Characterization of the Sideritis scardica Extract SidTea+TM and Its Effect on Physiological Profile, Metabolic Health and Redox Biomarkers in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled Study
Abstract
:1. Introduction
2. Results
2.1. SidTea+TM Extract Characterization
2.2. Dietary Nutrient Intake Analysis
2.3. Response of Anthropometric, Physiological and Performance Markers
2.4. Response of Complete Blood Count Markers
2.5. Response of Metabolic Markers
2.6. Response of Redox Biomarkers
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. SidTea+TM and Placebo Production
4.3. UPLC-HRMS Analysis
4.4. In Vitro Cell-Free Assays
4.5. SidTea+TM and Placebo Supplementation
4.6. Dietary Nutrient Intake Analysis
4.7. Anthropometric, Physiological and Performance Measurements
4.8. Blood Sampling
4.9. Metabolic and Redox Assays
4.10. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Castro, C.O.; Núñez, D.R. A Taxonomic Revision of the Section Sideritis (Genus Sideritis) (Labiatae); J. Cramer: Braunschweig, Germany, 1994. [Google Scholar]
- González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Sideritis spp.: Uses, chemical composition and pharmacological activities--a review. J. Ethnopharmacol. 2011, 135, 209–225. [Google Scholar] [CrossRef]
- Żyżelewicz, D.; Kulbat-Warycha, K.; Oracz, J.; Żyżelewicz, K. Polyphenols and Other Bioactive Compounds of Sideritis Plants and Their Potential Biological Activity. Molecules 2020, 25, 3763. [Google Scholar] [CrossRef] [PubMed]
- Tadić, V.M.; Jeremic, I.; Dobric, S.; Isakovic, A.; Markovic, I.; Trajkovic, V.; Bojovic, D.; Arsic, I. Anti-inflammatory, gastroprotective, and cytotoxic effects of Sideritis scardica extracts. Planta Med. 2012, 78, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Urquiaga, I.; Leighton, F. Plant polyphenol antioxidants and oxidative stress. Biol. Res. 2000, 33, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, J.A.; Fasae, K.D.; Awe, A.I.; Paimo, O.K.; Adegoke, A.M.; Akintunde, J.K.; Sekhoacha, M.P. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases. Heliyon 2023, 9, e17166. [Google Scholar] [CrossRef]
- Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004, 59, 113–122. [Google Scholar] [CrossRef]
- Papanikolaou, K.; Kokkini, S. A Taxonomic Revision of Sideritis L. Section Empedoclia (Rafin.) Bentham (Labiatae) in Greece. In Aromatic Plants: Basic and Applied Aspects; Margaris, N., Koedam, A., Vokou, D., Eds.; Springer: Dordrecht, The Netherlands, 1982; pp. 101–128. [Google Scholar] [CrossRef]
- Todorova, M.; Trendafilova, A. Sideritis scardica Griseb., an endemic species of Balkan peninsula: Traditional uses, cultivation, chemical composition, biological activity. J. Ethnopharmacol. 2014, 152, 256–265. [Google Scholar] [CrossRef]
- Zheleva-Dimitrova, D.; Voynikov, Y.; Gevrenova, R.; Balabanova, V. A Comprehensive Phytochemical Analysis of Sideritis scardica Infusion Using Orbitrap UHPLC-HRMS. Molecules 2023, 29, 204. [Google Scholar] [CrossRef]
- Moussavi, N.; Azizullah, H.; Malterud, K.E.; Inngjerdingen, K.T.; Wangensteen, H. Immunomodulating polyphenols from Sideritis scardica. J. Funct. Foods 2022, 96, 105197. [Google Scholar] [CrossRef]
- Chalatsa, I.; Arvanitis, D.A.; Mikropoulou, E.V.; Giagini, A.; Papadopoulou-Daifoti, Z.; Aligiannis, N.; Halabalaki, M.; Tsarbopoulos, A.; Skaltsounis, L.A.; Sanoudou, D. Beneficial Effects of Sideritis scardica and Cichorium spinosum against Amyloidogenic Pathway and Tau Misprocessing in Alzheimer’s Disease Neuronal Cell Culture Models. J. Alzheimers Dis. 2018, 64, 787–800. [Google Scholar] [CrossRef]
- Heiner, F.; Feistel, B.; Wink, M. Sideritis scardica extracts inhibit aggregation and toxicity of amyloid-β in Caenorhabditis elegans used as a model for Alzheimer’s disease. PeerJ 2018, 6, e4683. [Google Scholar] [CrossRef] [PubMed]
- Hofrichter, J.; Krohn, M.; Schumacher, T.; Lange, C.; Feistel, B.; Walbroel, B.; Pahnke, J. Sideritis spp. Extracts Enhance Memory and Learning in Alzheimer’s β-Amyloidosis Mouse Models and Aged C57Bl/6 Mice. J. Alzheimers Dis. 2016, 53, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Orhan, I.E.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; et al. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- McMullen, R.L.; Dell’Acqua, G. History of Natural Ingredients in Cosmetics. Cosmetics 2023, 10, 71. [Google Scholar] [CrossRef]
- EEMA/HMPC/39453/2015. Final European Union Herbal Monograph on Sideritis scardica Griseb.; Sideritis clandestina (Bory & Chaub.) Hayek; Sideritis raeseri Boiss. & Heldr.; Sideritis syriaca L., Herba. Available online: https://www.ema.europa.eu/en/documents/herbal-monograph/final-european-union-herbal-monograph-sideritis-scardica-griseb-sideritis-clandestina-bory-chaub-hayek-sideritis-raeseri-boiss-heldr-sideritis-syriaca-l-herba_en.pdf (accessed on 10 September 2023).
