Surface-Engineered MoOx/CN Heterostructures Enable Long-Term SF6 Photodegradation via Suppressed Fluoridation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structure Characterization of Layered CNM Samples
2.2. Chemical Structural Analysis
2.3. Photocatalytic Performance Evaluation
2.4. Mechanistic Insights into Enhanced Photocatalysis
3. Materials and Methods
3.1. Materials
3.2. Preparation of g-C3N4
3.3. Preparation of CNMs
3.4. Photocatalytic SF6 Degradation Experiments
3.5. Density Functional Theory (DFT) Computations
3.6. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNM | carbon nitride material loaded with MoOx |
GWP | global warming potential |
SF6 | sulfur hexafluoride |
in situ IR | in situ infrared spectroscopy |
DFT | Density Functional Theory |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray diffraction |
TEM | Transmission electron microscope |
FTIR | Fourier transform infrared |
DRS | diffuse reflectance spectra |
SEM | scanning electron microscope |
IC | ion chromatography |
NMR | nuclear magnetic resonance spectroscopy |
GC | gas chromatography |
TCD | thermal conductivity detector |
SAED | selected area electron diffraction |
References
- Eliyan, T.; Wadie, F. Evaluation of the efficacy of transient overvoltages suppression measures in different wind farm topologies using SF6 circuit breaker. Sci. Rep. 2023, 13, 13655. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.K.W.; Sze, N.D.; Wang, W.C.; Shia, G.; Goldman, A.; Murcray, F.J.; Murcray, D.G.; Rinsland, C.P. Atmospheric Sulfur-Hexafluoride—Sources, Sinks and Greenhouse Warming. J. Geophys. Res.-Atmos. 1993, 98, 10499–10507. [Google Scholar]
- Hossain, A.A.; Wang, H.Z.; Catherall, D.S.; Leung, M.; Knoops, H.C.M.; Renzas, J.R.; Minnich, A.J. Isotropic plasma-thermal atomic layer etching of superconducting titanium nitride films using sequential exposures of molecular oxygen and SF6/H2 plasma. J. Vac. Sci. Technol. A 2023, 41, 2965. [Google Scholar] [CrossRef]
- Rombach, D.; Wagenknecht, H.A. Photoredox Catalytic α-Alkoxypentafluorosulfanylation of α-methyl- and α-phenylstyrene using SF6. Angew. Chem. Int. Ed. 2020, 59, 300–303. [Google Scholar]
- Xiao, S.; Shi, S.Y.; Li, Y.; Ye, F.C.; Li, Y.L.; Tian, S.S.; Tang, J.; Zhang, X.X. Review of decomposition characteristics of eco-friendly gas insulating medium for high-voltage gas-insulated equipment. J. Phys. D Appl. Phys. 2021, 54, 373002. [Google Scholar] [CrossRef]
- Liao, Q.B.; Ke, C.; Huang, X.; Wang, D.N.; Han, Q.W.; Zhang, Y.F.; Zhang, Y.Y.; Xi, K. A Versatile Method for Functionalization of Covalent Organic Frameworks via Suzuki-Miyaura Cross-Coupling. Angew. Chem. Int. Ed. 2021, 60, 1411–1416. [Google Scholar]
- Maiss, M.; Brenninkmeijer, C.A.M. Atmospheric SF6 Trends, sources, and prospects. Environ. Sci. Technol. 1998, 32, 3077–3086. [Google Scholar]
- Shi, S.Y.; Li, Y.; Cui, Z.L.; Yan, Y.X.; Zhang, X.X.; Tang, J.; Xiao, S. Recent advances in degradation of the most potent industrial greenhouse gas sulfur hexafluoride. Chem. Eng. J. 2023, 470, 144166. [Google Scholar]
