Comparison of Exendin-4 and Its Single Amino Acid Substitutions as Parent Peptides for GLP-1 Receptor Imaging Probes
Abstract
:1. Introduction
2. Results
2.1. Peptide Synthesis and Characterization
2.2. Glucose-Lowering Effects in Mice
2.3. Biodistribution
3. Discussion
4. Materials and Methods
4.1. Peptide Synthesis and Characterization
4.2. Surface Plasmon Resonance (SPR) Analysis
4.3. Glucose-Lowering Effects in Mice
4.4. Radiolabeling
4.5. Biodistribution Study
4.6. Ex Vivo Autoradiography and Immunohistochemistry
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andersen, A.; Lund, A.; Knop, F.K.; Vilsbøll, T. Glucagon-like peptide 1 in health and disease. Nat. Rev. Endocrinol. 2018, 14, 390–403. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.-D.; Zhao, W.-C.; Dong, J.-D.; Sima, H. Expression of GLP-1R protein and its clinical role in intrahepatic cholangiocarcinoma tissues. Mol. Biol. Rep. 2014, 41, 4313–4320. [Google Scholar] [CrossRef] [PubMed]
- Buteau, J. GLP-1 receptor signaling: Effects on pancreatic beta-cell proliferation and survival. Diabetes Metab. 2008, 34 (Suppl. S2), S73–S77. [Google Scholar] [CrossRef] [PubMed]
- Mosavat, M.; Omar, S.Z.; Jamalpour, S.; Tan, P.C. Serum Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-Like Peptide-1 (GLP-1) in Association with the Risk of Gestational Diabetes: A Prospective Case-Control Study. J. Diabetes Res. 2020, 2020, 9072492. [Google Scholar] [CrossRef]
- Thorens, B.; Porret, A.; Buhler, L.; Deng, S.P.; Morel, P.; Widmann, C. Cloning and Functional Expression of the Human Islet GLP-1 Receptor: Demonstration That Exendin-4 Is an Agonist and Exendin-(9-39) an Antagonist of the Receptor. Diabetes 1993, 42, 1678–1682. [Google Scholar] [CrossRef]
- Aroda, V.R. A review of GLP-1 receptor agonists: Evolution and advancement, through the lens of randomised controlled trials. Diabetes Obes. Metab. 2018, 20, 22–33. [Google Scholar] [CrossRef]
- Wu, Z.; Todorov, I.; Li, L.; Bading, J.R.; Li, Z.; Nair, I.; Ishiyama, K.; Colcher, D.; Conti, P.E.; Fraser, S.E.; et al. In Vivo Imaging of Transplanted Islets with64Cu-DO3A-VS-Cys40-Exendin-4 by Targeting GLP-1 Receptor. Bioconjug. Chem. 2011, 22, 1587–1594. [Google Scholar] [CrossRef]
- Li, J.; Rawson, J.; Chea, J.; Tang, W.; Miao, L.; Sui, F.; Li, L.; Poku, E.; Shively, J.E.; Kandeel, F. Evaluation of [68Ga]DO3A-VS-Cys40-Exendin-4 as a PET Probe for Imaging Human Transplanted Islets in the Liver. Sci. Rep. 2019, 9, 5705. [Google Scholar] [CrossRef]
- Wild, D.; Béhé, M.; Wicki, A.; Storch, D.; Waser, B.; Gotthardt, M.; Keil, B.; Christofori, G.; Reubi, J.C.; Mäcke, H.R. [Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting. J. Nucl. Med. 2006, 47, 2025–2033. [Google Scholar]
