Antioxidant Activity of Humulus lupulus Phenolic Hop Extracts in Creating a New Pâté: An Element Affecting Fat Stability and Microbiological Quality during Storage
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of Hop Extracts
2.2. Evaluation of the Effect of the Addition of Hop Extracts on Changes in the Physicochemical Characteristics of Experimental Sausages
2.3. Evaluation of the Effect of the Addition of Hop Extracts on the Stability of the Fat Fraction in Experimental Sausages
2.4. Evaluation of the Effect of the Addition of Hop Extracts on the Microbiological Safety of Experimental Sausages
3. Material and Methods
3.1. Materials
3.1.1. Hops
3.1.2. Extraction Process
3.1.3. Production Process of Liver Pâté
3.2. Methods
3.2.1. Analysis of the Properties of Hop Extracts
3.2.2. Basic Chemical Composition
3.2.3. Measurement of pH, Redox Potential, and Water Activity aw
3.2.4. Determination of Primary and Secondary Fat Oxidation Products
Peroxide Value (PV)
Malondialdehyde Content by TBARS Method
3.2.5. Microbiological Analysis
- the total number of microorganisms in accordance with the guidelines contained in the ISO standard [52];
- the number of enterococci on Slanetz and Bartley agar, according to the standard PN-A-82055-7:1997 [53];
- the quantification of Pseudomonas genus bacteria was carried out following the guidelines outlined in the ISO standard [56], using a CFC medium with agar and cetrimide, fucidin, and cephaloridin.
3.2.6. Chemicals
3.2.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Chen, Y.; Jia, X.; Sun, F.; Jiang, S.; Liu, H.; Liu, Q.; Kong, B. Using a stable pre-emulsified canola oil system that includes porcine plasma protein hydrolysates and oxidized tannic acid to partially replace pork fat in frankfurters. Meat Sci. 2020, 160, 107968. [Google Scholar] [CrossRef] [PubMed]
- Manessis, G.; Kalogianni, A.I.; Lazou, T.; Moschovas, M.; Bossis, I.; Gelasakis, A.I. Plant-derived natural antioxidants in meat and meat products. Antioxidants 2020, 9, 1215. [Google Scholar] [CrossRef] [PubMed]
- Losada-Barreiro, S.; Bravo-Díaz, C. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. Eur. J. Med. Chem. 2017, 133, 379–402. [Google Scholar] [CrossRef] [PubMed]
- Zugravu, C.A.; Bohiltea, R.E.; Salmen, T.; Pogurschi, E.; Otelea, M.R. Antioxidants in Hops: Bioavailability, Health Effects and Perspectives for New Products. Antioxidants 2022, 11, 241. [Google Scholar] [CrossRef] [PubMed]
- Morén, C.; deSouza, R.M.; Giraldo, D.M.; Uff, C. Antioxidant Therapeutic Strategies in Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 9328. [Google Scholar] [CrossRef] [PubMed]
- Bilska, A.; Kobus-Cisowska, J.; Kmiecik, D.; Danyluk, B.; Kowalski, R.; Szymanowska, D.; Gramza-Michałowska, A.; Szczepaniak, O. Cholinesterase inhibitory activity, antioxidative potential and microbial stability of innovative liver pâté fortified with rosemary extract (Rosmarinus officinalis). Electron. J. Biotechnol. 2019, 40, 22–29. [Google Scholar] [CrossRef]
- Harlina, P.W.; Ma, M.; Shahzad, R.; Khalifa, I. Effect of Rosemary Extract on Lipid Oxidation, Fatty Acid Composition, Antioxidant Capacity, and Volatile Compounds of Salted Duck Eggs. Food Sci. Anim. Resour. 2022, 42, 689–711. [Google Scholar] [CrossRef]
- Li, Y.; Dalabasmaz, S.; Gensberger-Reigl, S.; Heymich, M.-L.; Krofta, K.; Pischetsrieder, M. Identification of colupulone and lupulone as the main contributors to the antibacterial activity of hop extracts using activity-guided fractionation and metabolome analysis. Food Res. Int. 2023, 169, 112832. [Google Scholar] [CrossRef]