- Case, J.R.; Nyman, F. Some Chemical Reactions of Sulphur Hexafluoride. Nature 1962, 193, 473. [Google Scholar]
- Holze, P.; Horn, B.; Limberg, C.; Matlachowski, C.; Mebs, S. The Activation of Sulfur Hexafluoride at Highly Reduced Low-Coordinate Nickel Dinitrogen Complexes. Angew. Chem. Int. Ed. 2014, 53, 2750–2753. [Google Scholar]
- Berg, C.; Braun, T.; Ahrens, M.; Wittwer, P.; Herrmann, R. Activation of SF6 at Platinum Complexes: Formation of SF6 Derivatives and Their Application in Deoxyfluorination Reactions. Angew. Chem. Int. Ed. 2017, 56, 4300–4304. [Google Scholar]
- Zhou, W.H.; Zhao, Y.; Dong, B.X.; Guo, H.R.; Si, Z.Q.; Ma, F.X.; Zhu, S.; Zai, J.T.; Qian, X.F. Efficient photocatalytic degradation of potent greenhouse gas SF6 at liquid-solid interface. Appl. Catal. B-Environ. Energy 2025, 363, 124773. [Google Scholar]
- Zhu, C.; Fang, Q.L.; Liu, R.L.; Dong, W.; Song, S.; Shen, Y. Insights into the Crucial Role of Electron and Spin Structures in Heteroatom-Doped Covalent Triazine Frameworks for Removing Organic Micropollutants. Environ. Sci. Technol. 2022, 56, 6699–6709. [Google Scholar]
- Yang, Z.P.; Shi, Y.B.; Li, H.; Mao, C.L.; Wang, X.B.; Liu, X.F.; Liu, X.; Zhang, L.Z. Oxygen and Chlorine Dual Vacancies Enable Photocatalytic O2 Dissociation into Monatomic Reactive Oxygen on BiOCl for Refractory Aromatic Pollutant Removal. Environ. Sci. Technol. 2022, 56, 3587–3595. [Google Scholar] [PubMed]
- Rasheed, H.M.; Aroosh, K.; Meng, D.P.; Ruan, X.W.; Akhter, M.; Cui, X.Q. A review on modified ZnO to address environmental challenges through photocatalysis: Photodegradation of organic pollutants. Mater. Today Energy 2025, 48, 101774. [Google Scholar]
- Jing, Y.N.; Yin, X.L.; Li, L.L. Modification strategies of TiO2-based nanocatalysts for CO2 reduction through photocatalysis: A mini review. Appl. Catal. A-Gen. 2025, 691, 120054. [Google Scholar]
- Kumar, E.V.; Soundarya, T.L.; Swamy, B.E.K.; Anitha; Nagaraju, G. Fabrication of CuS-MoO3 nanocomposite for high-performance photocatalysis and biosensing. J. Mol. Struct. 2025, 1324, 140823. [Google Scholar]
- Xiao, M.F.; Ren, X.L.; Ji, K.Y.; Chung, S.; Shi, X.Y.; Han, J.; Yao, Z.F.; Tao, X.D.; Zelewski, S.J.; Nikolka, M.; et al. Achieving ideal transistor characteristics in conjugated polymer semiconductors. Sci. Adv. 2023, 9, eadg8659. [Google Scholar]
- Li, J.G.; Zhang, G.Y.; Zyryanov, G.V.; Shabunina, O.V.; Guo, X.F.; Zhu, M.G.; Jin, Y.L.; Wang, Z. Nitric-Oxide-Enhanced Positively Charged Semiconductor Conjugated Polymer Composite Nanomaterials for Antibiofilm In Vivo. Adv. Funct. Mater. 2024, 35, 202415134. [Google Scholar]
- Zhou, Y.; Miao, C.Q.; Su, Z.H.; Gao, X.Y.; Wei, H.Y.; Liu, K.K.; Zhang, H.C. Varied π-Conjugated Extension Directions in B←N Coordinated Benzodipyrrolidone (BDP) Polymer Semiconductors: Effects on n-Type Organic Field-Effect Transistors (OFETs). Acs Mater. Lett. 2024, 6, 5093–5102. [Google Scholar]
