Chemical Characterization and Antioxidant, Antibacterial, Antiacetylcholinesterase and Antiproliferation Properties of Salvia fruticosa Miller Extracts
Abstract
:1. Introduction
2. Results
2.1. Plant Materials and Extraction Yields
2.2. Total Phenolic Content
2.3. Identification and Quantification of Phenolic Compounds by HPLC-DAD
2.4. GC-MS Analysis of the S. fruticosa Extracts before and after Derivatization (Trimethylsilylation)
2.5. DPPH Assay for the Determination of the Antioxidant Activity
2.6. Biological Activities
2.6.1. Antiacetylcholinesterase Activity (Anti-AChE)
2.6.2. MTT Assay for the Measurement of the Antiproliferation Activity
2.6.3. Antimicrobial Activity Assay
2.7. Principal Component Analysis (PCA)
3. Materials and Methods
3.1. Chemicals and Plant Materials
3.2. Preparation of the Extracts
3.3. Total Phenolic Content Determination
3.4. HPLC-DAD Fingerprint
3.5. Gas Chromatography GC-MS Analysis
3.6. Free Radical Scavenging Activity: DPPH Test
3.7. Biological Activities
3.7.1. Antiacetylcholinesterase Activity
3.7.2. Antiproliferation Activity
3.7.3. Antimicrobial Activity Assay
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Shikov, A.N.; Narkevich, I.A.; Flisyuk, E.V.; Luzhanin, V.G.; Pozharitskaya, O.N. Medicinal plants from the 14th edition of the Russian Pharmacopoeia, recent updates. J. Ethnopharmacol. 2021, 268, 113685. [Google Scholar] [CrossRef]
- Dincer, C.; Topuz, A.; Sahin-Nadeem, H.; Ozdemir, K.S.; Cam, I.B.; Tontul, I.; Ramazan, S.G.; Saadet Tugrul, A. A comparative study on phenolic composition, antioxidant activity and essential oil content of wild and cultivated sage (Salvia fruticosa Miller) as influenced by storage. Ind. Crops Prod. 2012, 39, 170–176. [Google Scholar] [CrossRef]
- Boukhary, R.; Rafaat, K.; Ghoneim, A.I.; Aboul-Ela, M.; El-lakany, A. Anti-inflammatory and antioxidant activities of Salvia fruticosa: An HPLC determination of phenolic contents. eCAM 2016, 2016, 7178105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iriti, M.; Vitalini, S.; Arnold Apostolides, N.; El Beyrouthy, M. Chemical composition and antiradical capacity of essential oils from Lebanese medicinal plants. J. Essent. Oil Res. 2014, 26, 466–472. [Google Scholar] [CrossRef]
- Dawra, M.; Nehme, N.; El Rayess, Y.; El Beyrouthy, M.; Taillandier, P.; Bouajila, J. Folk medicinal applications, phytochemical composition and biological activities of some Lebanese endemic plants. S. Afr. J. Bot. 2022, 150, 511–527. [Google Scholar] [CrossRef]
- Sarrou, E.; Martens, S.; Chatzopoulou, P. Metabolite profiling and antioxidative activity of Sage (Salvia fruticosa Mill.) under the influence of genotype and harvesting period. Ind. Crops Prod. 2016, 94, 240–250. [Google Scholar] [CrossRef]
- Gkioni, M.D.; Zeliou, K.; Dimaki, V.D.; Trigas, P.; Lamari, F.N. GC-MS and LC-DAD-MS Phytochemical Profiling for Characterization of Three Native Salvia Taxa from Eastern Mediterranean with Antiglycation Properties. Molecules 2023, 28, 93. [Google Scholar] [CrossRef] [PubMed]
- Süzgeç-Selçuk, S.; Özek, T.; Özek, G.; Your, S.; Göger, F.; Gürdal, M.B.; Toplan, G.G.; Meriçli, A.H.; Can Başer, K.H. The Leaf and the Gall volatiles of Salvia fruticosa Miller from Turkey: Chemical composition and biological activities. Rec. Nat. Prod. 2021, 15, 10–24. [Google Scholar] [CrossRef]
- Hamza, A.A.; Ahmed, S.M.; Elwy, H.M.; Radwan, O.K. Salvia fruticosa-mediated antioxidant protection against oxidative stress in streptozotocin—Induced diabetic rats role of α-glucosidase activity. Int. J. Pharm. Biol. Sci. 2016, 6, 138–149. [Google Scholar] [CrossRef]
- Pachura, N.; Zimmer, A.; Gryzwna, K.; Figiel, A.; Szumny, A.; Łyczko, J. Chemical investigation on Salvia officinalis L. affected by multiple drying techniques—The comprehensive analytical approach (HS-SPME, GC–MS, LC-MS/MS, GC-O and NMR). Food Chem. 2022, 397, 133802. [Google Scholar] [CrossRef]
- EMA/HMPC. Public Statement on Salvia officinalis L.; EMA: London, UK, 2016.