- Ververis, A.; Ioannou, K.; Kyriakou, S.; Violaki, N.; Panayiotidis, M.I.; Plioukas, M.; Christodoulou, K. Sideritis scardica Extracts Demonstrate Neuroprotective Activity against Aβ(25-35) Toxicity. Plants 2023, 12, 1716. [Google Scholar] [CrossRef] [PubMed]
- Wightman, E.L.; Jackson, P.A.; Khan, J.; Forster, J.; Heiner, F.; Feistel, B.; Suarez, C.G.; Pischel, I.; Kennedy, D.O. The Acute and Chronic Cognitive and Cerebral Blood Flow Effects of a Sideritis scardica (Greek Mountain Tea) Extract: A Double Blind, Randomized, Placebo Controlled, Parallel Groups Study in Healthy Humans. Nutrients 2018, 10, 955. [Google Scholar] [CrossRef]
- Kassi, E.; Dimas, C.; Dalamaga, M.; Panagiotou, A.; Papoutsi, Z.; Spilioti, E.; Moutsatsou, P. Sideritis euboea extract lowers total cholesterol but not LDL cholesterol in humans: A randomized controlled trial. Clin. Lipidol. 2013, 8, 627–634. [Google Scholar] [CrossRef]
- Skouroliakou, M.; Kastanidou, O.; Stathopoulou, M.; Vourli, G. Evaluation of the antioxidant effect of a new functional food enriched with Sideritis euboea in healthy subjects. J. Med. Food 2009, 12, 1105–1110. [Google Scholar] [CrossRef]
- Stanoeva, J.P.; Stefova, M.; Stefkov, G.; Kulevanova, S.; Alipieva, K.; Bankova, V.; Aneva, I.; Evstatieva, L.N. Chemotaxonomic contribution to the Sideritis species dilemma on the Balkans. Biochem. Syst. Ecol. 2015, 61, 477–487. [Google Scholar] [CrossRef]
- Axiotis, E.; Petrakis, E.A.; Halabalaki, M.; Mitakou, S. Phytochemical Profile and Biological Activity of Endemic Sideritis sipylea Boiss. in North Aegean Greek Islands. Molecules 2020, 25, 2022. [Google Scholar]
- Liang, N.; Kitts, D.D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2015, 8, 16. [Google Scholar] [CrossRef]
- Dou, X.; Zhou, Z.; Ren, R.; Xu, M. Apigenin, flavonoid component isolated from Gentiana veitchiorum flower suppresses the oxidative stress through LDLR-LCAT signaling pathway. Biomed. Pharmacother. 2020, 128, 110298. [Google Scholar] [CrossRef]
- Kashyap, P.; Shikha, D.; Thakur, M.; Aneja, A. Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. J. Food Biochem. 2022, 46, e13950. [Google Scholar] [CrossRef]
- Dimaki, V.D.; Zeliou, K.; Nakka, F.; Stavreli, M.; Bakratsas, I.; Papaioannou, L.; Iatrou, G.; Lamari, F.N. Characterization of Sideritis clandestina subsp. peloponnesiaca Polar Glycosides and Phytochemical Comparison to Other Mountain Tea Populations. Molecules 2022, 27, 7613. [Google Scholar] [CrossRef]
- Kalpoutzakis, E.; Chatzimitakos, T.; Athanasiadis, V.; Mitakou, S.; Aligiannis, N.; Bozinou, E.; Gortzi, O.; Skaltsounis, L.A.; Lalas, S.I. Determination of the Total Phenolics Content and Antioxidant Activity of Extracts from Parts of Plants from the Greek Island of Crete. Plants 2023, 12, 1092. [Google Scholar] [CrossRef] [PubMed]
