Next Article in Journal
Ixeris dentata Extract Increases Salivary Secretion through the Regulation of Endoplasmic Reticulum Stress in a Diabetes-Induced Xerostomia Rat Model
Previous Article in Journal
Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle

Targeted Metabolomic and Transcriptomic Analyses of “Red Russian” Kale (Brassicae napus var. pabularia) Following Methyl Jasmonate Treatment and Larval Infestation by the Cabbage Looper (Trichoplusia ni Hübner)

1
Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
2
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2018, 19(4), 1058; https://doi.org/10.3390/ijms19041058
Received: 24 February 2018 / Revised: 24 March 2018 / Accepted: 26 March 2018 / Published: 2 April 2018
(This article belongs to the Section Molecular Plant Sciences)
  |  
PDF [9660 KB, uploaded 3 May 2018]
  |  

Abstract

Methyl jasmonate (MeJA), synthesized in the jasmonic acid (JA) pathway, has been found to upregulate glucosinolate (GS) biosynthesis in plant species of the Brassicaceae family. Exogenous application of MeJA has shown to increase tissue GS concentrations and the formation of myrosinase-mediated GS hydrolysis products (GSHPs). In vitro and in vivo assays have demonstrated the potential health-promoting effects of certain GSHPs. MeJA is also known to elicit and induce genes associated with defense mechanisms to insect herbivory in Brassica species. To investigate the relationship between MeJA-induced GS biosynthesis and insect defense, three treatments were applied to “Red Russian” kale (Brassicae napus var. pabularia) seedlings: (1) a 250 µM MeJA leaf spray treatment; (2) leaf infestation with larvae of the cabbage looper (Trichoplusia ni (Hübner)); (3) control treatment (neither larval infestation nor MeJA application). Samples of leaf tissue from the three treatments were then assayed for changes in GS and GSHP concentrations, GS gene biosynthesis expression, and myrosinase activity. Major differences were observed between the three treatments in the levels of GS accumulation and GS gene expression. The insect-damaged samples showed significantly lower aliphatic GS accumulation, while both MeJA and T. ni infestation treatments induced greater accumulation of indolyl GS. The gene expression levels of CYP81F4, MYB34, and MYB122 were significantly upregulated in samples treated with MeJA and insects compared to the control group, which explained the increased indolyl GS concentration. The results suggest that the metabolic changes promoted by MeJA application and the insect herbivory response share common mechanisms of induction. This work provides potentially useful information for kale pest control and nutritional quality. View Full-Text
Keywords: glucosinolate; methyl jasmonate; insect herbivory; kale; Brassica crops glucosinolate; methyl jasmonate; insect herbivory; kale; Brassica crops
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Chiu, Y.-C.; Juvik, J.A.; Ku, K.-M. Targeted Metabolomic and Transcriptomic Analyses of “Red Russian” Kale (Brassicae napus var. pabularia) Following Methyl Jasmonate Treatment and Larval Infestation by the Cabbage Looper (Trichoplusia ni Hübner). Int. J. Mol. Sci. 2018, 19, 1058.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top