- Papageorgiou, V.; Gardeli, C.; Mallouchos, A.; Papaioannou, M.; Komaitis, M. Variation of the chemical profile and antioxidant behavior of Rosmarinus officinalis L. and Salvia fruticosa Miller grown in Greece. J. Agric. Food Chem. 2008, 56, 7254–7264. [Google Scholar] [CrossRef] [PubMed]
- Bozan, B. Antioxidant and free radical scavenging activities of eight Salvia species. Khim. Prir. Soedin. 2002, 2, 163–164. [Google Scholar]
- Duletić-Laušević, S.; Alimpić Aradski, A.; Šavikin, K.; Knežević, A.; Milutinović, M.; Stević, T.; Marin, P.D. Composition and biological activities of Libyan Salvia fruticosa Mill. and S. lanigera Poir. extracts. S. Afr. J. Bot. 2018, 39, 170–176. [Google Scholar] [CrossRef]
- Kivrak, Ş.; Gökturk, T.; Kivrak, I.; Kaya, E.; Karababa, E. Investigation of phenolic profiles and antioxidant activities of some Salvia speciescommonly grown in Southwest Anatolia using UPLC-ESI-MS/MS. Food Sci. Technol 2019, 39, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Savelev, S.; Okello, E.; Perry, N.S.L.; Wilkins, R.M.; Perry, E.K. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lav andulaefolia essential oil. Pharmacol. Biochem. Behav. 2003, 75, 661–668. [Google Scholar] [CrossRef]
- El Euch, S.K.; Hassine, D.B.; Cazaux, S.; Bouzouita, N.; Bouajila, J. Salvia officinalis essential oil: Chemical analysis and evaluation of anti-enzymatic and antioxidant bioactivities. S. Afr. J. Bot. 2019, 120, 253–260. [Google Scholar] [CrossRef]
- Formisano, C.; Senatore, F.; Arnold, A.N.; Piozzi, F.; Rosselli, S. GC and GC/MS analysis of the Essential Oils of Salvia hierosolymitana Boiss. Growing wild in Lebanon. Nat. Prod. Commun. 2007, 2, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Shekarchi, M.; Hajimehdipoor, H.; Saeidnia, S.; Gohari, A.R.; Hamedani, M.P. Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharmacogn. Mag. 2012, 8, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Erdemoglu, N.; Turan, N.N.; Cakici, I.; Sener, B.; Aydin, A. Antioxidant activities of some Lamiaceae plant extracts. Phytother. Res. 2006, 20, 9–13. [Google Scholar] [CrossRef]
- Bejeli, M. Comparison of total phenolic content and antioxidant activity of five salvia species by FRAP and DPPH assay. Int. J. Pharm. 2012, 4, 572–575. [Google Scholar]
- Ayaz, M.; Junaid, M.; Ullah, F.; Subhan, F.; Sadiq, A.; Ali, G.; Wadood, A.; Abdul El-Shazly, M.; Nisar, A.; Ahmad, S. Anti-Alzheimer’s studies on ß-sitosterol isolated from Polygonum hydropiper L. Front. Pharmacol. 2017, 8, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakaya, S.; Yilmaz, S.V.; Özdemir, Ö.; Koca, M.; Pınar, N.M.; Demirci, B.; Betül, Y.; Oksana, T.; Baser, K.H.C. A caryophyllene oxide and other potential anticholinesterase and anticancer agent in Salvia verticillata subsp. amasiaca (Freyn & Bornm) Bornm. (Lamiaceae). J. Essent. Oil Res. 2020, 32, 512–525. [Google Scholar] [CrossRef]