- Canoy, D.; Nazarzadeh, M.; Copland, E.; Bidel, Z.; Rao, S.; Li, Y.; Rahimi, K. How Much Lowering of Blood Pressure Is Required to Prevent Cardiovascular Disease in Patients With and Without Previous Cardiovascular Disease? Curr. Cardiol. Rep. 2022, 24, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Melgarejo, J.D.; Yang, W.Y.; Thijs, L.; Li, Y.; Asayama, K.; Hansen, T.W.; Wei, F.F.; Kikuya, M.; Ohkubo, T.; Dolan, E.; et al. Association of Fatal and Nonfatal Cardiovascular Outcomes With 24-Hour Mean Arterial Pressure. Hypertension 2021, 77, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Verma, T.; Sinha, M.; Bansal, N.; Yadav, S.R.; Shah, K.; Chauhan, N.S. Plants Used as Antihypertensive. Nat. Prod. Bioprospect. 2021, 11, 155–184. [Google Scholar] [CrossRef] [PubMed]
- Jovanovski, E.; Bateman, E.A.; Bhardwaj, J.; Fairgrieve, C.; Mucalo, I.; Jenkins, A.L.; Vuksan, V. Effect of Rg3-enriched Korean red ginseng (Panax ginseng) on arterial stiffness and blood pressure in healthy individuals: A randomized controlled trial. J. Am. Soc. Hypertens 2014, 8, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.M.; Fitchett, D.H.; Howlett, J.G.; Lonn, E.M.; Tardif, J.C. Resting heart rate: A modifiable prognostic indicator of cardiovascular risk and outcomes? Can. J. Cardiol. 2008, 24 (Suppl. SA), 3a–8a. [Google Scholar] [CrossRef] [PubMed]
- Palatini, P.; Julius, S. Elevated heart rate: A major risk factor for cardiovascular disease. Clin. Exp. Hypertens 2004, 26, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-J.; Ko, K.-J. Association between resting heart rate, VO2max and carotid intima-media thickness in middle-aged men. IJC Heart Vasc. 2019, 23, 100347. [Google Scholar] [CrossRef] [PubMed]
- Fukai, T.; Siegfried, M.R.; Ushio-Fukai, M.; Cheng, Y.; Kojda, G.; Harrison, D.G. Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J. Clin. Investig. 2000, 105, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Taddei, S.; Virdis, A.; Ghiadoni, L.; Salvetti, G.; Bernini, G.; Magagna, A.; Salvetti, A. Age-related reduction of NO availability and oxidative stress in humans. Hypertension 2001, 38, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Bryan, N.S. Nitric oxide deficiency is a primary driver of hypertension. Biochem. Pharmacol. 2022, 206, 115325. [Google Scholar] [CrossRef] [PubMed]
- Mubarak, A.; Bondonno, C.P.; Liu, A.H.; Considine, M.J.; Rich, L.; Mas, E.; Croft, K.D.; Hodgson, J.M. Acute effects of chlorogenic acid on nitric oxide status, endothelial function, and blood pressure in healthy volunteers: A randomized trial. J. Agric. Food Chem. 2012, 60, 9130–9136. [Google Scholar] [CrossRef] [PubMed]
- Koh, P.O. Ferulic acid modulates nitric oxide synthase expression in focal cerebral ischemia. Lab. Anim. Res. 2012, 28, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B.S.; Gago, B.; Barbosa, R.M.; Laranjinha, J. Dietary polyphenols generate nitric oxide from nitrite in the stomach and induce smooth muscle relaxation. Toxicology 2009, 265, 41–48. [Google Scholar] [CrossRef]
- Shabeeh, H.; Khan, S.; Jiang, B.; Brett, S.; Melikian, N.; Casadei, B.; Chowienczyk, P.J.; Shah, A.M. Blood Pressure in Healthy Humans Is Regulated by Neuronal NO Synthase. Hypertension 2017, 69, 970–976. [Google Scholar] [CrossRef]