- Reubi, J.C.; Waser, B. Concomitant expression of several peptide receptors in neuroendocrine tumours: Molecular basis for in vivo multireceptor tumour targeting. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 781–793. [Google Scholar] [CrossRef]
- Femminella, G.D.; Frangou, E.; Love, S.B.; Busza, G.; Holmes, C.; Ritchie, C.; Lawrence, R.; McFarlane, B.; Tadros, G.; Ridha, B.H.; et al. Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer’s disease: Study protocol for a randomised controlled trial (ELAD study). Trials 2019, 20, 191. [Google Scholar] [CrossRef] [PubMed]
- Athauda, D.; Foltynie, T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: Mechanisms of action. Drug Discov. Today 2016, 21, 802–818. [Google Scholar] [CrossRef] [PubMed]
- Selvaraju, R.K.; Velikyan, I.; Asplund, V.; Johansson, L.; Wu, Z.; Todorov, I.; Shively, J.; Kandeel, F.; Eriksson, B.; Korsgren, O.; et al. Pre-clinical evaluation of [68Ga]Ga-DO3A-VS-Cys40-Exendin-4 for imaging of insulinoma. Nucl. Med. Biol. 2014, 41, 471–476. [Google Scholar] [CrossRef]
- Luo, Y.; Pan, Q.; Shao, Y.; Yu, M.; Wu, W.; Xue, H.; Kiesewetter, D.O.; Zhu, Z.; Li, F.; Zhao, Y.; et al. Glucagon-like Peptide-1 Receptor PET/CT with 68Ga-NOTA-exendin-4 for Detecting Localized Insulinoma: A Prospective Cohort Study. J. Nucl. Med. 2016, 57, 715–720. [Google Scholar] [CrossRef]
- Antwi, K.; Fani, M.; Nicolas, G.; Rottenburger, C.; Heye, T.; Reubi, J.C.; Gloor, B.; Christ, E.; Wild, D. Localization of Hidden Insulinomas with 68Ga-DOTA-Exendin-4 PET/CT: A Pilot Study. J. Nucl. Med. 2015, 56, 1075–1078. [Google Scholar] [CrossRef]
- Bloch, O.; Broide, E.; Ben-Yehudah, G.; Cantrell, D.; Shirin, H.; Rapoport, M.J. Nutrient induced type 2 and chemical induced type 1 experimental diabetes differently modulate gastric GLP-1 receptor expression. J. Diabetes Res. 2015, 2015, 561353. [Google Scholar] [CrossRef]
- Willekens, S.M.; Joosten, L.; Boerman, O.C.; Balhuizen, A.; Eizirik, D.L.; Gotthardt, M.; Brom, M. Strain Differences Determine the Suitability of Animal Models for Noninvasive In Vivo Beta Cell Mass Determination with Radiolabeled Exendin. Mol. Imaging Biol. 2016, 18, 705–714. [Google Scholar] [CrossRef]
- Murakami, T.; Fujimoto, H.; Inagaki, N. Non-invasive Beta-cell Imaging: Visualization, Quantification, and Beyond. Front. Endocrinol. 2021, 12, 714348. [Google Scholar] [CrossRef]
- Luurtsema, G.; Pichler, V.; Bongarzone, S.; Seimbille, Y.; Elsinga, P.; Gee, A.; Vercouillie, J. EANM guideline for harmonisation on molar activity or specific activity of radiopharmaceuticals: Impact on safety and imaging quality. EJNMMI Radiopharm. Chem. 2021, 6, 34. [Google Scholar] [CrossRef]