- Lo, A.H.; Liang, Y.C.; Lin-Shiau, S.Y.; Ho, C.T.; Lin, J.K. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-κB in mouse macrophages. Carcinogenesis 2002, 23, 983–991. [Google Scholar] [CrossRef] [Green Version]
- Suffness, M. Assays related to cancer drug discovery. In Methods in Plant Biochemistry: Assays for Bioactivity; Mhostettemann, K., Ed.; Academic Press: London, UK, 1990; Volume 6, pp. 71–133. [Google Scholar]
- De Maria, S.; Scognamiglio, I.; Lombardi, A.; Amodio, N.; Caraglia, M.; Cartenì, M.; Ravagnan, G.; Stiuso, P. Polydatin, a natural precursor of resveratrol, induces cell cycle arrest and differentiation of human colorectal Caco-2 cell. J. Transl. Med. 2013, 11, 264. [Google Scholar] [CrossRef] [Green Version]
- Kosová, M.; Hrádková, I.; Mátlová, V.; Kadlec, D.; Šmidrkal, J.; Filip, V. Antimicrobial effect of 4-hydroxybenzoic acid ester with glycerol. J. Clin. Pharm. Ther. 2015, 40, 436–440. [Google Scholar] [CrossRef]
- Choi, U.; Lee, C.R. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli . Front. Microbiol. 2019, 10, 953. [Google Scholar] [CrossRef] [Green Version]
- Dawra, M.; El Rayess, Y.; El Beyrouthy, M.; Nehme, N.; El Hage, R.; Taillandier, P.; Bouajila, J. Biological activities and chemical characterization of the Lebanese endemic plant Origanum ehrenbergii Boiss. Flavour Fragr. J. 2020, 36, 339–351. [Google Scholar] [CrossRef]
- CLSI M100-S27; Performance Standards for Antimicrobial Susceptibility Testing: 27th Informational Supplement. CLSI: Wayne, PA, USA, 2017.
S. fruticosa Extracts (mg of Compound/g of Extract) | ||||||||
---|---|---|---|---|---|---|---|---|
N° | RT (min) | Compounds | Chemical Structure | Calibration Curves | CHX | DCM | EtOAc | MeOH |
1 | 2.2 | 3-amino-4-hydroxybenzoic acid | 0.1 ± 0.0 | 0.3 ± 0.0 | ||||
2 | 7.7 | 3,4-dihydroxy-5-methoxybenzoic acid | 7.7 ± 0.1 | |||||
3 | 22.6 | Rutin | 0.3 ± 0.1 | |||||
4 | 23.3 | Polydatin | 2.7 ± 1.2 | 74.3 ± 0.0 | ||||
5 | 42.1 | 5′,3′-dihydroxyflavone | 0.1 ± 0.0 | |||||
6 | 43.4 | 5,7-dihydroxy-4-phenylcoumarine | 1.6 ± 0.1 | 0.1 ± 0.0 | ||||
7 | 44.9 | 3-benzyloxy-4,5-dihydroxy—benzoic acid methyl ester | 0.1 ± 0.0 | |||||
8 | 46.2 | 4′,5-dihydroxy-7-methoxyflavone | 0.3 ± 0.0 | |||||
9 | 47.0 | Pinosylvin monomethyl ether | 0.9 ± 0.0 | |||||
10 | 47.9 | 3, 6,3′-trimethoxyflavone | 0.9 ± 0.1 | 0.6 ± 0.0 | 0.2 ± 0.0 |
N° | RI | Compounds | CHX | DCM | EtOAc | MeOH |
---|---|---|---|---|---|---|
1 | - | α-thujene | + | |||
