Catalysis in Energy and the Environment: Opportunities and Challenges
Funding
Conflicts of Interest
References
- Duan, W.; Han, S.X.; Fang, Z.H.; Xiao, Z.H.; Lin, S.W. In Situ Filling of the Oxygen Vacancies with Dual Heteroatoms in Co3O4 for Efficient Overall Water Splitting. Molecules 2023, 28, 4134. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.L.; Zhou, X.; Fu, C.; Nie, T.T.; Meng, Y. Electronic Properties and CO2-Selective Adsorption of (NiB)n (n = 1∼10) Clusters: A Density Functional Theory Study. Molecules 2023, 28, 5386. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.Z.; Yuan, Y.T.; Huang, C.; Wu, Y.L.; Xiao, Z.H.; Zhan, G.H. Ru and Se Co-Doped Cobalt Hydroxide Electrocatalyst for Efficient Hydrogen Evolution Reactions. Molecules 2023, 28, 5736. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Cai, J.Y.; Zhou, J.; Chen, Q.Y.; Zhong, Q.J.; Liu, J.H.; Sun, Z.J.; Qu, D.Z.; Li, Y.D. Facile Electrochemical Synthesis of Bifunctional Needle-like Co-P Nanoarray for Efficient Overall Water Splitting. Molecules 2023, 28, 6101. [Google Scholar] [CrossRef] [PubMed]
- Gawas, P.P.; Pandurangan, P.; Rabiei, M.; Palevicius, A.; Vilkauskas, A.; Janusas, G.; Hosseinnezhad, M.; Ebrahimi-Kahrizsangi, R.; Nasiri, S.; Nunzi, J.M.; et al. Significance of Zn Complex Concentration on Microstructure Evolution and Corrosion Behavior of Al/WS2. Molecules 2023, 28, 7290. [Google Scholar] [CrossRef] [PubMed]
- Li, C.W.; Zhao, X.; Gao, M.; Kong, F.G.; Chen, H.L. Effectively Controlled Structures of Si-C Composites from Rice Husk for Oxygen Evolution Catalyst. Molecules 2023, 28, 6117. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Ma, X.H.; Fan, H.X.; Fan, Y.Y.; Li, Y.J.; Zhou, H.L.; Li, W.J. Fabrication of Noble-Metal-Free Mo2C/CdIn2S4 Heterojunction Composites with Elevated Carrier Separation for Photocatalytic Hydrogen Production. Molecules 2023, 28, 2508. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.J.; Li, Z.; Chen, J.L.; Yang, Y.Y.; Su, C.R.; Lv, Y.M.; Lu, Z.H.; He, X.; Wang, Y.Q. Synergistic Effect of Co3(HPO4)2(OH)2 Cocatalyst and Al2O3 Passivation Layer on BiVO4 Photoanode for Enhanced Photoelectrochemical Water Oxidation. Molecules 2024, 29, 683. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.H.; Feng, L.; Wang, L.L.; Zheng, J.; Ren, F.Y.; Liu, S.Y.; Ning, Z.L.; Zhou, T.; Wu, X.C.; Lai, X.; et al. Novel Mn4+-Activated K2Nb1−xMoxF7 (0 ≤ x ≤ 0.15) Solid Solution Red Phosphors with Superior Moisture Resistance and Good Thermal Stability. Molecules 2023, 28, 4566. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, Y.; Li, Y.; Ding, Z. Research Progress and Application Prospects of Solid-State Hydrogen Storage Technology. Molecules 2024, 29, 1767. [Google Scholar] [CrossRef]
- Yu, Z.Q.; Xu, J.M.; Liu, B.S.; Sun, Z.J.; Huang, Q.N.; Ou, M.L.; Wang, Q.C.; Jia, J.H.; Kang, W.B.; Xiao, Q.Q.; et al. A Facile Hydrothermal Synthesis and Resistive Switching Behavior of α-Fe2O3 Nanowire Arrays. Molecules 2023, 28, 3835. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.Q.; Jia, J.H.; Qu, X.R.; Wang, Q.C.; Kang, W.B.; Liu, B.S.; Xiao, Q.Q.; Gao, T.H.; Xie, Q. Tunable Resistive Switching Behaviors and Mechanism of the W/ZnO/ITO Memory Cell. Molecules 2023, 28, 5313. [Google Scholar] [CrossRef]