- Li, X.H.; Wang, X.C.; Antonietti, M. Solvent-Free and Metal-Free Oxidation of Toluene Using O2 and g-C3N4 with Nanopores: Nanostructure Boosts the Catalytic Selectivity. Acs Catal. 2012, 2, 2082–2086. [Google Scholar] [CrossRef]
- Ming, H.B.; Bian, X.Q.; Cheng, J.J.; Yang, C.; Hou, Y.D.; Ding, K.N.; Zhang, J.S.; Anpo, M.; Wang, X.C. Carbon nitride with a tailored electronic structure toward peroxymonosulfate activation: A direct electron transfer mechanism for organic pollutant degradation. Appl. Catal. B-Environ. Energy 2024, 341, 123314. [Google Scholar] [CrossRef]
- Guo, H.S.; Zhao, W.F.; Chen, W.L.; Ge, Q.M.; Liu, M.; Cong, H.; Zhao, J.L. Thinned g-C3N4 nanosheets with microdopants of cucurbit[7]uril to improve photoelectrochemical water-splitting. J. Photochem. Photobiol. A 2025, 461, 116166. [Google Scholar] [CrossRef]
- Kocijan, M.; Curkovic, L.; Radosevic, T.; Podlogar, M. Enhanced Photocatalytic Activity of Hybrid rGO@TiO2/CN Nanocomposite for Organic Pollutant Degradation under Solar Light Irradiation. Catalysts 2021, 11, 1023. [Google Scholar] [CrossRef]
- Miller, A.P. Lange’s Handbook of Chemistry. J. Am. Soc. Nav. Eng. 1941, 53, 687–688. [Google Scholar] [CrossRef]
- Bao, F.X.; Liu, L.L.; Wang, X.L.; Xiao, B.Q.; Li, H.Y.; Yang, H.D.; Shen, K.; Mai, Y.H. Modification of the Se/MoO Rear Interface for Efficient Wide-Band-Gap Trigonal Selenium Solar Cells. Acs Appl. Mater. Inter. 2025, 17, 6222–6229. [Google Scholar] [CrossRef]
- Xi, Q.Y.; Liu, J.S.; Wu, Z.Y.; Bi, H.F.; Li, Z.Q.; Zhu, K.J.; Zhuang, J.J.; Chen, J.X.; Lu, S.L.; Huang, Y.F.; et al. In-situ fabrication of MoO3 nanobelts decorated with MoO2 nanoparticles and their enhanced photocatalytic performance. Appl. Surf. Sci. 2019, 480, 427–437. [Google Scholar] [CrossRef]
- Cai, W.; Liu, J.C.; Luo, Y.J.; Liao, Z.W.; Li, B.J.; Xiang, X.Y.; Fang, Y.X. Bifunctional CdS-MoO2 catalysts for selective oxidation of lactic acid coupled with photocatalytic H production. J. Colloid Interface Sci. 2024, 675, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Yang, L.J.; Huang, M.; Li, Q.; Zhao, L.L.; Sang, Y.H.; Zhang, X.L.; Zhao, Z.H.; Liu, H.; Zhou, W.J. Oxygen vacancy-regulated metallic semiconductor MoO2 nanobelt photoelectron and hot electron self-coupling for photocatalytic CO2 reduction in pure water. Appl. Catal. B-Environ. Energy 2022, 319, 121887. [Google Scholar] [CrossRef]
- Xiao, C.L.; Wang, H.P.; Zhang, L.; Sun, S.M.; Wang, W.Z. Enhanced Photocatalytic Nitrogen Fixation on MoO2/BiOCl Composite. Chemcatchem 2019, 11, 6467–6472. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.C.; Antonietti, M. Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angew. Chem. Int. Ed. 2012, 51, 68–89. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.J.; Zhou, W.J.; Hou, D.M.; Zhou, K.; Li, G.Q.; Tang, Z.H.; Li, L.G.; Chen, S.W. Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction. Nanoscale 2015, 7, 5203–5208. [Google Scholar] [CrossRef]