- López, P.L.; Guerberoff, G.K.; Grosso, N.R.; Olmedo, R.H. Antioxidant-efficient indicator determinate by the relationship between β-myrcene/caryophyllene (α, β) on Hop (Humulus lupulus) essential oils under an accelerated oxidation test. Ind. Crops Prod. 2023, 205, 117399. [Google Scholar] [CrossRef]
- González-Salitre, L.; Guillermo González-Olivares, L.; Antobelli Basilio-Cortes, U. Humulus lupulus L. a potential precursor to human health: High hops craft beer. Food Chem. 2023, 405, 134959. [Google Scholar] [CrossRef]
- Fischer, B.; Gevinski, E.V.; da Silva, D.M.; Júnior, P.A.L.; Bandiera, V.J.; Lohmann, A.M.; Rigo, D.; Duarte, P.F.; Franceschi, E.; Zandoná, G.P.; et al. Extraction of hops pelletized (Humulus lupulus) with subcritical CO2 and hydrodistillation: Chemical composition identification, kinetic model, and evaluation of antioxidant and antimicrobial activity. Food Res. Int. 2023, 167, 112712. [Google Scholar] [CrossRef] [PubMed]
- Niknejad, F.; Mohammadi, M.; Khomeiri, M.; Razavi, S.H.; Alami, M. Antifungal and antioxidant effects of hops (Humulus lupulus L.) flower extracts. Adv. Environ. Biol. 2014, 8, 395–401. [Google Scholar]
- Yamaguchi, N.; Satoh-Yamaguchi, K.; Ono, M. In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine 2009, 16, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Wołosiak, R.; Drużyńska, B.; Derewiaka, D.; Piecyk, M.; Majewska, E.; Ciecierska, M.; Worobiej, E.; Pakosz, P. Verification of the conditions for determination of antioxidant activity by abts and dpph assays—A practical approach. Molecules 2022, 27, 50. [Google Scholar] [CrossRef] [PubMed]
- Olszowy, M.; Dawidowicz, A.L. Is it possible to use the DPPH and ABTS methods for reliable estimation of antioxidant power of colored compounds? Chem. Pap. 2018, 72, 393–400. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 470. [Google Scholar] [CrossRef] [PubMed]
- Lang, Y.; Gao, N.; Zang, Z.; Meng, X.; Lin, Y.; Yang, S.; Yang, Y.; Jin, Z.; Li, B. Classification and antioxidant assays of polyphenols: A review. J. Future Foods 2024, 4, 193–204. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [Google Scholar] [CrossRef]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef] [PubMed]
- Kabré, P.; Ouattara, L.; Sanou, Y.; Ouédraogo, R.J.; Ouoba, P.; Zanté, A.A.; Zoungo, D.; Somda, M.B.; Ouédraogo, G.A. Comparative study of polyphenols, flavonoids content, antioxidant and antidiabetic activities of Lophira lanceolata Tiegh.ex Keay (Ochnaceae) extracts. Sci. Afr. 2023, 22, e01922. [Google Scholar] [CrossRef]
- Gao, N.; Si, X.; Han, W.; Gong, E.; Shu, C.; Tian, J.; Wang, Y.; Zhang, J.; Li, B.; Li, B. The contribution of different polyphenol compositions from chokeberry produced in China to cellular antioxidant and antiproliferative activities. Food Sci. Hum. Wellness 2023, 12, 1590–1600. [Google Scholar] [CrossRef]
- Huo, J.; Ni, Y.; Li, D.; Qiao, J.; Huang, D.; Sui, X.; Zhang, Y. Comprehensive structural analysis of polyphenols and their enzymatic inhibition activities and antioxidant capacity of black mulberry (Morus nigra L.). Food Chem. 2023, 427, 136605. [Google Scholar] [CrossRef] [PubMed]
- Kobus-Cisowska, J.; Szymanowska-Powałowska, D.; Szczepaniak, O.; Kmiecik, D.; Przeor, M.; Gramza-Michałowska, A.; Cielecka-Piontek, J.; Smuga-Kogut, M.; Szulc, P. Composition and in vitro effects of cultivars of Humulus lupulus L. Hops on cholinesterase activity and microbial growth. Nutrients 2019, 11, 1377. [Google Scholar] [CrossRef] [PubMed]
- PN-A-82007:1996/Az1:1998; Przetwory Mięsne—Wędliny. PKN: Warszawa, Poland, 1998; pp. 1–10.
