Computational Investigation about the Effects of Solvent Polarity and Chalcogen Element Electronegativity on ESIPT Behaviors for the Et2N-Substituted Flavonoid
Abstract
:1. Introduction
2. Results and Discussions
2.1. Solvent Polarity-Associated Excited-State Behaviors
2.2. Chalcogen Atomic Electronegativity-Regulated Excited-State Processes
3. Theoretical Calculation Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chou, P.; McMorrow, D.; Aartsma, T.; Kasha, M. The proton-transfer laser—Gain spectrum and amplification of spontaneous emission of 3-hydroxyflavone. J. Phys. Chem. 1984, 88, 4596. [Google Scholar] [CrossRef]
- McDonald, L.; Liu, B.; Taraboletti, A.; Whiddon, K.; Shriver, L.; Konopka, M.; Liu, Q.; Pang, Y. Fluorescent flavonoids for endoplasimic reticulum cell imaging. J. Mater. Chem. B 2016, 4, 7902. [Google Scholar] [CrossRef] [PubMed]
- Simkovitch, R.; Huppert, D. Excited-state intramolecular proton transfer of the natural product quercetin. J. Phys. Chem. B 2015, 119, 10244. [Google Scholar] [CrossRef] [PubMed]
- Kuhnau, J. The flavonoids: A class of semi-essential food components: Their role in human nutrition. World Rev. Nutr. Diet. 1976, 24, 117. [Google Scholar] [PubMed]
- Pietta, P. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035. [Google Scholar] [CrossRef] [PubMed]
- Brouillard, R.; Chemiant, A. Flavonoids and plant color. Prog. Clin. Biol. Res. 1988, 280, 93. [Google Scholar]
- Saad, E.; Khalil, L.; Zaki, M.; El-Ella, A. Determination of zirconium and aluminimum (III) in waster water. Mikrochim. Acta 2002, 140, 87. [Google Scholar] [CrossRef]
- Thapa, R.; Afzal, O.; Altamimi, A.; Goyal, A.; Almalki, W.; Alzarea, S.; Kazmi, I.; Jakhmola, V.; Singh, S.; Dua, K.; et al. Galangin as inflammatory response modulator: An updated overview and therapeutic potential. Chem. Biol. Interact. 2023, 378, 110482. [Google Scholar] [CrossRef]
- Demchenko, A.; Tang, K.; Chou, P. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization. Chem. Soc. Rev. 2013, 42, 1379. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, J.; Chen, J.; Wang, M.; Hou, M.; Yang, L. Regulated stepwise ESDPT mechanism associated with chalcogen substitutions in BDIBD derivatives. Phys. Chem. Chem. Phys. 2024, 26, 6335. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, H.; Fan, L.; Li, F.; Song, P. Unveiling and regulating the solvent-polarity-associated excited state intramolecular double proton transfer behavior for 1-bis(benzothiazolyl)naphthalene-diol fluorophore. Spectrochim. Acta Part A 2023, 299, 122831. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Shi, W.; Xin, X.; Yang, Y.; Ma, F.; Li, Y. Insights from computational analysis: Excited-state hydrogen-bonding interactions and ESIPT processes in phenothiazine derivatives. Spectrochim. Acta Part A 2023, 286, 121935. [Google Scholar] [CrossRef]
- Li, C.; Liu, R.; Dong, H. Theoretical insights into the impact of hydrogen bonding interactions and proton-transfer phenomena on the excited state of HBT-TMS fluorophore: Solvent-induced effects. J. Chin. Chem. Soc. 2024, 71, 292. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, C. Computational insights into excited state intramolecular double proton transfer behavior associated with atomic electronegativity for bis(2’-benzothiazolyl)hydroquinone. Molecules 2023, 28, 5951. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Meng, Q.; Zhao, J.; Chu, T. Zwitterions of the excited 4-([2,2’-bipyridine]-4-yl) phenol photoacid molecules: Formation and fluorescence. J. Mol. Liq. 2018, 264, 48. [Google Scholar] [CrossRef]