2 | - | camphene | + | |||
3 | - | sabinene | + | |||
4 | - | (−)-β-pinene | + | |||
5 | 908 | p-cymene | + | |||
6 | 911 | eucalyptol | + | + | ||
7 | 962 | cis-4-thujanol | + | |||
8 | 1105 | sabinene hydrate | + | |||
9 | 1110 | thujone | + | |||
10 | 1114 | α-monoacetin | + | |||
11 | 1118 | β-thujone | + | |||
12 | 1140 | (−)-camphor | + | |||
13 | 1141 | (+)-2-bornanone | + | |||
14 | 1164 | endo-borneol | + | |||
15 | 1166 | δ-terpineol | + | |||
16 | 1178 | 4-terpineol | + | |||
17 | 1196 | α-terpineol | + | |||
18 | 1276 | α-terpinyl acetate | + | |||
19 | 1290 | caryophyllene | + | |||
20 | 1292 | aromadendrene | + | |||
21 | 1294 | humulene | + | |||
22 | 1298 | γ-muurolene | + | |||
23 | 1527 | 1,5,9-trimethyl-1,5,9-cyclododecatriene | + | |||
24 | 1546 | espatulenol | + | |||
25 | 1549 | caryophyllene oxide | + | + | ||
26 | 1554 | (+)-viridiflorol | + | + | ||
27 | 1563 | humulene oxide II | + | |||
28 | 1575 | caryophylladienol II | + | |||
29 | 1576 | cubenol | + | |||
30 | 1745 | 2,6,11,15-tetramethyl-hexadeca-2,6,8,10,14-pentaene | + | |||
31 | 1850 | neophytadiene | + | + | ||
32 | 1931 | palmitic acid, methyl ester | ++ | |||
33 | 1937 | 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | + | + | ||
34 | 1977 | palmitic acid | + | |||
35 | 2080 | epimanool | + | + | ||
36 | 2112 | humulane-1,6-dien-3-ol | + | |||
37 | 2131 | linoleic acid | + | + | ||
38 | 2318 | 4,5,6,7-tetrahydroxy-1,8,8,9-tetramethyl-8,9-dihydrophenaleno[1,2-b]furan-3-one | + | + | + | |
39 | 2358 | totarol | + | |||
40 | 2370 | podocarpa-1,8,11,13-tetraen-3-one, 14-isopropyl-1,13-dimethoxy- | + | + | + | |
41 | 2406 | podocarpa-8,11,13-trien-3-one, 12-hydroxy-13-isopropyl-, acetate | + | + | ||
42 | 2421 | pregnan-3-yl acetate | + | |||
43 | 2445 | phenol, 2,2′-methylenebis[6-(1,1-dimethylethyl)-4-methyl- | + | + | +++ | |
44 | 2517 | 2-monopalmitin | + | + | +++ | |
45 | 2571 | 3′,8,8′-trimethoxy-3-piperidin-1-yl-2,2′-binaphthyl-1,1′,4,4′-tetrone | + | |||
46 | 2633 | (±)-demethylsalvicanol | + | + | ||
47 | 2638 | retinoic acid | + | |||
48 | 2738 | α-monostearin | + | |||
49 | 2822 | 12-O-methylcarnosol | + | |||
50 | 2901 | α-tocospiro B | + | |||
51 | 2903 | heptacosane | + | + | ||
52 | 2950 | octacosane | + | + | ||
53 | 2963 | vitamin E acetate | + | + | ||
54 | 3006 | tetratetracontane | + | + | ||
55 | 3065 | β-sitosterol | + | + | ||
56 | - | lupeol | + | |||
57 | - | ursolic aldehyde | + | |||
58 | - | uvaol | + | + | ||
After Derivatization | ||||||
N° | RT(min) | Compounds | CHX | DCM | EtOAc | MeCN |
1′ | 9.04 | 2,3-butanediol | + | |||
2′ | 9.8 | carbamic acid | + | |||
3′ | 10.5 | 1-butoxy-2-propanol | + | |||
4′ | 17.4 | exo-borneol | + | |||