- Martín-Sánchez, A.M.; Ciro-Gómez, G.; Vilella-Esplá, J.; Pérez-álvarez, J.Á.; Sayas-Barberá, E. Physicochemical and sensory characteristics of spreadable liver pâtés with annatto extract (Bixa orellana L.) and date palm co-products (Phoenix dactylifera L.). Foods 2017, 6, 94. [Google Scholar] [CrossRef] [PubMed]
- Carballo, J. Sausages: Nutrition, safety, processing and quality improvement. Foods 2021, 10, 890. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Bello, A.; Barreto-Palacios, V.; García-Segovia, P.; Mir-Bel, J.; Martínez-Monzó, J. Effect of pH on Color and Texture of Food Products. Food Eng. Rev. 2013, 5, 158–170. [Google Scholar] [CrossRef]
- Kowalska, J.; Majewska, E.; Lenart, A. Sorption properties of a modified powdered cocoa beverage. Chem. Process Eng. 2011, 32, 21–31. [Google Scholar] [CrossRef]
- Bilska, A.; Kowalski, R.; Kalinowska, A. Changes of the lipids fraction in liver sausage with the addition of oil. Med. Weter. 2014, 70, 232–236. (In Polish) [Google Scholar]
- Bilska, A.; Waszkowiak, K.; Błaszyk, M.; Rudzińska, M.; Kowalski, R. Effect of liver pâté enrichment with flaxseed oil and flaxseed extract on lipid composition and stability. J. Sci. Food Agric. 2018, 98, 4112–4120. [Google Scholar] [CrossRef]
- Zeng, X.; Bai, W.; Lu, C.; Dong, H. Effects of composite natural antioxidants on the fat oxidation, textural and sensory properties of cantonese sausages during storage. J. Food Process. Preserv. 2017, 41, e13010. [Google Scholar] [CrossRef]
- Pateiro, M.; Lorenzo, J.M.; Amado, I.R.; Franco, D. Effect of addition of green tea, chestnut and grape extract on the shelf-life of pig liver pâté. Food Chem. 2014, 147, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.S.; Domínguez, R.; Campagnol, P.C.B.; Franco, D.; Trindade, M.A.; Lorenzo, J.M. Effect of natural antioxidants on physicochemical properties and lipid stability of pork liver pâté manufactured with healthy oils during refrigerated storage. J. Food Sci. Technol. 2017, 54, 4324–4334. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M.; Fontán, M.C.G.; Carballo, J. Effect of fat content on physical, microbial, lipid and protein changes during chill storage of foal liver pâté. Food Chem. 2014, 155, 57–63. [Google Scholar] [CrossRef]
- Hassan, M.; Ibrahim, H.; Shawky, N.; Sheir, S. Incidance of Psychotropic bacteria in frozen chicken meat products with special reference to Pseudomonas species. Benha Vet. Med. J. 2020, 39, 165–168. [Google Scholar] [CrossRef]
- Elbehiry, A.; Marzouk, E.; Aldubaib, M.; Moussa, I.; Abalkhail, A.; Ibrahem, M.; Hamada, M.; Sindi, W.; Alzaben, F.; Almuzaini, A.M.; et al. Pseudomonas species prevalence, protein analysis, and antibiotic resistance: An evolving public health challenge. AMB Express 2022, 12, 53. [Google Scholar] [CrossRef]
- Cukon, N.; Cvrtila Fleck, Ž.; Bratulić, M.; Kozačinski, L.; Njari, B. Diversity of microflora in meat and meat products. Meso 2012, 14, 271–279. [Google Scholar]