- Yang, J.; Ren, C.; Liu, M.; Li, W.; Gao, D.; Li, H.; Ning, Z. A Novel Dye-Modified Metal–Organic Framework as a Bifunctional Fluorescent Probe for Visual Sensing for Styrene and Temperature. Molecules 2023, 28, 4919. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Huang, X.Q.; Li, Y.D.; Zhang, S.H.; He, X.; Liu, J.H.; Yu, Z.Q.; Li, F.; Liu, B.S.; Liao, S.J. In Situ Low-Temperature Carbonization Capping of LiFePO4 with Coke for Enhanced Lithium Battery Performance. Molecules 2023, 28, 6083. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.S.; Li, F.; Li, H.D.; Zhang, S.H.; Liu, J.H.; He, X.; Sun, Z.J.; Yu, Z.Q.; Zhang, Y.J.; Huang, X.Q.; et al. Monodisperse MoS2/Graphite Composite Anode Materials for Advanced Lithium Ion Batteries. Molecules 2023, 28, 2775. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Zhu, L.X.; Yang, C.Y.; Wang, Y.N.; Gu, S.; Zhou, G.W. Core-Shell Structure Trimetallic Sulfide@N-Doped Carbon Composites as Anodes for Enhanced Lithium-Ion Storage Performance. Molecules 2023, 28, 7580. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Mo, Y.H.; Fu, D.J.; Liu, H.Q.; Xu, B.C. Organo-Montmorillonite Modified by Gemini Quaternary Ammonium Surfactants with Different Counterions for Adsorption toward Phenol. Molecules 2023, 28, 2021. [Google Scholar] [CrossRef] [PubMed]
- Mouco-Novegil, B.A.; Hernandez-Cordoba, M.; Lopez-Garcia, I.; Li, H.D. Improvement in the Chromium(VI)-Diphenylcarbazide Determination Using Cloud Point Microextraction; Speciation of Chromium at Low Levels in Water Samples. Molecules 2024, 29, 153. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; He, P.W.; Przystupa, K.; Wang, Y.D.; Kochan, O. Preparation of Oily Sludge-Derived Activated Carbon and Its Adsorption Performance for Tetracycline Hydrochloride. Molecules 2024, 29, 769. [Google Scholar] [CrossRef]
- Dabrowska, W.; Gargol, M.; Gil-Kowalczyk, M.; Nowicki, P. The Influence of Oxidation and Nitrogenation on the Physicochemical Properties and Sorption Capacity of Activated Biocarbons Prepared from the Elderberry Inflorescence. Molecules 2023, 28, 5508. [Google Scholar] [CrossRef]
- Basirun, A.A.; Ab Karim, W.A.W.; Wei, N.C.; Wu, J.Q.; Wilfred, C.D. Manganese Removal Using Functionalised Thiosalicylate-Based Ionic Liquid: Water Filtration System Application. Molecules 2023, 28, 5777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, Q.; Zhou, Z.H.; Sun, L.L.; Zhou, Y.W. Study on the Effect of Different Viscosity Reducers on Viscosity Reduction and Emulsification with Daqing Crude Oil. Molecules 2023, 28, 1399. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.J.; Liu, X.T.; Li, W.H.; Pei, S.Y.; Ren, Y.F.; Li, X.Y.; Qu, C.; Wu, C.D.; Liu, J.M. Efficient and Selective Adsorption of Cationic Dye Malachite Green by Kiwi-Peel-Based Biosorbents. Molecules 2023, 28, 5310. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Li, Y.; Li, H. Catalysis in Energy and the Environment: Opportunities and Challenges. Molecules 2024, 29, 1932. https://doi.org/10.3390/molecules29091932
He X, Li Y, Li H. Catalysis in Energy and the Environment: Opportunities and Challenges. Molecules. 2024; 29(9):1932. https://doi.org/10.3390/molecules29091932
Chicago/Turabian StyleHe, Xiong, Yuhao Li, and Hongda Li. 2024. "Catalysis in Energy and the Environment: Opportunities and Challenges" Molecules 29, no. 9: 1932. https://doi.org/10.3390/molecules29091932
APA StyleHe, X., Li, Y., & Li, H. (2024). Catalysis in Energy and the Environment: Opportunities and Challenges. Molecules, 29(9), 1932. https://doi.org/10.3390/molecules29091932