- Qin, T.R.; Wang, Q.L.; Yue, D.H.; Liu, H.; Zheng, Y.J.; Han, Y.H.; Gao, C.X. The effect of pressure and temperature on the structure and electrical transport properties of MoO2. J. Alloy Compd. 2020, 814, 152336. [Google Scholar] [CrossRef]
- Sen, S.K.; Barman, U.C.; Manir, M.S.; Mondal, P.; Dutta, S.; Paul, M.; Chowdhury, M.A.M.; Hakim, M.A. X-ray peak profile analysis of pure and Dy-doped α-MoO3 nanobelts using Debye-Scherrer, Williamson-Hall and Halder-Wagner methods. Adv. Nat. Sci.-Nanosci. 2020, 11, 025004. [Google Scholar] [CrossRef]
- Zhang, X.H.; Tang, J.J.; Zhang, Q.; Liu, Q.Y.; Li, Y.P.; Chen, L.G.; Wang, C.G.; Ma, L.L. Hydrodeoxygenation of lignin-derived phenolic compounds into aromatic hydrocarbons under low hydrogen pressure using molybdenum oxide as catalyst. Catal. Today 2019, 319, 41–47. [Google Scholar] [CrossRef]
- Hu, E.M.; Chen, Q.; Gao, Q.; Fan, X.F.; Luo, X.J.; Wei, Y.; Wu, G.; Deng, H.B.; Xu, S.C.; Wang, P.; et al. Cyano-Functionalized Graphitic Carbon Nitride with Adsorption and Photoreduction Isosite Achieving Efficient Uranium Extraction from Seawater. Adv. Funct. Mater. 2024, 34, 202312215. [Google Scholar] [CrossRef]
- Ou, H.H.; Tang, C.; Zhang, Y.F.; Asiri, A.M.; Titirici, M.M.; Wang, X.C. Se-modified polymeric carbon nitride nanosheets with improved photocatalytic activities. J. Catal. 2019, 375, 104–112. [Google Scholar] [CrossRef]
- Pan, Z.M.; Zhang, G.G.; Zhang, X.R.; Xing, W.D.; Zheng, D.D.; Wang, S.B.; Hou, Y.D.; Wang, X.C. Unveiling the Key Obstacle in Photocatalytic Overall Water Splitting Reaction on Poly (heptazine imide) Semiconductors. Small 2025, 21, e2407307. [Google Scholar] [CrossRef]
- Mai, L.Q.; Hu, B.; Chen, W.; Qi, Y.Y.; Lao, C.S.; Yang, R.S.; Dai, Y.; Wang, Z.L. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater. 2007, 19, 3712. [Google Scholar] [CrossRef]
- Luo, Z.; Miao, R.; Huan, T.D.; Mosa, I.M.; Poyraz, A.S.; Zhong, W.; Cloud, J.E.; Kriz, D.A.; Thanneeru, S.; He, J.K.; et al. Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions. Adv. Energy Mater. 2016, 6, 100038. [Google Scholar] [CrossRef]
- Ma, W.L.; Alonso-González, P.; Li, S.J.; Nikitin, A.Y.; Yuan, J.; Martín-Sánchez, J.; Taboada-Gutiérrez, J.; Amenabar, I.; Li, P.N.; Vélez, S.; et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 2018, 562, 557. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Sun, C.Y.; He, Q.; Liu, D.B.; Khalil, A.; Xiang, T.; Wu, Z.Y.; Wang, J.; Song, L. Ultrathin carbon layer coated MoO2 nanoparticles for high-performance near-infrared photothermal cancer therapy. Chem. Commun. 2015, 51, 10054–10057. [Google Scholar]
- Lai, K.; Yuan, K.; Ye, Q.; Chen, A.; Chen, D.; Chen, D.; Gu, C. Constructing the Mo2C@ MoOx heterostructure for improved SERS application. Biosensors 2022, 12, 50. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Chen, D.; Gu, C.; Jiang, T.; Zeng, S.; Wang, Y.Y.; Ni, Z.; Shen, X.; Zhou, J. Molybdenum oxide/tungsten oxide nano-heterojunction with improved surface-enhanced Raman scattering performance. ACS Appl. Mater. Interfaces 2021, 13, 33345–33353. [Google Scholar] [CrossRef]