- Fernandez-Lopez, J.; Sayas-Barbera, E.; Sendra, E.; Perez-Alvares, J.A. Quality characteristics of Ostrich Liver Pâté. JFS Sens. Nutr. Qual. Food Qual. 2004, 69, 85–91. [Google Scholar] [CrossRef]
- Kolenc, Z.; Langerholc, T.; Hostnik, G.; Ocvirk, M.; Štumpf, S.; Pintarič, M.; Košir, I.J.; Čerenak, A.; Garmut, A.; Bren, U. Antimicrobial Properties of Different Hop (Humulus lupulus) Genotypes. Plants 2023, 12, 120. [Google Scholar] [CrossRef]
- Kobus, J.; Flaczyk, E.; Siger, A.; Nogala-Kałucka, M.; Korczak, J.; Pegg, R.B. Phenolic compounds and antioxidant activity of extracts of Ginkgo leaves. Eur. J. Lipid Sci. Technol. 2009, 111, 1150–1160. [Google Scholar] [CrossRef]
- ISO 1442:1997; Methods of Test for Meat and Meat Products. Determination of Moisture Content. Technical Committee ISO/TC 34: Geneva, Switzerland, 1997; pp. 1–4.
- ISO 5983-2:2009; Animal Feeding Stuffs. Determination of Nitrogen Content and Calculation of Crude Protein Content. Part 2: Block Digestion/Steam Distillation Method. Technical Committee ISO/TC 34: Geneva, Switzerland, 2009; pp. 1–4.
- ISO 1444:1996; Meat and Meat Products. Determination of Free Fat Content. Technical Committee ISO/TC 34: Geneva, Switzerland, 1996; pp. 1–4.
- ISO 1841-1:1996; Meat and Meat Products—Determination of Chloride Content—Part 1: Volhard Method. International Organization for Standardization: Geneva, Switzerland, 1996; pp. 1–4.
- ISO 2917:1999(en); Meat and Meat Products—Measurement of pH—Reference Method. Technical Committee ISO/TC 34: Geneva, Switzerland, 1999; pp. 1–6.
- ISO 3960:2017; Animal and Vegetable Fats and Oils. Determination of Peroxide Value. Iodometric (Visual) Endpoint Determination. Technical Committee ISO/TC 34: Geneva, Switzerland, 2017; pp. 1–4.
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Tarladgis, B.G.; Watts, B.M.; Younathan, M.T.; Dugan, L. A distillation method for the quantitative determination of malonaldehyde in rancid foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- Pikul, J.; Leszczynski, D.E.; Kummerow, F.A. Evaluation of three modified TBA methods for measuring lipid oxidation in chicken meat. J. Agric. Food Chem. 1989, 37, 1309–1313. [Google Scholar] [CrossRef]
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 Degrees C by the Pour Plate Technique. Technical Committee: ISO/TC 34/SC 9 Microbiology: Geneva, Switzerland, 2013; pp. 1–9.
- PN-A-82055-7:1997; Meat and Meat Products. Microbiological Testing. Detection of the Presence and Determination of the Number of Enterococci. Polish Committee for Standardization: Warsaw, Poland, 1997; pp. 1–8.
- ISO 21528-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 1: Detection of Enterobacteriaceae. Technical Committee: ISO/TC 34/SC 9 Microbiology: Geneva, Switzerland, 2017; pp. 1–17.
- ISO 21528-2:2017(E); Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. Technical Committee: ISO/TC 34/SC 9 Microbiology: Geneva, Switzerland, 2017; pp. 1–15.
- ISO 13720:2010; Meat and Meat Products—Enumeration of Presumptive Pseudomonas spp. Technical Committee: ISO/TC 34/SC 9 Microbiology: Geneva, Switzerland, 2010; pp. 1–7.