- Qiao, T.; Shi, W.; Zhuang, H.; Xin, X.; Li, Y. Fluorescence enhancement mechanism of new 4-cyanobiphehyl-based Schiff base probe by coordination interaction with cadmium ion. J. Lumin. 2024, 269, 120413. [Google Scholar] [CrossRef]
- Li, C.; Hou, M.; Dong, H.; Liu, R. Theoretical insights into photoinduced excited-state behaviors for the novel CHPPhl fluorophore: Effects of solvent polarity. J. Chin. Chem. Soc. 2024, 71, 120. [Google Scholar] [CrossRef]
- Li, C.; Dong, H.; Liu, R. Insights into solvent-polarity-regulated photoinduced excited state behaviors for E-HBT fluorophore: A theoretical investigation. Theor. Chem. Acc. 2024, 143, 11. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Jin, B. Uncovering photo-induced hydrogen bonding interaction and proton transfer mechanism for the novel salicylaldehyde azine derivative with para-position electrophilic cyano group. J. Lumin. 2021, 238, 118231. [Google Scholar] [CrossRef]
- Li, G.; Han, K. The sensing mechanism studies of the fluorescent probes with electronically excited state calculations. WIREs Comput. Mol. Sci. 2018, 8, 1351. [Google Scholar] [CrossRef]
- Xiao, J.; Kai, G.; Yang, F.; Liu, C.; Xu, X.; Yamamoto, K. Molecular structure-affinity relationship of natural polyphenols for bovine r-globulin. Mol. Nutr. Food Res. 2011, 55, 86. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Liu, B.; McDonald, L.; Pang, Y. Excited-state intramolecular proton transfer (ESIPT) of fluorescent flavonoid dyes: A close look by low temperature fluorescence. J. Phys. Chem. B 2017, 121, 4981. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 1994, 94, 2319. [Google Scholar] [CrossRef]
- Zhao, G.; Han, K. Ultrafast hydrogen bond strengthening of the photoinduced fluorenone in alcohols for facilitating the fluorescence quenching. J. Phys. Chem. A 2007, 111, 9218. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Song, P.; Liu, J.; Ma, F. The charge transfer phenomenon in benzene-pyrene-sulfoxide/methanol system: Role of the intermolecular hydrogen bond in excited states. J. Clust. Sci. 2015, 26, 1463. [Google Scholar] [CrossRef]
- Zhao, G.; Han, K. Hydrogen bonding in the electronic excited state. Acc. Chem. Res. 2012, 45, 404. [Google Scholar] [CrossRef]
- Fuster, F.; Silvi, B. Does the topological approach characterize the hydrogen bond? Theor. Chem. Acc. 2000, 104, 13. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580. [Google Scholar] [CrossRef]
- Emamian, S.; Lu, T.; Kruse, H.; Emamian, H. Exploring nature and predicting strength of hydrogen bonds: A correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. J. Comput. Chem. 2019, 40, 2868. [Google Scholar] [CrossRef]
- Song, L.; Meng, X.; Zhao, J.; Han, H.; Zheng, D. Effects of azole rings with different chalcogen atoms on ESIPT behavior for benzochalcogenazolyl-substituted hydroxyfluorenes. Spectrochim. Acta Part A 2022, 264, 120296. [Google Scholar] [CrossRef]
- Yang, D.; Liu, C.; Zhang, M.; Zhao, J. Effects of chalcogen atoms on excited-state double-proton transfer behavior for 3,6-bis(4,5-dihydroxyoxazo-2-yl)benzene-1,2-diol derivatives: A computational investigation. Molecules 2024, 29, 461. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Li, Y.; Zhou, Q.; Li, B.; Su, X.; Yin, H.; Shi, Y. Synergistically improving myricetin ESIPT and antioxidant activity via dexterously trimming atomic electronegativity. J. Mol. Liq. 2021, 325, 115272. [Google Scholar] [CrossRef]
- Dai, Y.; Zhao, J.; Cui, Y.; Wang, Q.; Song, P.; Ma, F.; Zhao, Y. Study of fluorescence probe transfer mechanism based on a new type of excited-state intramolecular proton transfer. Spectrochim. Acta Part A 2015, 144, 76. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H.; et al. Gaussian 16, Revision C. 01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R. Development of the colle-salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Marenich, A.; Cramer, C.; Truhlar, D. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378. [Google Scholar] [CrossRef]