- Danesi, F.; Saha, S.; Kroon, P.A.; Glibetić, M.; Konić-Ristić, A.; D’Antuono, L.F.; Bordoni, A. Bioactive-rich Sideritis scardica tea (mountain tea) is as potent as Camellia sinensis tea at inducing cellular antioxidant defences and preventing oxidative stress. J. Sci. Food Agric. 2013, 93, 3558–3564. [Google Scholar] [CrossRef]
- Auyeung, T.W.; Lee, S.W.; Leung, J.; Kwok, T.; Woo, J. Age-associated decline of muscle mass, grip strength and gait speed: A 4-year longitudinal study of 3018 community-dwelling older Chinese. Geriatr. Gerontol. Int. 2014, 14 (Suppl. S1), 76–84. [Google Scholar] [CrossRef]
- Sayer, A.A.; Syddall, H.; Martin, H.; Patel, H.; Baylis, D.; Cooper, C. The developmental origins of sarcopenia. J. Nutr. Health Aging 2008, 12, 427–432. [Google Scholar] [CrossRef]
- Xu, J.; Gilpin, B.; McCarron, L.; Sivakumar, B.; Graham, D. Distal Interphalangeal Joint Arthroplasty—A Systematic Review. J. Hand Surg. Asian Pac. Vol. 2023, 28, 409–414. [Google Scholar] [CrossRef]
- Laouani, A.; Nasrallah, H.; Sassi, A.; Ferdousi, F.; Kalai, F.Z.; Hasni, Y.; Limem, K.; Isoda, H.; Saguem, S. Exploring the Effects of Short-Term Daily Intake of Nitraria retusa Tea on Lipid Profile: A Pre-Post, Uncontrolled Pilot Study in Both Healthy and Overweight/Obese Adults. Nutrients 2023, 15, 3649. [Google Scholar] [CrossRef]
- Wan, L.; Jiang, J.-G. Protective effects of plant-derived flavonoids on hepatic injury. J. Funct. Foods 2018, 44, 283–291. [Google Scholar] [CrossRef]
- Begas, E.; Kilindris, T.; Kouvaras, E.; Tsioutsioumi, A.; Kouretas, D.; Asprodini, E.K. Dietary effects of Sideritis scardica “mountain tea” on human in vivo activities of xenobiotic metabolizing enzymes in healthy subjects. Food Chem. Toxicol. 2018, 122, 38–48. [Google Scholar] [CrossRef]
- Frank, J.; George, T.W.; Lodge, J.K.; Rodriguez-Mateos, A.M.; Spencer, J.P.; Minihane, A.M.; Rimbach, G. Daily consumption of an aqueous green tea extract supplement does not impair liver function or alter cardiovascular disease risk biomarkers in healthy men. J. Nutr. 2009, 139, 58–62. [Google Scholar] [CrossRef]
- Unuofin, J.O.; Lebelo, S.L. Antioxidant Effects and Mechanisms of Medicinal Plants and Their Bioactive Compounds for the Prevention and Treatment of Type 2 Diabetes: An Updated Review. Oxidative Med. Cell. Longev. 2020, 2020, 1356893. [Google Scholar] [CrossRef] [PubMed]
- Gioran, A.; Paikopoulos, Y.; Panagiotidou, E.; Rizou, A.E.I.; Nasi, G.I.; Dimaki, V.D.; Vraila, K.D.; Bezantakou, D.S.; Spatharas, P.M.; Papandreou, N.C.; et al. Beneficial Effects of Sideritis clandestina Extracts and Sideridiol against Amyloid β Toxicity. Antioxidants 2024, 13, 261. [Google Scholar] [CrossRef]
- Bathgate, J.R.; Radler, D.R.; Kurzer, M.; Samavat, H. Green tea extract supplementation does not modify plasma concentration of F(2)-isoprostanes in women who are postmenopause: Findings from a randomized controlled trial. Nutr. Res. 2023, 113, 29–38. [Google Scholar] [CrossRef]