- Christ, E.; Antwi, K.; Fani, M.; Wild, D. Innovative imaging of insulinoma: The end of sampling? A review. Endocr. Relat. Cancer 2020, 27, R79–R92. [Google Scholar] [CrossRef]
- Antwi, K.; Fani, M.; Heye, T.; Nicolas, G.; Rottenburger, C.; Kaul, F.; Merkle, E.; Zech, C.J.; Boll, D.; Vogt, D.R.; et al. Comparison of glucagon-like peptide-1 receptor (GLP-1R) PET/CT, SPECT/CT and 3T MRI for the localisation of occult insulinomas: Evaluation of diagnostic accuracy in a prospective crossover imaging study. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2318–2327. [Google Scholar] [CrossRef] [PubMed]
- Christ, E.; Wild, D.; Ederer, S.; Behe, M.; Nicolas, G.; Caplin, M.E.; Brandle, M.; Clerici, T.; Fischli, S.; Stettler, C.; et al. Glucagon-like peptide-1 receptor imaging for the localisation of insulinomas: A prospective multicentre imaging study. Lancet Diabetes Endocrinol. 2013, 1, 115–122. [Google Scholar] [CrossRef]
- Jones, B.; McGlone, E.R.; Fang, Z.; Pickford, P.; Correa, I.R., Jr.; Oishi, A.; Jockers, R.; Inoue, A.; Kumar, S.; Gorlitz, F.; et al. Genetic and biased agonist-mediated reductions in beta-arrestin recruitment prolong cAMP signaling at glucagon family receptors. J. Biol. Chem. 2021, 296, 100133. [Google Scholar] [CrossRef] [PubMed]
- Fremaux, J.; Venin, C.; Mauran, L.; Zimmer, R.; Koensgen, F.; Rognan, D.; Bitsi, S.; Lucey, M.A.; Jones, B.; Tomas, A.; et al. Ureidopeptide GLP-1 analogues with prolonged activity in vivo via signal bias and altered receptor trafficking. Chem. Sci. 2019, 10, 9872–9879. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; Buenaventura, T.; Kanda, N.; Chabosseau, P.; Owen, B.M.; Scott, R.; Goldin, R.; Angkathunyakul, N.; Corrêa, I.R.; Bosco, D.; et al. Targeting GLP-1 receptor trafficking to improve agonist efficacy. Nat. Commun. 2018, 9, 1602. [Google Scholar] [CrossRef]
- Chen, K.; Chen, X. Design and development of molecular imaging probes. Curr. Top. Med. Chem. 2010, 10, 1227–1236. [Google Scholar] [CrossRef]
- Rinne, S.S.; Orlova, A.; Tolmachev, V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Int. J. Mol. Sci. 2021, 22, 3663. [Google Scholar] [CrossRef]
- Kelly, J.M.; Amor-Coarasa, A.; Ponnala, S.; Nikolopoulou, A.; Williams, C., Jr.; DiMagno, S.G.; Babich, J.W. Albumin-Binding PSMA Ligands: Implications for Expanding the Therapeutic Window. J. Nucl. Med. 2019, 60, 656–663. [Google Scholar] [CrossRef]
- Kondo, N.; Temma, T.; Aita, K.; Shimochi, S.; Koshino, K.; Senda, M.; Iida, H. Development of matrix metalloproteinase-targeted probes for lung inflammation detection with positron emission tomography. Sci. Rep. 2018, 8, 1347. [Google Scholar] [CrossRef]