- Yadav, A.A.; Kang, S.W.; Hunge, Y.M. Photocatalytic degradation of Rhodamine B using graphitic carbon nitride photocatalyst. J. Mater. Sci. Mater. Electron. 2021, 32, 15577–15585. [Google Scholar]
- Jiang, J.Z.; Lei, O.Y.; Zhu, L.H.; Zheng, A.M.; Zou, J.; Yi, X.F.; Tang, H.Q. Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: A study by Raman spectroscopy coupled with first-principles calculations. Carbon 2014, 80, 213–221. [Google Scholar]
- Yuan, Y.W.; Zhang, L.L.; Xing, J.; Utama, M.I.B.; Lu, X.; Du, K.Z.; Li, Y.M.; Hu, X.; Wang, S.J.; Genç, A.; et al. High-yield synthesis and optical properties of g-C3N4. Nanoscale 2015, 7, 12343–12350. [Google Scholar]
- Choi, J.G.; Thompson, L.T. XPS study of as-prepared and reduced molybdenum oxides. Appl. Surf. Sci. 1996, 93, 143–149. [Google Scholar] [CrossRef]
- Kou, M.P.; Liu, W.; Wang, Y.Y.; Huang, J.D.; Chen, Y.L.; Zhou, Y.; Chen, Y.; Ma, M.Z.; Lei, K.; Xie, H.Q.; et al. Photocatalytic CO2 conversion over single-atom MoN2 sites of covalent organic framework. Appl. Catal. B-Environ. 2021, 291, 120146. [Google Scholar]
- Wu, A.P.; Gu, Y.; Xie, Y.; Yan, H.J.; Jiao, Y.Q.; Wang, D.X.; Tian, C.G. Interfacial engineering of MoS2/MoN heterostructures as efficient electrocatalyst for pH-universal hydrogen evolution reaction. J. Alloy Compd. 2021, 867, 159066. [Google Scholar]
- Sun, Y.; Zhou, Y.L.; Zhu, Y.P.; Shen, Y.H.; Xie, A.J. In-Situ Synthesis of Petal-Like MoO2@MoN/NF Heterojunction As Both an Advanced Binder-Free Anode and an Electrocatalyst for Lithium Ion Batteries and Water Splitting. ACS Sustain. Chem. Eng. 2019, 7, 9153–9163. [Google Scholar]
- Bian, H.; Ji, Y.J.; Yan, J.Q.; Li, P.; Li, L.; Li, Y.Y.; Liu, S.Z. In Situ Synthesis of Few-Layered g-C3N4 with Vertically Aligned MoS2 Loading for Boosting Solar-to-Hydrogen Generation. Small 2018, 14, 201703003. [Google Scholar]
- Fang, Z.X.; Zhou, M.; Lin, Z.; Yang, C.; Hou, Y.D.; Yu, J.C.; Zhang, J.S.; Wang, X.C. Amide bonded polymeric carbon nitride for photocatalytic O2 activation and NO oxidation. Appl. Catal. B-Environ. Energy 2024, 353, 124022. [Google Scholar]
- Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron. Spectrosc. 2014, 195, 145–154. [Google Scholar] [CrossRef]
- Kim, D.; Kagwade, S.V.; Clayton, C.R. Identification of Mo(V) commonly observed in passive films formed on stainless steels. Surf. Interface Anal. 1998, 26, 155–159. [Google Scholar] [CrossRef]
- Yu, X.B.; Yan, F.; Zhao, Y.; Geng, B.; Ma, X.Z.; Wu, L.L.; Zhang, X.T.; Chen, Y.J. A heterostructure of interlayer-expanded 1T phase MoS2 and spherical MoO2 for efficient and stable hydrogen evolution. Appl. Catal. B-Environ. Energy 2024, 343, 123534. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.; Xiao, Z.; Zhang, X.; Kwak, S.K.; Tian, D.; Lee, J.M. Coupled Lattice-Expanded Ni and MoO2 Array for Efficient Alkaline Hydrogen Evolution. Adv. Sustain. Syst. 2024, 2400587. [Google Scholar] [CrossRef]