- Choleva, M.; Matalliotaki, E.; Antoniou, S.; Asimomyti, E.; Drouka, A.; Stefani, M.; Yannakoulia, M.; Fragopoulou, E. Postprandial Metabolic and Oxidative Stress Responses to Grape Pomace Extract in Healthy Normal and Overweight/Obese Women: A Randomized, Double-Blind, Placebo-Controlled Crossover Study. Nutrients 2022, 15, 156. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Kumanyika, S.K.; Tell, G.S.; Shemanski, L.; Martel, J.; Chinchilli, V.M. Dietary assessment using a picture-sort approach. Am. J. Clin. Nutr. 1997, 65, 1123s–1129s. [Google Scholar] [CrossRef]
- Batrakoulis, A.; Jamurtas, A.Z.; Draganidis, D.; Georgakouli, K.; Tsimeas, P.; Poulios, A.; Syrou, N.; Deli, C.K.; Papanikolaou, K.; Tournis, S.; et al. Hybrid Neuromuscular Training Improves Cardiometabolic Health and Alters Redox Status in Inactive Overweight and Obese Women: A Randomized Controlled Trial. Antioxidants 2021, 10, 1601. [Google Scholar] [CrossRef]
- Gerodimos, V.; Karatrantou, K.; Psychou, D.; Vasilopoulou, T.; Zafeiridis, A. Static and Dynamic Handgrip Strength Endurance: Test-Retest Reproducibility. J. Hand Surg. Am. 2017, 42, e175–e184. [Google Scholar] [CrossRef] [PubMed]
- Ebbeling, C.B.; Ward, A.; Puleo, E.M.; Widrick, J.; Rippe, J.M. Development of a single-stage submaximal treadmill walking test. Med. Sci. Sports Exerc. 1991, 23, 966–973. [Google Scholar] [CrossRef]
- Georgakouli, K.; Siamata, F.; Draganidis, D.; Tsimeas, P.; Papanikolaou, K.; Batrakoulis, A.; Gatsas, A.; Poulios, A.; Syrou, N.; Deli, C.K.; et al. The Effects of Greek Orthodox Christian Fasting during Holy Week on Body Composition and Cardiometabolic Parameters in Overweight Adults. Diseases 2022, 10, 120. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, K.; Jamurtas, A.Z.; Poulios, A.; Tsimeas, P.; Draganidis, D.; Margaritelis, N.V.; Baloyiannis, I.; Papadopoulos, C.; Sovatzidis, A.; Deli, C.K.; et al. Skeletal muscle and erythrocyte redox status is associated with dietary cysteine intake and physical fitness in healthy young physically active men. Eur. J. Nutr. 2023, 62, 1767–1782. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.F.; Altman, D.G.; Moher, D.; for the CONSORT Group. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. BMC Med. 2010, 8, 18. [Google Scholar] [CrossRef] [PubMed]
No. | Compounds | Rt (min) | Molecular Formula | [M-H]− (m/z) | Δm (ppm) | RDBeq |
---|---|---|---|---|---|---|
1. | Quinic acid | 0.89 | C7H12O6 | 191.0562 | 0.46 | 2.5 |
2. | Malic acid | 1.02 | C4H6O5 | 133.0145 | 2.13 | 2.5 |
3. | Melittoside derivative | 4.69 | C22H34O17 | 569.1723 | 0.07 | 15.5 |
4. | Chlorogenic acid | 5.90 | C16H18O9 | 353.0870 | −2.28 | 8.5 |
5. | Neochlorogenic acid | 6.03 | C16H18O9 | 353.0868 | −2.87 | 8.5 |
6. | Apigenin 7-O-allosyl(1 → 2)-glucoside | 6.25 | C27H30O15 | 593.1512 | 0.19 | 13.5 |
7. | Feruloylquinic acid | 6.77 | C17H20O9 | 367.1037 | 0.41 | 8.5 |
8. | Echinacoside | 7.00 | C35H46O20 | 785.2510 | −0.14 | 13.5 |
9. | Lavandulifolioside | 7.08 | C34H44O19 | 755.2393 | 1.29 | 13.5 |
10. | Verbascoside | 7.21 | C29H36O15 | 623.1981 | 0.75 | 12.5 |
11. | Forsythoside B | 7.35 | C34H44O19 | 755.2382 | −2.69 | 13.5 |