- Schlegel, H. Optimization of equilibrium geometries and transition structures. J. Comput. Chem. 1982, 3, 214. [Google Scholar] [CrossRef]
Transition | λ | f | Composition | CI (%) | |
---|---|---|---|---|---|
cyclohexane | S0 → S1 | 424.85 | 0.8608 | H → L | 98.90 |
S0 → S2 | 341.99 | 0.0838 | H-1 → L | 92.54 | |
S0 → S3 | 310.26 | 0.0751 | H → L + 1 | 85.98 | |
dichloromethane | S0 → S1 | 433.02 | 0.8661 | H → L | 99.03 |
S0 → S2 | 345.36 | 0.0814 | H-1 → L | 92.90 | |
S0 → S3 | 312.81 | 0.1226 | H → L + 1 | 88.45 | |
acetonitrile | S0 → S1 | 435.80 | 0.8547 | H → L | 98.97 |
S0 → S2 | 346.24 | 0.0749 | H-1 → L | 92.75 | |
S0 → S3 | 313.22 | 0.1333 | H → L + 1 | 87.73 |
Cyclohexane | Dichloromethane | Acetonitrile | ||||
---|---|---|---|---|---|---|
S0 | S1 | S0 | S1 | S0 | S1 | |
O1-H2 | 0.9779 | 0.9950 | 0.9775 | 0.9914 | 0.9774 | 0.9911 |
H2···O3 | 2.0143 | 1.8422 | 2.0472 | 1.8837 | 2.0428 | 1.8831 |
Δ | 118.98 | 125.20 | 117.67 | 123.66 | 117.85 | 123.71 |
Cyclohexane | Dichloromethane | Acetonitrile | ||||
---|---|---|---|---|---|---|
S0 | S1 | S0 | S1 | S0 | S1 | |
ELF(C-V,D) | 0.0950 | 0.0971 | 0.0948 | 0.0967 | 0.0948 | 0.0963 |
ELF(DH-A) | 0.0774 | 0.1269 | 0.0719 | 0.1134 | 0.0709 | 0.1122 |
CVB index | 0.0176 | −0.0298 | 0.0229 | −0.0167 | 0.0239 | −0.0159 |
ENF-S | ENF-S-T | ENF-Se | ENF-Se-T | |||||
---|---|---|---|---|---|---|---|---|
S0 | S1 | S0 | S1 | S0 | S1 | S0 | S1 | |
O1-H2 | 0.9796 | 0.9955 | 1.7341 | 1.8603 | 0.9802 | 0.9963 | 1.6615 | 1.8196 |
H2-O3 | 1.9319 | 1.7855 | 1.0057 | 0.9876 | 1.8907 | 1.7606 | 1.0152 | 0.9893 |
Δ | 120.10 | 126.56 | 126.74 | 122.01 | 121.09 | 127.26 | 129.08 | 123.15 |
Solvents | S0 | S1 | ∆ρ (S1-S0) | ∆E (S1-S0) | ||
---|---|---|---|---|---|---|
ρ | EHB | ρ | EHB | ρ | EHB | |
ENF-S | 0.03157 | −6.3003 | 0.04217 | −8.6642 | 0.01060 | −2.3639 |
ENF-Se | 0.03453 | −6.9584 | 0.04575 | −9.4636 | 0.01120 | −2.5052 |
Transition | λ | f | Composition | CI (%) | |
---|---|---|---|---|---|
ENF-S | S0 → S1 | 457.07 | 0.5598 | H → L | 98.64 |
S0 → S2 | 376.54 | 0.0805 | H-1 → L | 94.77 | |
S0 → S3 | 325.07 | 0.0712 | H → L + 1 | 91.89 | |
ENF-Se | S0 → S1 | 465.80 | 0.5307 | H → L | 97.91 |
S0 → S2 | 395.71 | 0.0964 | H-1 → L | 95.40 | |
S0 → S3 | 324.00 | 0.0454 | H → L + 1 | 65.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, T.; Yang, F.; Chen, T. Computational Investigation about the Effects of Solvent Polarity and Chalcogen Element Electronegativity on ESIPT Behaviors for the Et2N-Substituted Flavonoid. Molecules 2024, 29, 2957. https://doi.org/10.3390/molecules29132957
Chang T, Yang F, Chen T. Computational Investigation about the Effects of Solvent Polarity and Chalcogen Element Electronegativity on ESIPT Behaviors for the Et2N-Substituted Flavonoid. Molecules. 2024; 29(13):2957. https://doi.org/10.3390/molecules29132957
Chicago/Turabian StyleChang, Tuo, Fang Yang, and Tangyan Chen. 2024. "Computational Investigation about the Effects of Solvent Polarity and Chalcogen Element Electronegativity on ESIPT Behaviors for the Et2N-Substituted Flavonoid" Molecules 29, no. 13: 2957. https://doi.org/10.3390/molecules29132957
APA StyleChang, T., Yang, F., & Chen, T. (2024). Computational Investigation about the Effects of Solvent Polarity and Chalcogen Element Electronegativity on ESIPT Behaviors for the Et2N-Substituted Flavonoid. Molecules, 29(13), 2957. https://doi.org/10.3390/molecules29132957