Index | Magnum Hop Extract | Lubelski Hop Extract |
---|---|---|
Density [mg/mL] | 1.53 b | 1.34 a |
Extract yield [%] | 12.23 a | 14.76 b |
Total polyphenols [mg/g d.w. of extract] | 2.74 a ± 0.11 | 2.27 a ± 0.05 |
Chlorogenic acid [μg/g d.w. of extract] | 768.32 b ± 9.8 | 191.41 a ± 1.36 |
Ferulic acid [μg/g d.w. of extract] | 0.85 a ± 0.01 | 0.68 a ± 0.02 |
Vanillic acid [μg/g d.w. of extract] | 6.94 b ± 0.02 | 2.57 a ± 0.04 |
Gallic acid [μg/g d.w. of extract] | 14.76 a ± 0.2 | 14.33 a ± 0.11 |
o-coumaric acid [μg/g d.w. of extract] | 29.88 a ± 0.12 | 27.43 a ± 0.47 |
p-coumaric acid [μg/g d.w. of extract] | 51.24 a ± 0.12 | 48.51 a ± 0.31 |
Cinnamic acid [μg/g d.w. of extract] | 6.24 a ± 0.03 | 43.87 b ± 0.29 |
Syringic acid [μg/g d.w. of extract] | 21.44 a ± 0.14 | 45.86 b ± 0.10 |
p-hydroxybenzoic acid [μg/g d.w. of extract] | 71.61 a ± 0.43 | 85.66 b ± 0.31 |
Caffeic acid [μg/g d.w. of extract] | 0.85 a ± 0.0 | 2.22 b ± 0.08 |
Catechin [μg/g d.w. of extract] | 45.43 b ± 0.21 | 21.44 a ± 0.05 |
Epicatechin [μg/g d.w. of extract] | 654.71 b ± 2.43 | 287.54 a ± 0.43 |
Quercetin [μg/g d.w. of extract] | 677.14 b ± 6.87 | 378.23 a ± 4.54 |
Rutin [μg/g d.w. of extract] | 387.81 a ± 0.36 | 967.87 b ± 6.98 |
Kaempferitrin [μg/g d.w. of extract] | 49.9 a ± 0.0 | 42.87 a ± 0.45 |
DPPH µM Trolox/g d.w. | 4.21 b ± 0.09 | 3.87 a ± 0.05 |
ABTS µM Trolox/g d.w. | 1.16 a ± 0.17 | 1.25 b ± 0.05 |
Storage Time (Days) | Sample | |||||
---|---|---|---|---|---|---|
Control | 20% OR | 20% OR + 0.1% EChM | 20% OR + 0.2% EChM | 20% OR + 0.1% EChL | 20%OR + 0.2% EChL | |
pH LSD A = 0.01; LSD B = 0.01; LSD A × B = 0.02 | ||||||
1 | 6.47 cAB ± 0.01 | 6.41 aA ± 0.01 | 6.41 aAB ± 0.00 | 6.41 aA ± 0.01 | 6.44 bC ± 0.03 | 6.43 bC ± 0.01 |
5 | 6.48 cBC ± 0.02 | 6.42 bAB ± 0.01 | 6.40 aA ± 0.01 | 6.42 bBC ± 0.01 | 6.41 abB ± 0.02 | 6.42 bBC ± 0.01 |
8 | 6.46 dA ± 0.00 | 6.41 bA ± 0.01 | 6.41 bAB ± 0.03 | 6.43 cC ± 0.03 | 6.39 aA ± 0.00 | 6.40 abA ± 0.01 |
12 | 6.49 dCD ± 0.02 | 6.43 cB ± 0.01 | 6.42 bcBC ± 0.01 | 6.42 bcBC ± 0.01 | 6.40 aAB ± 0.01 | 6.41 abAB ± 0.01 |
15 | 6.50 fD ± 0.01 | 6.47 eC ± 0.04 | 6.43 cC ± 0.01 | 6.45 dD ± 0.01 | 6.39 aA ± 0.01 | 6.41 bAB ± 0.01 |
coeff. A × 10/24 h−3 | 2.24 | 3.65 | 1.54 | 2.47 | −3.07 | −1.38 |
