Enhancing Cu2+ Ion Removal: An Innovative Approach Utilizing Modified Frankincense Gum Combined with Multiwalled Carbon Tubes and Iron Oxide Nanoparticles as Adsorbent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Fr-MMWCNT and Fr-MMWCNT-Fe3O4
2.2. Adsorption Parameters
2.3. Adsorption Isotherm Study
2.4. Kinetics of Adsorption
2.5. Thermodynamics of Adsorption
2.6. Comparison of Adsorption Capacity of Fr-MMWCNT-Fe3O4 with Other Adsorbents
3. Materials and Methods
3.1. Materials
3.2. Preparation of Fr-MMWCNT and Fr-MMWCNT-Fe3O4
3.3. Instrumentation
3.4. Adsorption Studies
3.5. Adsorption Isotherm
3.6. Kinetics of Adsorption
3.6.1. Pseudo First Order
3.6.2. Pseudo Second Order
3.7. The Thermodynamics of Adsorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Javed, M.; Qamar, M.A.; Shahid, S.; Alsaab, H.O.; Asif, S. Highly efficient visible light active Cu–ZnO/SgC 3 N 4 nanocomposites for efficient photocatalytic degradation of organic pollutants. RSC Adv. 2021, 11, 37254–37267. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Alam, M.M.; Imran, M.; Ali, M.A.; Ahamad, T.; Haidyrah, A.S.; Alotaibi, S.M.R.; Shariq, M. A facile low-cost scheme for highly photoactive Fe3O4-MWCNTs nanocomposite material for degradation of methylene blue. Alex. Eng. J. 2022, 61, 9107–9117. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Urbanization, 2018. Our World Data. Available online: https://ourworldindata.org/urbanization (accessed on 24 April 2023).
- Qamar, M.A.; Javed, M.; Shahid, S.; Shariq, M.; Fadhali, M.M.; Ali, S.K.; Khan, M.S. Synthesis and applications of graphitic carbon nitride (g-C3N4) based membranes for wastewater treatment: A critical review. Heliyon 2023, 9, e12685. [Google Scholar] [CrossRef] [PubMed]
- Squitti, R.; Faller, P.; Hureau, C.; Granzotto, A.; White, A.R.; Kepp, K.P. Copper imbalance in Alzheimer’s disease and its link with the amyloid hypothesis: Towards a combined clinical, chemical, and genetic etiology. J. Alzheimer’s Dis. 2021, 83, 23–41. [Google Scholar] [CrossRef]
- Shariq, M.; BaQais, A.; Althagafi, T.M.; Madkhali, O.; Alholaisi, A.A.; Hussain, S.; Javed, Y. Synthesis of Co3O4/NiO nanospherical composites as electrode material for high-performance supercapacitors. Eur. Phys. J. Plus 2023, 138, 389. [Google Scholar] [CrossRef]
- Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Rev. 2017, 4, 37–59. [Google Scholar] [CrossRef]
- Qamar, M.A.; Shahid, S.; Javed, M.; Shariq, M.; Fadhali, M.M.; Madkhali, O.; Ali, S.K.; Syed, I.S.; Awaji, M.Y.; Shakir Khan, M.; et al. Accelerated Decoloration of Organic Dyes from Wastewater Using Ternary Metal/g-C3N4/ZnO Nanocomposites: An Investigation of Impact of g-C3N4 Concentration and Ni and Mn Doping. Catalysts 2022, 12, 1388. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Jarin, M.; Xie, X. Increasingly frequent extreme weather events urge the development of point-of-use water treatment systems. Npj Clean Water 2022, 5, 36. [Google Scholar] [CrossRef]
- Cheng, K.; Cai, Z.; Fu, J.; Sun, X.; Sun, W.; Chen, L.; Zhang, D.; Liu, W. Synergistic adsorption of Cu (II) and photocatalytic degradation of phenanthrene by a jaboticaba-like TiO2/titanate nanotube composite: An experimental and theoretical study. Chem. Eng. J. 2019, 358, 1155–1165. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, W.; Jie, F.; Zhao, Z.; Zhou, K.; Liu, H. The selective adsorption performance and mechanism of multiwall magnetic carbon nanotubes for heavy metals in wastewater. Sci. Rep. 2021, 11, 16878. [Google Scholar] [CrossRef]
- Zhao, P.; Geng, T.; Zhao, Y.; Tian, Y.; Li, J.; Zhang, H.; Zhao, W. Removal of Cu (Ⅱ) ions from aqueous solution by a magnetic multi-wall carbon nanotube adsorbent. Chem. Eng. J. Adv. 2021, 8, 100184. [Google Scholar] [CrossRef]
- Bassyouni, M.; Mansi, A.E.; Elgabry, A.; Ibrahim, B.A.; Kassem, O.A.; Alhebeshy, R. Utilization of carbon nanotubes in removal of heavy metals from wastewater: A review of the CNTs’ potential and current challenges. Appl. Phys. A 2019, 126, 38. [Google Scholar] [CrossRef]