5′ | 24.5 | β-eudesmol | + | |||
6′ | 25.1 | glycerol | + | |||
7′ | 33.3 | cuminyl alcohol | + | |||
8′ | 36.0 | linolool oxide | + | + | ||
9′ | 38.15 | 4-hydroxybenzoic acid | + | |||
10′ | 38.17 | 24-epicampesterol | + | |||
11′ | 38.3 | spathulenol | ++ | |||
12′ | 38.9 | 4-tert-butylcatechol | + | |||
13′ | 39.0 | glutaric acid | + | |||
14′ | 40.6 | L-(−)-sorbose | +++ | |||
15′ | 40.7 | α-talofuranose | +++ | |||
16′ | 40.9 | (Z)-5,8,11-eicosatrienoic acid | + | |||
17′ | 41.0 | methyl α-D-glucofuranoside | + | |||
18′ | 41.5 | β-D-(+)-talopyranose | ++ | |||
19′ | 42.4 | D-mannopyranose | + | |||
20′ | 42.48 | methyl caffeate | + | |||
21′ | 42.6 | D-ribofuranose | + | |||
22′ | 43.1 | salvianolic acid A | + | |||
23′ | 43.2 | ferulic acid | + | |||
24′ | 43.38 | palmitelaidic acid | + | |||
25′ | 43.47 | myo-inositol | + | |||
26′ | 43.49 | scyllo-inositol | + | |||
27′ | 43.67 | (13S)-labda-8(20),14-dien-13-ol | + | +++ | +++ | |
28′ | 43.68 | caffeic acid | + | + | ||
29′ | 43.9 | phytol | + | + | + | |
30′ | 44.0 | t-cadinol | + | + | + | |
31′ | 44.3 | α-linolenic acid | +++ | |||
32′ | 44.5 | stearic acid | +++ | |||
33′ | 44.6 | 2,3-dehydroferruginol | + | + | + | + |
34′ | 44.7 | ferruginol | ++ | + | ||
35′ | 45.1 | androstenediol | + | |||
36′ | 45.46 | kolavenol | + | |||
37′ | 45.49 | sempervirol | + | |||
38′ | 47.0 | 6,7-didehydroferruginol | ++ | |||
39′ | 47.05 | rosmadial | + | ++ | ||
40′ | 47.1 | 2-palmitoylglycerol | + | |||
41′ | 47.2 | D-(+)-turanose | +++ | |||
42′ | 47.3 | 1-monopalmitin | + | + | +++ | |
43′ | 47.4 | carnosic acid | ++ | |||
44′ | 47.7 | lactulose | + | |||
45′ | 47.9 | carnosol | + | +++ | + | |
46′ | 48.1 | sucrose | + | |||
47′ | 48.2 | D-trehalose | +++ | |||
48′ | 48.5 | 2-monostearin | + | |||
49′ | 48.61 | monoolein | + | |||
50′ | 48.62 | rosmanol | + | |||
51′ | 48.67 | 2-monolinolenin | ++ | |||
52′ | 49.0 | ethinyl estradiol | + | |||
53′ | 51.2 | α-tocopherol | + | + | ||
54′ | 51.9 | cytosine | + | |||
55′ | 52.2 | campesterol | + | |||
56′ | 52.4 | stigmasterol | + | |||
57′ | 53.1 | β-amyrin | + | |||
58′ | 53.2 | germanicol | + | |||
59′ | 53.5 | α-amyrin | + | |||
60′ | 53.9 | rosmarinic acid | + | |||
61′ | 54.7 | betulin | + | |||
62′ | 54.79 | erythrodiol | + | + | ||
63′ | 55.7 | oleanolic acid | +++ | +++ | +++ | |
64′ | 56.3 | ursolic acid | +++ | +++ | + | |
65′ | 57.1 | micromeric acid | + |
Extracts and Standards | DPPH (% INB) | IC50 (µg/mL) | Anti-AChE (% INB) | HCT-116 Cells (% INB) | IC50 (µg/mL) | Caco-2 Cells (% INB) | IC50 (µg/mL) |
---|---|---|---|---|---|---|---|
CHX | na | ˃50 | 59.5 ± 1.5 a | na | ˃50 | na | ˃50 |