R2 | 0.64 | 0.63 | 0.65 | 0.77 | 0.65 | 0.49 |
Redox potential—Eh (mV) LSDA = 15.45; LSD B= 14.11; LSD A × B = 34.55 | ||||||
1 | 171.45 dA ± 7.19 | 147.08 cA ± 7.51 | 133.00 cA ± 7.75 | 115.88 bA ± 9.77 | 108.40 abA ± 6.99 | 95.90 aA ± 6.51 |
5 | 196.73 dB ± 6.54 | 180.73 cB ± 7.69 | 161.23 bB ± 6.16 | 156.73 abB ± 8.78 | 154.63 aB ± 3.91 | 143.88 aB ± 2.04 |
8 | 215.50 cCD ± 8.61 | 198.08 bC ± 9.39 | 179.18 aC ± 4.63 | 177.63 aC ± 3.30 | 172.70 aC ± 3.34 | 169.85 aC ± 1.87 |
12 | 208.95 bBC ± 3.93 | 203.75 bC ± 3.73 | 196.43 abD ± 4.75 | 188.48 abCD ± 5.52 | 186.30 aCD ± 1.86 | 185.00 aD ± 2.86 |
15 | 224.63 cD ± 8.67 | 207.80 bC ± 7.60 | 197.33 abD ± 1.28 | 200.08 abD ± 4.57 | 200.13 abD ± 2.75 | 187.58 aD ± 4.08 |
coeff. A × 10/24 h−3 | 3375 | 4156 | 4714 | 5744 | 6181 | 6463 |
R2 | 0.83 | 0.86 | 0.94 | 0.92 | 0.93 | 0.89 |
Water activity LSD A = 0.00; LSD B= 0.00; LSD A × B = 0.01 | ||||||
1 | 0.964 dE ± 0.01 | 0.962 bE ± 0.00 | 0.956 eE ± 0.02 | 0.96 aE ± 0.00 | 0.963 cE ± 0.01 | 0.961 aE ± 0.00 |
5 | 0.954 cD ± 0.00 | 0.956 dD ± 0.00 | 0.954 cD ± 0.00 | 0.953 bD ± 0.01 | 0.957 eD ± 0.00 | 0.952 aD ± 0.00 |
8 | 0.950 dC ± 0.00 | 0.949 cC ± 0.00 | 0.948 bC ± 0.01 | 0.946 aC ± 0.00 | 0.950 dC ± 0.01 | 0.948 bC ± 0.00 |
12 | 0.943 cB ± 0.00 | 0.943 cA ± 0.01 | 0.942 bB ± 0.00 | 0.939 aA ± 0.00 | 0.946 eB ± 0.00 | 0.944 dB ± 0.00 |
15 | 0.941 cA ± 0.00 | 0.945 dB ± 0.00 | 0.936 aA ± 0.00 | 0.938 bB ± 0.00 | 0.938 bA ± 0.00 | 0.938 bA ± 0.00 |
coeff. A × 10/24 h−3 | −1.67 | −1.38 | −1.47 | −1.77 | −1.74 | −1.52 |
R2 | 0.96 | 0.9 | 0.95 | 0.97 | 0.98 | 0.98 |
Storage Time (Days) | Sample | |||||
---|---|---|---|---|---|---|
Control | 20% OR | 20% OR + 0.1% EChM | 20% OR + 0.2% EChM | 20% OR + 0.1% EChL | 20%OR + 0.2% EChL | |
Peroxide number (mEq O2/kg sample) LSD A = 0.02; LSD B = 0.02; LSD A × B = 0.05 | ||||||
1 | 0.21 cA ± 0.02 | 0.21 cA ± 0.02 | 0.18 abA ± 0.03 | 0.18 abA ± 0.03 | 0.16 aA ± 0.02 | 0.18 abA ± 0.03 |
5 | 0.33 dB ± 0.06 | 0.23 bcA ± 0.03 | 0.24 cB ± 0.02 | 0.23 bcB ± 0.03 | 0.20 aB ± 0.04 | 0.21 abB ± 0.03 |
8 | 0.35 cB ± 0.09 | 0.36 cB ± 0.05 | 0.29 bC ± 0.05 | 0.26 aC ± 0.02 | 0.28 abC ± 0.03 | 0.26 aC ± 0.05 |