- Vorobyeva, A.; Schulga, A.; Rinne, S.S.; Gunther, T.; Orlova, A.; Deyev, S.; Tolmachev, V. Indirect Radioiodination of DARPin G3 Using N-succinimidyl-Para-Iodobenzoate Improves the Contrast of HER2 Molecular Imaging. Int. J. Mol. Sci. 2019, 20, 3047. [Google Scholar] [CrossRef]
- Lundsten, S.; Berglund, H.; Jha, P.; Krona, C.; Hariri, M.; Nelander, S.; Lane, D.P.; Nestor, M. p53-Mediated Radiosensitization of (177)Lu-DOTATATE in Neuroblastoma Tumor Spheroids. Biomolecules 2021, 11, 1695. [Google Scholar] [CrossRef] [PubMed]
- Kotzerke, J.; Buesser, D.; Naumann, A.; Runge, R.; Huebinger, L.; Kliewer, A.; Freudenberg, R.; Brogsitter, C. Epigenetic-Like Stimulation of Receptor Expression in SSTR2 Transfected HEK293 Cells as a New Therapeutic Strategy. Cancers 2022, 14, 2513. [Google Scholar] [CrossRef] [PubMed]
- Khawli, L.A.; van den Abbeele, A.D.; Kassis, A.I. N-(m-[125I]iodophenyl)maleimide: An agent for high yield radiolabeling of antibodies. Int. J. Rad. Appl. Instrum. B 1992, 19, 289–295. [Google Scholar] [CrossRef]
- Korner, M.; Stockli, M.; Waser, B.; Reubi, J.C. GLP-1 receptor expression in human tumors and human normal tissues: Potential for in vivo targeting. J. Nucl. Med. 2007, 48, 736–743. [Google Scholar] [CrossRef]
- Pyke, C.; Heller, R.S.; Kirk, R.K.; Ørskov, C.; Reedtz-Runge, S.; Kaastrup, P.; Hvelplund, A.; Bardram, L.; Calatayud, D.; Knudsen, L.B. GLP-1 Receptor Localization in Monkey and Human Tissue: Novel Distribution Revealed With Extensively Validated Monoclonal Antibody. Endocrinology 2014, 155, 1280–1290. [Google Scholar] [CrossRef]
- Tornehave, D.; Kristensen, P.; Rømer, J.; Knudsen, L.B.; Heller, R.S. Expression of the GLP-1 Receptor in Mouse, Rat, and Human Pancreas. J. Histochem. Cytochem. 2008, 56, 841–851. [Google Scholar] [CrossRef]
- Graham, G.V.; Conlon, J.M.; Abdel-Wahab, Y.H.; Flatt, P.R. Glucagon-related peptides from phylogenetically ancient fish reveal new approaches to the development of dual GCGR and GLP1R agonists for type 2 diabetes therapy. Peptides 2018, 110, 19–29. [Google Scholar] [CrossRef]
- Bruin, J.E.; Woynillowicz, A.K.; Hettinga, B.P.; Tarnopolsky, M.A.; Morrison, K.M.; Gerstein, H.C.; Holloway, A.C. Maternal antioxidants prevent beta-cell apoptosis and promote formation of dual hormone-expressing endocrine cells in male offspring following fetal and neonatal nicotine exposure. J. Diabetes 2012, 4, 297–306. [Google Scholar] [CrossRef]
- Jun, L.S.; Showalter, A.D.; Ali, N.; Dai, F.; Ma, W.; Coskun, T.; Ficorilli, J.V.; Wheeler, M.B.; Michael, M.D.; Sloop, K.W. A novel humanized GLP-1 receptor model enables both affinity purification and Cre-LoxP deletion of the receptor. PLoS ONE 2014, 9, e93746. [Google Scholar] [CrossRef]