DCM | 6.5 ± 2.5 c | ˃50 | 60.5 ± 5.0 a | 70.7 ± 3.6 b | 19.7 ± 3.6 | 72.3 ± 3.4 a | 24.0 ± 3.4 |
EtOAc | 20.9 ± 15.5 b | ˃50 | 60.6 ± 4.3 a | 87.5 ± 6.1 a | 14.6 ± 6.1 | 62.1 ± 0.3 b | 31.1 ± 0.3 |
MeOH | 76.1 ± 1.2 a | 19.4 ± 3.2 | 52.4 ± 1.7 a | 7.2 ± 2.1 c | ˃50 | na | ˃50 |
Ascorbic acid | 80.0 ± 12.6 | 4.0 ± 0.1 | - | - | - | - | - |
GaHBr | - | - | 88.1 ± 0.5 | - | - | - | - |
Tamoxifen | - | - | - | 91.1 ± 1.0 | - | 87.3 ± 0.1 | - |
Bacterial Strains | MIC (μg/mL) | ||||
---|---|---|---|---|---|
CHX | DCM | EtOAc | MeOH | ||
Salmonella Enteritidis | Gram- bacteria | 78.1 ± 1.2 c | 312.5 ± 0 c | - | 625 ± 0 d |
Salmonella Kentucky | 625 ± 1.2 d | 19.5 ± 0 a | - | - | |
Salmonella Infantis | 39 ± 1.5 b | 625 ± 1.39 d | - | 78.1 c | |
Escherichia coli ATCC 8739 | 625 ± 1.2 d | 312.5 ± 1.2 c | 2.4 ± 0.4 a | 2.4 ± 0.21 b | |
Listeria monocytogenes ATCC 19115 | Gram + bacteria | 4.8 ± 4.9 a | 78.1 ± 0 b | 39 ± 0 b | - |
Listeria monocytogenes Fish filet | - | - | - | - | |
Staphylococcus aureus ATCC 25923 | - | - | - | 1.2 ± 0 a |
F1 | F2 | |
---|---|---|
TPC | 32.6 | 2.6 |
DPPH | 33.2 | 1.5 |
AChE | 14.2 | 28.5 |
HCT-116 | 8.7 | 35.1 |
Caco-2 | 11.1 | 32.1 |
F1 | F2 | |
---|---|---|
TPC | 0.93 | 0.05 |
DPPH | 0.94 | 0.03 |
AChE | 0.40 | 0.59 |
HCT-116 | 0.24 | 0.73 |
Caco-2 | 0.31 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dawra, M.; Bouajila, J.; El Beyrouthy, M.; Abi Rizk, A.; Taillandier, P.; Nehme, N.; El Rayess, Y. Chemical Characterization and Antioxidant, Antibacterial, Antiacetylcholinesterase and Antiproliferation Properties of Salvia fruticosa Miller Extracts. Molecules 2023, 28, 2429. https://doi.org/10.3390/molecules28062429
Dawra M, Bouajila J, El Beyrouthy M, Abi Rizk A, Taillandier P, Nehme N, El Rayess Y. Chemical Characterization and Antioxidant, Antibacterial, Antiacetylcholinesterase and Antiproliferation Properties of Salvia fruticosa Miller Extracts. Molecules. 2023; 28(6):2429. https://doi.org/10.3390/molecules28062429
Chicago/Turabian StyleDawra, Michella, Jalloul Bouajila, Marc El Beyrouthy, Alain Abi Rizk, Patricia Taillandier, Nancy Nehme, and Youssef El Rayess. 2023. "Chemical Characterization and Antioxidant, Antibacterial, Antiacetylcholinesterase and Antiproliferation Properties of Salvia fruticosa Miller Extracts" Molecules 28, no. 6: 2429. https://doi.org/10.3390/molecules28062429
APA StyleDawra, M., Bouajila, J., El Beyrouthy, M., Abi Rizk, A., Taillandier, P., Nehme, N., & El Rayess, Y. (2023). Chemical Characterization and Antioxidant, Antibacterial, Antiacetylcholinesterase and Antiproliferation Properties of Salvia fruticosa Miller Extracts. Molecules, 28(6), 2429. https://doi.org/10.3390/molecules28062429