- Berezin, M.Y.; Achilefu, S. Fluorescence Lifetime Measurements and Biological Imaging. Chem. Rev. 2010, 110, 2641–2684. [Google Scholar]
- Fang, Y.X.; Li, X.C.; Wang, Y.; Giordano, C.; Wang, X.C. Gradient sulfur doping along polymeric carbon nitride films as visible light photoanodes for the enhanced water oxidation. Appl. Catal. B-Environ. 2020, 268, 118398. [Google Scholar]
- Huang, L.; Gu, D.H.; Yang, L.Y.; Xia, L.Y.; Zhang, R.X.; Hou, H.Q. Photoreductive degradation of sulfur hexafluoride in the presence of styrene. J. Environ. Sci. 2008, 20, 183–188. [Google Scholar] [CrossRef]
- Song, X.X.; Liu, X.G.; Ye, Z.L.; He, J.C.; Zhang, R.X.; Hou, H.Q. Photodegradation of SF6 on polyisoprene surface: Implication on elimination of toxic byproducts. J. Hazard. Mater. 2009, 168, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Dong, W.B.; Zhang, R.X.; Hou, H.Q. Investigation of a new approach to decompose two potent greenhouse gases: Photoreduction of SF6 and SF5CF3 in the presence of acetone. Chemosphere 2007, 66, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Shen, Y.; Dong, W.B.; Zhang, R.X.; Zhang, J.L.; Hou, H.Q. A novel method to decompose two potent greenhouse gases: Photoreduction of SF6 and SF5CF3 in the presence of propene. J. Hazard. Mater. 2008, 151, 323–330. [Google Scholar] [CrossRef] [PubMed]
Samples | nC/nN |
---|---|
HCNM3 | 0.97 |
NCNM3 | 1.1 |
ACNM3 | 3.6 |
g-C3N4 | 0.97 |
Atmosphere | 5% H2/Ar | N2 | Air | |
---|---|---|---|---|
MMo (g) | ||||
0.26 g | HCNM1 | NCNM1 | ACNM1 | |
0.77 g | HCNM3 | NCNM3 | ACNM3 | |
1.29 g | HCNM5 | NCNM5 | ACNM5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Dong, B.; Si, Z.; Xu, Y.; He, X.; Zhan, Z.; Zhang, Y.; Song, C.; Lv, Z.; Zai, J.; et al. Surface-Engineered MoOx/CN Heterostructures Enable Long-Term SF6 Photodegradation via Suppressed Fluoridation. Molecules 2025, 30, 1481. https://doi.org/10.3390/molecules30071481
Zhou W, Dong B, Si Z, Xu Y, He X, Zhan Z, Zhang Y, Song C, Lv Z, Zai J, et al. Surface-Engineered MoOx/CN Heterostructures Enable Long-Term SF6 Photodegradation via Suppressed Fluoridation. Molecules. 2025; 30(7):1481. https://doi.org/10.3390/molecules30071481
Chicago/Turabian StyleZhou, Wenhui, Boxu Dong, Ziqi Si, Yushuai Xu, Xinhua He, Ziyi Zhan, Yaru Zhang, Chaoyu Song, Zhuoqian Lv, Jiantao Zai, and et al. 2025. "Surface-Engineered MoOx/CN Heterostructures Enable Long-Term SF6 Photodegradation via Suppressed Fluoridation" Molecules 30, no. 7: 1481. https://doi.org/10.3390/molecules30071481
APA StyleZhou, W., Dong, B., Si, Z., Xu, Y., He, X., Zhan, Z., Zhang, Y., Song, C., Lv, Z., Zai, J., & Qian, X. (2025). Surface-Engineered MoOx/CN Heterostructures Enable Long-Term SF6 Photodegradation via Suppressed Fluoridation. Molecules, 30(7), 1481. https://doi.org/10.3390/molecules30071481