12 | 0.43 cC ± 0.03 | 0.41 cC ± 0.05 | 0.34 bD ± 0.02 | 0.31 aD ± 0.02 | 0.30 aC ± 0.04 | 0.29 aD ± 0.02 |
15 | 0.53 eD ± 0.06 | 0.46 dD ± 0.03 | 0.39 cE ± 0.03 | 0.36 bE ± 0.02 | 0.36 bD ± 0.02 | 0.33 aE ± 0.05 |
coeff. A × 10/24 h−3 | 21 | 19 | 15 | 13 | 14 | 11 |
R2 | 0.97 | 0.94 | 0.99 | 0.99 | 0.96 | 0.99 |
TBARS (mg/kg of sample) LSD A = 0.04; LSD B = 0.04; LSD A × B = 0.10 | ||||||
1 | 1.07 bcA ± 0.08 | 1.10 cA ± 0.06 | 1.04 abA ± 0.05 | 1.07 bcA ± 0.05 | 1.05 abA ± 0.08 | 1.02 aA ± 0.08 |
5 | 1.28 cB ± 0.14 | 1.24 cB ± 0.12 | 1.06 aA ± 0.07 | 1.10 aA ± 0.07 | 1.15 bB ± 0.08 | 1.09 aB ± 0.07 |
8 | 1.41 dC ± 0.11 | 1.56 eC ± 0.11 | 1.36 cB ± 0.05 | 1.18 aB ± 0.05 | 1.22 abC ± 0.03 | 1.23 bC ± 0.04 |
12 | 1.53 cD ± 0.06 | 1.66 dD ± 0.05 | 1.49 bcC ± 0.04 | 1.26 aC ± 0.04 | 1.46 bD ± 0.03 | 1.27 aC ± 0.04 |
15 | 1.85 dE ± 0.06 | 1.87 dE ± 0.04 | 1.63 cD ± 0.10 | 1.50 bD ± 0.07 | 1.65 cE ± 0.04 | 1.43 aD ± 0.04 |
coeff. A × 10/24 h−3 | 51 | 55 | 45 | 28 | 43 | 28 |
R2 | 0.96 | 0.97 | 0.94 | 0.86 | 0.95 | 0.95 |
Storage Time (Days) | Sample | |||||
---|---|---|---|---|---|---|
Control | 20% OR | 20% OR + 0.1% EChM | 20% OR + 0.2% EChM | 20% OR + 0.1% EChL | 20%OR + 0.2% EChL | |
Total count of mesophilic bacteria (log10 cfu/g) LSD A = 0.18; LSD B = 0.16; LSD A × B = 0.40 | ||||||
1 | 1.74 dA ± 0.16 | 1.59 cA ± 0.25 | 1.24 aA ± 0.26 | 1.38 bA ± 0.05 | 1.29 abA ± 0.10 | 1.36 bA ± 0.04 |
5 | 1.79 cA ± 0.08 | 1.48 abA ± 0.15 | 1.40 aA ± 0.35 | 1.44 abA ± 0.29 | 1.50 abB ± 0.26 | 1.40 aA ± 0.14 |
8 | 2.37 cB ± 0.39 | 2.36 cB ± 0.13 | 2.31 bB ± 0.32 | 2.40 cB ± 0.11 | 2.17 abC ± 0.12 | 2.10 aB ± 0.22 |
12 | 3.63 cC ± 0.35 | 3.85 dC ± 0.27 | 2.86 bC ± 0.10 | 2.62 aC ± 0.12 | 2.71 abC ± 0.13 | 2.57 aC ± 0.36 |
15 | 4.88 cD ± 0.30 | 5.04 dD ± 0.06 | 3.43 bD ± 0.32 | 3.06 aD ± 0.25 | 3.04 aD ± 0.26 | 2.96 aD ± 0.15 |
coeff. A × 10/24 h−3 | 230 | 263 | 166 | 128 | 134 | 124 |
R2 | 0.89 | 0.89 | 0.96 | 0.92 | 0.97 | 0.94 |
Pseudomonas (log10 cfu/g) LSD A = 0.20; LSD B= 0.19; LSD A × B = 0.46 | ||||||
1 | 2.46 dA ± 0.25 | 1.73 aA ± 0.29 | 2.05 cA ± 0.30 | 1.91 abA ± 0.14 | 1.98 bcA ± 0.23 | 1.85 abcA ± 0.18 |
5 | 3.19 aB ± 0.24 | 3.35 aC ± 0.26 | 3.27 aB ± 0.20 | 3.31 aB ± 0.23 | 3.36 aB ± 0.24 | 3.25 aB ± 0.13 |