12. | Isoscutellarein 7-O-allosyl(1 → 2)-glucoside | 7.35 | C27H30O16 | 609.1450 | 1.47 | 13.5 |
13. | Luteolin 7-O-allosyl-(1 → 2)-[6″-O-acetyl]-glucoside | 7.45 | C29H32O17 | 651.1550 | −2.61 | 14.5 |
14. | Isoverbascoside | 7.46 | C29H36O15 | 623.1965 | −2.56 | 12.5 |
15. | Hypolaetin 7-O-[6‴-O-acetyl]-allosyl(1 → 2)-glucoside | 7.53 | C29H32O18 | 667.1516 | 0.68 | 14.5 |
16. | 3′-O-Methylhypolaetin 7-O-allosyl(1 → 2)-glucoside | 7.57 | C28H32O17 | 639.1567 | 0.77 | 13.5 |
17. | Allysonoside (Isomer I) | 7.57 | C35H46O19 | 769.2561 | 0.30 | 13.5 |
18. | Leucosceptoside A | 7.73 | C30H38O15 | 637.2138 | 0.40 | 12.5 |
19. | Apigenin 7-O-glucoside | 7.78 | C21H20O10 | 431.0984 | 0.82 | 12.5 |
20. | Isoscutellarein 7-O-[6‴-O-acetyl]-allosyl(1 → 2)-glucoside | 7.81 | C29H32O17 | 651.1549 | −3.09 | 14.5 |
21. | Apigenin 7-O-[6‴-O-acetyl]-allosyl(1 → 2)-glucoside | 7.90 | C29H32O16 | 635.1598 | −3.11 | 14.5 |
22. | Isoscutellarein 7-O-allosyl-(1 → 2)-[6″-O-acetyl]-glucoside | 7.97 | C29H32O17 | 651.1551 | −2.31 | 14.5 |
23. | 3′-O-Methylhypolaetin 7-O-[6‴-O-acetyl] -allosyl(1 → 2)-glucoside | 8.14 | C30H34O18 | 681.1659 | −1.98 | 14.5 |
24. | 4′-O-Methylisoscutellarein 7-O-allosyl(1→2)glucoside | 8.45 | C28H32O16 | 623.1594 | −3.75 | 13.5 |
25. | 4′-O-Methylhypolaetin 7-O-[6‴-O-acetyl] -allosyl(1 → 2)-glucoside | 8.56 | C30H34O18 | 681.1652 | −2.96 | 14.5 |
26. | Hypolaetin 7-O-[6‴-O-acetyl] -allosyl-(1 → 2) [6″-O-acetyl]-glucoside | 8.62 | C31H34O19 | 709.1602 | −3.01 | 15.5 |
27. | Isoscutellarein 7-O-[6‴-O-acetyl]-allosyl(1 → 2)-[6″-O-acetyl]-glucoside | 9.08 | C31H34O18 | 693.1661 | −1.67 | 15.5 |
28. | 4′-O-Methylisoscutellarein 7-O-[6‴-O-acetyl]-allosyl(1 → 2)-glucoside | 9.13 | C30H34O17 | 665.1704 | −2.87 | 14.5 |
29. | 3′-O-Methylhypolaetin 7-O-[6‴-O-acetyl]-allosyl-(1 → 2)-[6″-O-acetyl]-glucoside | 9.23 | C32H36O19 | 723.1756 | −3.05 | 15.5 |
30. | Apigenin 7-(6″-p-coumaroylglucoside) | 9.35 | C30H26O12 | 577.1339 | −2.15 | 18.5 |
31. | Apigenin 7-(4″-p-coumaroylglucoside) | 9.69 | C30H26O12 | 577.1339 | −2.25 | 18.5 |
32. | Apigenin | 9.72 | C15H10O5 | 269.0451 | −1.66 | 11.5 |
33. | 4′-O-Methylisoscutellarein 7-O-[6‴-O-acetyl]-allosyl-(1 → 2)-[6″-O-acetyl]-glucoside | 10.24 | C32H36O18 | 707.1808 | −2.97 | 15.5 |
34. | Luteolin derivative | 10.97 | C17H14O6 | 313.0710 | −2.40 | 11.5 |
35. | 4′-O-Methylhypolaetin 7-O-[6‴-O-acetyl] -allosyl-(1 → 2) [6″-O-acetyl]-glucoside | 11.12 | C32H36O19 | 723.1765 | −1.87 | 15.5 |
36. | Hypolaetin trimethylether (Isomer I) | 11.46 | C18H16O7 | 343.0826 | 0.71 | 11.5 |
37. | Hypolaetin trimethylether (Isomer II) | 11.58 | C18H16O7 | 343.0828 | 1.29 | 11.5 |
Placebo | SidTea+TM | |||
---|---|---|---|---|
Variable | Pre | Post | Pre | Post |
Energy (Kcal/day) | 1741 ± 541 | 1775 ± 600 | 1682 ± 381 | 1743 ± 379 |
Carbohydrates (g/day) | 180.1 ± 76.3 | 189.3 ± 76.3 | 160.1 ± 59.8 | 164.3 ± 60.8 |
Carbohydrates (% of total energy/day) | 40.6 ± 9.4 | 42.2 ± 9.6 | 37.7 ± 10.7 | 38 ± 12.2 |
Fat (g/day) | 86.5 ± 33.7 | 85.3 ± 31.5 | 81.4 ± 26.9 | 83.2 ± 28.8 |