- Petrov, S.A.; Yusubov, M.S.; Beloglazkina, E.K.; Nenajdenko, V.G. Synthesis of Radioiodinated Compounds. Classical Approaches and Achievements of Recent Years. Int. J. Mol. Sci. 2022, 23, 13789. [Google Scholar] [CrossRef]
- Mikkola, K.; Yim, C.B.; Fagerholm, V.; Ishizu, T.; Elomaa, V.V.; Rajander, J.; Jurttila, J.; Saanijoki, T.; Tolvanen, T.; Tirri, M.; et al. 64Cu- and 68Ga-labelled [Nle(14),Lys(40)(Ahx-NODAGA)NH2]-exendin-4 for pancreatic beta cell imaging in rats. Mol. Imaging Biol. 2014, 16, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Boss, M.; Eriksson, O.; Mikkola, K.; Eek, A.; Brom, M.; Buitinga, M.; Brouwers, A.H.; Velikyan, I.; Waser, B.; Kauhanen, S.; et al. Improved Localization of Insulinomas Using (68)Ga-NODAGA-Exendin-4 PET/CT. J. Nucl. Med. 2024, 65, 1959–1964. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Kiesewetter, D.O.; Guo, J.; Sun, Z.; Zhang, X.; Zhu, L.; Niu, G.; Ma, Y.; Lang, L.; Chen, X. Development of a new thiol site-specific prosthetic group and its conjugation with [Cys(40)]-exendin-4 for in vivo targeting of insulinomas. Bioconjug. Chem. 2013, 24, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N.; Oishi, A.; Hirata, M.; Temma, T. Indirectly radioiodinated exendin-4 as an analytical tool for in vivo detection of glucagon-like peptide-1 receptor in a disease setting. Ann. Nucl. Med. 2021, 35, 83–91. [Google Scholar] [CrossRef]
- Yue, X.; Yan, X.; Wu, C.; Niu, G.; Ma, Y.; Jacobson, O.; Shen, B.; Kiesewetter, D.O.; Chen, X. One-pot two-step radiosynthesis of a new (18)F-labeled thiol reactive prosthetic group and its conjugate for insulinoma imaging. Mol. Pharm. 2014, 11, 3875–3884. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, Z.; Zhang, L.; Wu, W.; Xu, Y.; Pan, D.; Wang, F.; Yang, M. [(68)Ga]Ga-NOTA-MAL-Cys(39)-exendin-4, a potential GLP-1R targeted PET tracer for the detection of insulinoma. Nucl. Med. Biol. 2019, 74–75, 19–24. [Google Scholar] [CrossRef]
Time After Administration | |||||
---|---|---|---|---|---|
5 min | 10 min | 30 min | 60 min | 120 min | |
Blood | 10.0 ± 1.0 | 7.4 ± 0.6 | 3.9 ± 0.1 | 2.3 ± 0.3 | 1.2 ± 0.1 |
Heart | 4.0 ± 0.4 | 3.6 ± 0.3 | 1.9 ± 0.2 | 1.3 ± 0.2 | 0.8 ± 0.1 |
Lung | 29.6 ± 9.8 | 36.2 ± 10.2 | 37.8 ± 10.5 | 32.6 ± 4.4 | 27.9 ± 3.0 |
Liver | 3.5 ± 0.3 | 4.5 ± 0.6 | 2.8 ± 0.7 | 1.7 ± 0.2 | 0.9 ± 0.2 |
Kidneys | 39.2 ± 13.5 | 43.7 ± 6.1 | 19.7 ± 1.8 | 17.4 ± 4.6 | 7.0 ± 2.2 |
Stomach ¶ | 1.3 ± 0.2 | 1.5 ± 0.2 | 1.4 ± 0.4 | 1.0 ± 0.2 | 0.9 ± 0.2 |
Small intestine | 3.0 ± 0.4 | 2.9 ± 0.4 | 3.0 ± 0.4 | 3.6 ± 0.5 | 3.1 ± 0.3 |
Large intestine | 1.2 ± 0.2 | 1.2 ± 0.1 | 1.0 ± 0.3 | 0.7 ± 0.1 | 0.6 ± 0.0 |
Pancreas | 11.2 ± 2.0 | 11.4 ± 2.1 | 14.9 ± 2.8 | 13.5 ± 2.0 | 9.9 ± 2.0 |
Spleen | 3.2 ± 0.4 | 2.4 ± 0.1 | 1.3 ± 0.3 | 0.8 ± 0.4 | 0.6 ± 0.1 |
