.; Granero, G.E. Intestinal Uptake and Toxicity Evaluation of Acetazolamide and Its Multicomponent Complexes with Hidroxypropyl-β-Cyclodextrin in Rats. Int. J. Pharm. 2015, 478, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Fihn, B.-M.; Sjöqvist, A.; Jodal, M. Effect of Cholera Toxin on Passive Transepithelial Transport of 51Cr-Ethylenediaminetetraacetic Acid and 14C-Mannitol in Rat Jejunum. Acta Physiol. Scand. 2001, 171, 153–160. [Google Scholar] [CrossRef]
- Zakeri-Milani, P.; Valizadeh, H.; Azarmi, Y.; Islambolchilar, Z.; Barzegar, S.; Barzegar-Jalali, M. Predicting Human Intestinal Permeability Using Single-Pass Intestinal Perfusion in Rat. J. Pharm. Pharm. Sci. 2007, 10, 368–379. [Google Scholar]
- Cao, X.; Gibbs, S.T.; Fang, L.; Miller, H.A.; Landowski, C.P.; Shin, H.-C.; Lennernäs, H.; Zhong, Y.; Amidon, G.L.; Yu, L.X.; et al. Why Is It Challenging to Predict Intestinal Drug Absorption and Oral Bioavailability in Human Using Rat Model. Pharm. Res. 2006, 23, 1675–1686. [Google Scholar] [CrossRef] [PubMed]
- Sedin, J.; Sjöblom, M.; Nylander, O. Prevention of Duodenal Ileus Reveals Functional Differences in the Duodenal Response to Luminal Hypertonicity in Sprague-Dawley and Dark Agouti Rats. Acta Physiol. 2014, 210, 573–589. [Google Scholar] [CrossRef]
- Sedin, J.; Sjöblom, M.; Nylander, O. The Selective Cyclooxygenase-2 Inhibitor Parecoxib Markedly Improves the Ability of the Duodenum to Regulate Luminal Hypertonicity in Anaesthetized Rats. Acta Physiol. 2012, 205, 433–451. [Google Scholar] [CrossRef]
- Dahlgren, D.; Roos, C.; Peters, K.; Lundqvist, A.; Tannergren, C.; Sjögren, E.; Sjöblom, M.; Lennernäs, H. Evaluation of Drug Permeability Calculation Based on Luminal Disappearance and Plasma Appearance in the Rat Single-Pass Intestinal Perfusion Model. Eur. J. Pharm. Biopharm. 2019, 142, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Dahlgren, D.; Sjöblom, M.; Hellström, P.M.; Lennernäs, H. Chemotherapeutics-Induced Intestinal Mucositis: Pathophysiology and Potential Treatment Strategies. Front. Pharm. 2021, 12, 681417. [Google Scholar] [CrossRef]
- Esteban-Zubero, E.; López-Pingarrón, L.; Alatorre-Jiménez, M.A.; Ochoa-Moneo, P.; Buisac-Ramón, C.; Rivas-Jiménez, M.; Castán-Ruiz, S.; Antoñanzas-Lombarte, Á.; Tan, D.X.; García, J.J.; et al. Melatonin’s Role as a Co-Adjuvant Treatment in Colonic Diseases: A Review. Life Sci. 2017, 170, 72–81. [Google Scholar] [CrossRef]
- Dahlgren, D.; Roos, C.; Lundqvist, A.; Tannergren, C.; Langguth, P.; Sjöblom, M.; Sjögren, E.; Lennernäs, H. Preclinical Effect of Absorption Modifying Excipients on Rat Intestinal Transport of Model Compounds and the Mucosal Barrier Marker 51Cr-EDTA. Mol. Pharm. 2017, 14, 4243–4251. [Google Scholar] [CrossRef] [PubMed]
- Pihl, L.; Nylander, O. Products of Cyclooxygenase-2 Depress Duodenal Function in Rats Subjected to Abdominal Surgery. Acta Physiol. 2006, 186, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Nylander, O.; Kvietys, P.; Granger, D.N. Effects of Hydrochloric Acid on Duodenal and Jejunal Mucosal Permeability in the Rat. Am. J. Physiol. Gastrointest. Liver Physiol. 1989, 257, G653–G660. [Google Scholar] [CrossRef] [PubMed]
Groups | MABP (mmHg) (0–120 min) | MABP (mmHg) (0–15 min) | MABP (mmHg) (105–120 min) |
---|---|---|---|
Control | 111 ± 5 | 113 ± 2 | 113 ± 7 |
SDS | 100 ± 4 | 104 ± 4 | 97 ± 5 |
SDS and melatonin | 104 ± 5 | 109 ± 8 | 99 ± 3 |
SDS and luzindole | 100 ± 5 | 100 ± 6 | 105 ± 6 |
SDS, melatonin and luzindole | 111 ± 8 | 112 ± 10 | 112 ± 9 |
SDS and mecamylamine | 79 ± 6 | 95 ± 3 | 77 ± 7 * |
SDS, mecamylamine and luzindole | 93 ± 4 | 91 ± 7 | 93 ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peters, K.; Dahlgren, D.; Lennernäs, H.; Sjöblom, M. Melatonin-Activated Receptor Signaling Pathways Mediate Protective Effects on Surfactant-Induced Increase in Jejunal Mucosal Permeability in Rats. Int. J. Mol. Sci. 2021, 22, 10762. https://doi.org/10.3390/ijms221910762
Peters K, Dahlgren D, Lennernäs H, Sjöblom M. Melatonin-Activated Receptor Signaling Pathways Mediate Protective Effects on Surfactant-Induced Increase in Jejunal Mucosal Permeability in Rats. International Journal of Molecular Sciences. 2021; 22(19):10762. https://doi.org/10.3390/ijms221910762
Chicago/Turabian StylePeters, Karsten, David Dahlgren, Hans Lennernäs, and Markus Sjöblom. 2021. "Melatonin-Activated Receptor Signaling Pathways Mediate Protective Effects on Surfactant-Induced Increase in Jejunal Mucosal Permeability in Rats" International Journal of Molecular Sciences 22, no. 19: 10762. https://doi.org/10.3390/ijms221910762
APA StylePeters, K., Dahlgren, D., Lennernäs, H., & Sjöblom, M. (2021). Melatonin-Activated Receptor Signaling Pathways Mediate Protective Effects on Surfactant-Induced Increase in Jejunal Mucosal Permeability in Rats. International Journal of Molecular Sciences, 22(19), 10762. https://doi.org/10.3390/ijms221910762