Fat (% of total energy/day) | 43.6 ± 10.2 | 42.5 ± 10.1 | 42.6 ± 9.7 | 42.2 ± 10.1 |
Protein (g/day) | 64.3 ± 29.1 | 64.0 ± 27.8 | 68.9 ± 25.9 | 69.9 ± 26.5 |
Protein (% of total energy/day) | 14.5 ± 4.4 | 14.4 ± 4.3 | 16.2 ± 5.0 | 15.9 ± 4.8 |
Cholesterol (mg/day) | 323 ± 304 | 317 ± 289 | 339 ± 296 | 337 ± 278 |
Selenium (μg/day) | 115.1 ± 91.0 | 116 ± 90.8 | 123.0 ± 87.8 | 123.6 ± 87.3 |
Vitamin A (IU/day) | 2407 ± 2121 | 2527 ± 2164 | 2617 ± 2368 | 2507 ± 2775 |
Vitamin C (mg/day) | 88.2 ± 57.5 | 89.4 ± 58.3 | 85.2 ± 61.9 | 86.3 ± 62.9 |
Vitamin E (mg/day) | 7.0 ± 4.6 | 7.9 ± 4.9 | 6.8 ± 4.3 | 7.5 ± 4.6 |
Placebo | SidTea+TM | |||
---|---|---|---|---|
Variable | Pre | Post | Pre | Post |
Body mass (kg) | 83.5 ± 19.4 | 83.83 ± 19.3 | 72.9 ± 15.9 | 72.7 ± 15.3 |
Body height (m) | 1.71 ± 0.1 | 1.71 ± 0.1 | 1.69 ± 0.1 | 1.69 ± 0.1 |
BMI (kg/m2) | 28.3 ± 5.7 | 28.4 ± 5.7 | 25.2 ± 4.0 | 25.2 ± 3.9 |
Waist circumference (cm) | 93.9 ± 15.3 | 92.0 ± 15.9 | 85.5 ± 11.2 | 82.7 ± 12.7 |
Hip circumference (cm) | 106.2 ± 10.4 | 106.8 ± 10.0 | 100.9 ± 8.3 | 100.6 ± 7 |
Waist/Hip (ratio) | 0.88 ± 0.1 | 0.86 ± 0.1 | 0.85 ± 0.1 | 0.82 ± 0.1 |
Body fat (%) | 31.4 ± 9.1 | 30.2 ± 9.1 | 28.1 ± 6.6 | 27.7 ± 6.6 |
Fat mass (kg) | 27.1 ± 11.9 | 26.0 ± 11.6 | 20.6 ± 7.1 | 20.3 ± 7.0 |
Fat-free mass (kg) | 56.5 ± 11.6 | 57.8 ± 12.4 | 52.3 ± 12.3 | 52.5 ± 11.9 |
Systolic BP (mm Hg) | 121.0 ± 15.4 | 115.1 ± 12.1 | 118.8 ± 15.5 | 107.9 ± 8.6 ** |
Diastolic BP (mm Hg) | 73.9 ± 8.1 | 76.7 ± 9.2 | 72.9 ± 6.7 | 71.5 ± 8.7 |
Mean arterial pressure (mm Hg) | 89.6 ± 9.3 | 89.5 ± 9.7 | 88.2 ± 8.6 | 83.7 ± 7.8 * |
Resting heart rate (b/min) | 63.6 ± 8.4 | 61.8 ± 9.2 | 64.2 ± 12.8 | 61.1 ± 10.1 * |
Handgrip strength-DL (kg) | 38.2 ± 12.4 | 32.4 ± 11.7 ** | 30.4 ± 11.3 | 29.6 ± 9.6 |
Handgrip strength-NDL (kg) | 32.4 ± 12.2 | 29.0 ± 9.8 * | 28.6 ± 9.6 | 25.8 ± 8.0 * |
eVO2max (mL/kg/min) | 43.0 ± 8.8 | 42.7 ± 8.7 | 40.5 ± 7.2 | 41.6 ± 5.9 * |
Placebo | SidTea+TM | |||
---|---|---|---|---|
Variable | Pre | Post | Pre | Post |
White blood cells (103/μL) | 6.6 ± 1.2 | 6.7 ± 1.7 | 6.2 ± 1.9 | 6.4 ± 1.6 |
Lymphocytes (103/μL) | 2.4 ± 0.5 | 2.6 ± 1.1 | 2.2 ± 0.8 | 2.3 ± 0.7 |
Monocytes (103/μL) | 0.3 ± 0.1 | 0.4 ± 0.1 | 0.3 ± 0.1 | 0.3 ± 0.1 |
Granulocytes (103/μL) | 3.9 ± 0.9 | 3.8 ± 1.1 | 3.7 ± 1.7 | 3.7 ± 1.0 |
Lymphocytes (%) | 36.4 ± 5.1 | 38.0 ± 9.0 | 36.2 ± 9.0 | 36.6 ± 6.1 |
Monocytes (%) | 4.8 ± 0.8 | 5.4 ± 1.1 | 4.9 ± 2.1 | 5.1 ± 1.0 |
Granulocytes (%) | 58.7 ± 4.6 | 56.6 ± 9.1 | 58.8 ± 10.1 | 58.3 ± 6.7 |
Red blood cells (106/μL) | 5.1 ± 0.3 | 4.9 ± 0.3 | 5.0 ± 0.4 | 4.9 ± 0.3 |
Hemoglobin (g/dL) | 14.2 ± 1.1 | 13.9 ± 1.4 | 13.5 ± 1.8 | 13.2 ± 1.7 |
Hematocrit (%) | 43.5 ± 2.1 | 42.4 ± 3.4 | 42.0 ± 3.9 | 41.6 ± 4.1 |
MCV (μm3) | 86.3 ± 5.6 | 86.8 ± 6.2 | 85.1 ± 7.3 | 85.0 ± 7.2 |
MCH (pg) | 28.2 ± 2.4 | 28.5 ± 2.6 | 27.4 ± 3.4 | 27.0 ± 3.0 |
MCHC (g/dL) | 32.6 ± 1.2 | 32.8 ± 1.0 | 32.1 ± 1.5 | 31.7 ± 1.1 |
RDW (%) | 14.7 ± 0.8 | 14.5 ± 1.0 | 14.8 ± 1.2 | 14.7 ± 1.4 |
PLT (103/μL) | 254.9 ± 34.5 | 232.4 ± 29.0 | 239.7 ± 34.3 | 234.2 ± 46.0 |