Muscle | 1.7 ± 0.1 | 1.6 ± 0.1 | 0.9 ± 0.1 | 0.4 ± 0.1 | 0.2 ± 0.0 |
Bone | 2.3 ± 0.6 | 2.0 ± 0.5 | 0.9 ± 0.4 | 0.7 ± 0.3 | 0.7 ± 0.3 |
Brain | 0.3 ± 0.0 | 0.3 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 |
Thyroid ¶ | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Pancreas/Blood | 1.1 ± 0.2 | 1.6 ± 0.4 | 3.9 ± 0.7 | 5.9 ± 1.6 | 8.2 ± 1.2 |
Pancreas/Muscle | 6.6 ± 1.6 | 7.1 ± 1.7 | 15.9 ± 3.8 | 32.0 ± 12.2 | 45.2 ± 11.0 |
Time After Administration | |||||
---|---|---|---|---|---|
5 min | 10 min | 30 min | 60 min | 120 min | |
Blood | 7.9 ± 1.1 | 6.0 ± 0.8 | 2.9 ± 0.4 | 2.3 ± 0.1 | 1.2 ± 0.2 |
Heart | 3.6 ± 0.4 | 2.7 ± 0.4 | 1.5 ± 0.2 | 1.3 ± 0.2 | 0.8 ± 0.2 |
Lung | 30.2 ± 2.3 | 29.7 ± 9.0 | 32.3 ± 10.0 | 34 ± 8.1 | 23 ± 10.0 |
Liver | 4.1 ± 0.5 | 4.4 ± 0.5 | 2.7 ± 0.5 | 2.4 ± 0.5 | 1.3 ± 0.3 |
Kidneys | 33.3 ± 4.3 | 39.7 ± 4.5 | 16 ± 5.3 | 10.8 ± 2.2 | 4.7 ± 0.5 |
Stomach ¶ | 1.1 ± 0.2 | 1.1 ± 0.3 | 1.0 ± 0.3 | 0.9 ± 0.2 | 0.5 ± 0.1 |
Small intestine | 2.1 ± 0.4 | 2.2 ± 0.2 | 2.9 ± 0.6 | 3.1 ± 0.5 | 3.1 ± 0.4 |
Large intestine | 0.9 ± 0.1 | 0.9 ± 0.0 | 0.7 ± 0.2 | 0.7 ± 0.1 | 0.9 ± 0.2 |
Pancreas | 10.8 ± 1.8 | 9.2 ± 0.5 | 10.2 ± 2.1 | 11.3 ± 2.3 | 6.8 ± 1.5 |
Spleen | 2.2 ± 0.4 | 1.4 ± 0.3 | 0.9 ± 0.2 | 0.7 ± 0.1 | 1.3 ± 1.3 |
Muscle | 1.5 ± 0.2 | 1.2 ± 0.1 | 0.6 ± 0.1 | 0.5 ± 0.1 | 0.3 ± 0.1 |
Bone | 2.5 ± 0.2 | 1.9 ± 0.7 | 1.0 ± 0.3 | 1.2 ± 1.2 | 1.3 ± 0.8 |
Brain | 0.4 ± 0.0 | 0.3 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 |
Thyroid ¶ | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Pancreas/Blood | 1.4 ± 0.1 | 1.5 ± 0.2 | 3.6 ± 0.9 | 4.8 ± 1.0 | 5.6 ± 0.6 |
Pancreas/Muscle | 7.2 ± 0.7 | 7.6 ± 0.9 | 16.9 ± 2.2 | 25.0 ± 5.3 | 22.0 ± 6.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondo, N.; Yonezawa, M.; Hirano, F.; Temma, T. Comparison of Exendin-4 and Its Single Amino Acid Substitutions as Parent Peptides for GLP-1 Receptor Imaging Probes. Molecules 2025, 30, 1011. https://doi.org/10.3390/molecules30051011
Kondo N, Yonezawa M, Hirano F, Temma T. Comparison of Exendin-4 and Its Single Amino Acid Substitutions as Parent Peptides for GLP-1 Receptor Imaging Probes. Molecules. 2025; 30(5):1011. https://doi.org/10.3390/molecules30051011
Chicago/Turabian StyleKondo, Naoya, Maiko Yonezawa, Fuko Hirano, and Takashi Temma. 2025. "Comparison of Exendin-4 and Its Single Amino Acid Substitutions as Parent Peptides for GLP-1 Receptor Imaging Probes" Molecules 30, no. 5: 1011. https://doi.org/10.3390/molecules30051011
APA StyleKondo, N., Yonezawa, M., Hirano, F., & Temma, T. (2025). Comparison of Exendin-4 and Its Single Amino Acid Substitutions as Parent Peptides for GLP-1 Receptor Imaging Probes. Molecules, 30(5), 1011. https://doi.org/10.3390/molecules30051011