8 | 2.60 aA ± 0.24 | 2.42 aB ± 0.35 | 3.54 bC ± 0.20 | 3.75 cD ± 0.10 | 3.72 bcC ± 0.04 | 3.61 bcC ± 0.28 |
12 | 3.85 cD ± 0.12 | 3.52 abCD ± 0.17 | 3.86 cD ± 0.07 | 3.56 bCD ± 0.22 | 3.83 cC ± 0.06 | 3.33 aB ± 0.17 |
15 | 3.67 cC ± 0.09 | 3.67 cD ± 0.09 | 3.64 bcC ± 0.13 | 3.52 abC ± 0.17 | 3.73 cC ± 0.10 | 3.42 aBC ± 0.15 |
coeff. A × 10/24 h−3 | 90 | 120 | 110 | 101 | 115 | 94 |
R2 | 0.66 | 0.63 | 0.72 | 0.56 | 0.69 | 0.53 |
Trials | Class II Pork | Fine Fat | Rapeseed Oil | Pork Liver | Spices | Hops Extract | |
---|---|---|---|---|---|---|---|
Magnum | Lubelski | ||||||
g kg−1 | |||||||
Control | 430 | 420 | - | 150 | 21 | - | |
20% OR | 430 | 336 | 84 | 150 | 21 | - | |
20% OR + 0.1% EChM | 430 | 336 | 84 | 150 | 21 | 1 | - |
20% OR + 0.2% EChM | 430 | 336 | 84 | 150 | 21 | 2 | - |
20% OR+ 0.1% EChL | 430 | 336 | 84 | 150 | 21 | - | 1 |
20%OR + 0.2% EChL | 430 | 336 | 84 | 150 | 21 | - | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilska, A.; Kobus-Cisowska, J.; Wojtczak, J.; Kowalski, R.; Kaczmarek, E. Antioxidant Activity of Humulus lupulus Phenolic Hop Extracts in Creating a New Pâté: An Element Affecting Fat Stability and Microbiological Quality during Storage. Molecules 2024, 29, 1561. https://doi.org/10.3390/molecules29071561
Bilska A, Kobus-Cisowska J, Wojtczak J, Kowalski R, Kaczmarek E. Antioxidant Activity of Humulus lupulus Phenolic Hop Extracts in Creating a New Pâté: An Element Affecting Fat Stability and Microbiological Quality during Storage. Molecules. 2024; 29(7):1561. https://doi.org/10.3390/molecules29071561
Chicago/Turabian StyleBilska, Agnieszka, Joanna Kobus-Cisowska, Janusz Wojtczak, Ryszard Kowalski, and Ewelina Kaczmarek. 2024. "Antioxidant Activity of Humulus lupulus Phenolic Hop Extracts in Creating a New Pâté: An Element Affecting Fat Stability and Microbiological Quality during Storage" Molecules 29, no. 7: 1561. https://doi.org/10.3390/molecules29071561
APA StyleBilska, A., Kobus-Cisowska, J., Wojtczak, J., Kowalski, R., & Kaczmarek, E. (2024). Antioxidant Activity of Humulus lupulus Phenolic Hop Extracts in Creating a New Pâté: An Element Affecting Fat Stability and Microbiological Quality during Storage. Molecules, 29(7), 1561. https://doi.org/10.3390/molecules29071561