MPV (μm3) | 7.7 ± 0.6 | 7.8 ± 0.5 | 8.0 ± 0.5 | 8.0 ± 0.3 |
PCT (%) | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 |
PDW (%) | 15.6 ± 1.4 | 15.2 ± 1.9 | 15.7 ± 1.0 | 15.4 ± 0.7 |
Placebo | SidTea+TM | |||
---|---|---|---|---|
Variable | Pre | Post | Pre | Post |
Glucose (mg/dL) | 88.0 ± 10.4 | 89.67 ± 10.5 | 87.7 ± 10.7 | 85.8 ± 8.5 |
Cholesterol (mg/dL) | 206.4 ± 28.9 | 199.6 ± 32.9 | 199.0 ± 37.3 | 195.5 ± 44.9 |
HDL (mg/dL) | 51.3 ± 12.8 | 51.1 ± 14.4 | 48.9 ± 7.1 | 48.5 ± 9.3 |
LDL (mg/dL) | 138.4 ± 26.6 | 132.9 ± 29.9 | 131.7 ± 31.1 | 129.7 ± 36.7 |
Triglycerides (mg/dL) | 83.6 ± 31.9 | 78.00 ± 30.5 | 92.1 ± 48.6 | 86.4 ± 44.8 |
Bilirubin (mg/dL) | 1.03 ± 0.61 | 1.00 ± 0.74 | 0.76 ± 0.84 | 0.91 ± 1.26 |
γ-GT (U/L) | 27.9 ± 14.2 | 27.9 ± 14.3 | 25.2 ± 17.4 | 21.5 ± 12.1 * |
SGOT (U/L) | 20.89 ± 4.8 | 20.2 ± 5.5 | 20.2 ± 5.7 | 19.4 ± 6.1 |
SGPT (U/L) | 18.6 ± 7.7 | 19.9 ± 10.3 | 19.8 ± 8.3 | 16.5 ± 6.4 * |
Creatinine (mg/dL) | 1.11 ± 0.20 | 1.12 ± 0.22 | 0.97 ± 0.13 | 0.96 ± 0.11 |
Uric acid (mg/dL) | 5.59 ± 1.7 | 5.59 ± 1.9 | 5.17 ± 1.5 | 4.95 ± 1.3 |
LDH (U/L) | 311.4 ± 64.9 | 297.8 ± 50.9 | 290.1 ± 52.8 | 295.8 ± 47.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papanikolaou, K.; Kouloridas, K.; Rosvoglou, A.; Gatsas, A.; Georgakouli, K.; Deli, C.K.; Draganidis, D.; Argyropoulou, A.; Michailidis, D.; Fatouros, I.G.; et al. Characterization of the Sideritis scardica Extract SidTea+TM and Its Effect on Physiological Profile, Metabolic Health and Redox Biomarkers in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled Study. Molecules 2024, 29, 1113. https://doi.org/10.3390/molecules29051113
Papanikolaou K, Kouloridas K, Rosvoglou A, Gatsas A, Georgakouli K, Deli CK, Draganidis D, Argyropoulou A, Michailidis D, Fatouros IG, et al. Characterization of the Sideritis scardica Extract SidTea+TM and Its Effect on Physiological Profile, Metabolic Health and Redox Biomarkers in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled Study. Molecules. 2024; 29(5):1113. https://doi.org/10.3390/molecules29051113
Chicago/Turabian StylePapanikolaou, Konstantinos, Konstantinos Kouloridas, Anastasia Rosvoglou, Athanasios Gatsas, Kalliopi Georgakouli, Chariklia K. Deli, Dimitrios Draganidis, Aikaterini Argyropoulou, Dimitris Michailidis, Ioannis G. Fatouros, and et al. 2024. "Characterization of the Sideritis scardica Extract SidTea+TM and Its Effect on Physiological Profile, Metabolic Health and Redox Biomarkers in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled Study" Molecules 29, no. 5: 1113. https://doi.org/10.3390/molecules29051113
APA StylePapanikolaou, K., Kouloridas, K., Rosvoglou, A., Gatsas, A., Georgakouli, K., Deli, C. K., Draganidis, D., Argyropoulou, A., Michailidis, D., Fatouros, I. G., & Jamurtas, A. Z. (2024). Characterization of the Sideritis scardica Extract SidTea+TM and Its Effect on Physiological Profile, Metabolic Health and Redox Biomarkers in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled Study. Molecules, 29(5), 1113. https://doi.org/10.3390/molecules29051113