- Asghar, A.; Yousaf, M.I.; Shad, N.A.; Sajid, M.M.; Afzal, A.M.; Javed, Y.; Razzaq, A.; Shariq, M.; Gulfam, Q.-U.; Sarwar, M.; et al. Enhanced Electrochemical Performance of Hydrothermally Synthesized NiS/ZnS Composites as an Electrode for Super-Capacitors. J. Clust. Sci. 2021, 33, 2325–2335. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, H.; Li, W.; Li, J.; Xu, R.; Zhang, K.; He, G.; Shearing, P.R.; Brett, D.J. Core–shell TiO 2@ C ultralong nanotubes with enhanced adsorption of antibiotics. J. Mater. Chem. A 2019, 7, 19081–19086. [Google Scholar] [CrossRef]
- Zhao, W.; Tian, Y.; Chu, X.; Cui, L.; Zhang, H.; Li, M.; Zhao, P. Preparation and characteristics of a magnetic carbon nanotube adsorbent: Its efficient adsorption and recoverable performances. Sep. Purif. Technol. 2020, 257, 117917. [Google Scholar] [CrossRef]
- Sarkar, B.; Mandal, S.; Tsang, Y.F.; Kumar, P.; Kim, K.-H.; Ok, Y.S. Designer carbon nanotubes for contaminant removal in water and wastewater: A critical review. Sci. Total. Environ. 2018, 612, 561–581. [Google Scholar] [CrossRef]
- Aftab, S.; Iqbal, M.Z.; Rim, Y.S. Recent Advances in Rolling 2D TMDs Nanosheets into 1D TMDs Nanotubes/Nanoscrolls. Small 2023, 19, 2205418. [Google Scholar] [CrossRef]
- Hui, M.; Shengyan, P.; Yaqi, H.; Rongxin, Z.; Anatoly, Z.; Wei, C. A highly efficient magnetic chitosan “fluid” adsorbent with a high capacity and fast adsorption kinetics for dyeing wastewater purification. Chem. Eng. J. 2018, 345, 556–565. [Google Scholar] [CrossRef]
- Fiyadh, S.S.; AlSaadi, M.A.; Jaafar, W.Z.; AlOmar, M.K.; Fayaed, S.S.; Mohd, N.S.; Hin, L.S.; El-Shafie, A. Review on heavy metal adsorption processes by carbon nanotubes. J. Clean. Prod. 2019, 230, 783–793. [Google Scholar] [CrossRef]
- Rahmani, A.; Karimi, G.R.; Hosseini, M. Removal/separation of Co (II) ion from environmental sample solutions by MnFe2O4/bentonite nanocomposite as a magnetic nanomaterial. Desalination Water Treat. 2017, 89, 250–257. [Google Scholar] [CrossRef]
- Chen, R.; Chai, L.; Li, Q.; Shi, Y.; Wang, Y.; Mohammad, A. Preparation and characterization of magnetic Fe3O4/CNT nanoparticles by RPO method to enhance the efficient removal of Cr (VI). Environ. Sci. Pollut. Res. 2013, 20, 7175–7185. [Google Scholar] [CrossRef]
- Wang, L.; Hu, D.; Kong, X.; Liu, J.; Li, X.; Zhou, K.; Zhao, H.; Zhou, C. Anionic polypeptide poly (γ-glutamic acid)-functionalized magnetic Fe3O4-GO-(o-MWCNTs) hybrid nanocomposite for high-efficiency removal of Cd (II), Cu (II) and Ni (II) heavy metal ions. Chem. Eng. J. 2018, 346, 38–49. [Google Scholar] [CrossRef]
- Yin, Y.; Shi, M.; Ren, Y.; Wang, S.; Hua, M.; Lu, J.; Zhang, W.; Lv, L. Wrinkle structure on multifunctional MOFs to facilitate PPCPs adsorption in wastewater. Chem. Eng. J. 2020, 387, 124196. [Google Scholar] [CrossRef]
- Ou, B.; Wang, J.; Wu, Y.; Zhao, S.; Wang, Z. Efficient removal of Cr (VI) by magnetic and recyclable calcined CoFe-LDH/g-C3N4 via the synergy of adsorption and photocatalysis under visible light. Chem. Eng. J. 2020, 380, 122600. [Google Scholar] [CrossRef]
- Sher, M.; Javed, M.; Shahid, S.; Iqbal, S.; Qamar, M.A.; Bahadur, A.; Qayyum, M.A. The controlled synthesis of gC 3 N 4/Cd-doped ZnO nanocomposites as potential photocatalysts for the disinfection and degradation of organic pollutants under visible light irradiation. RSC Adv. 2021, 11, 2025–2039. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.E. Nanoadsorbents for water and wastewater remediation. Sci. Total. Environ. 2020, 739, 139903. [Google Scholar] [CrossRef]
- Gutierrez, A.M.; Dziubla, T.D.; Hilt, J.Z. Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Rev. Environ. Health 2017, 32, 111–117. [Google Scholar] [CrossRef]
- Ali, M.E.; Hoque, M.E.; Hossain, S.K.S.; Biswas, M.C. Nanoadsorbents for wastewater treatment: Next generation biotechnological solution. Int. J. Environ. Sci. Technol. 2020, 17, 4095–4132. [Google Scholar] [CrossRef]
- Qamar, M.A.; Javed, M.; Shahid, S.; Iqbal, S.; Abubshait, S.A.; Abubshait, H.A.; Ramay, S.M.; Mahmood, A.; Ghaithan, H.M. Designing of highly active g-C3N4/Co@ ZnO ternary nanocomposites for the disinfection of pathogens and degradation of the organic pollutants from wastewater under visible light. J. Environ. Chem. Eng. 2021, 9, 105534. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, X.; Hu, Y.; Wang, R.; Chen, M.; Wu, J.; Wang, Y.; Kang, S.; Sun, Y.; Zhu, M. Behavior, remediation effect and toxicity of nanomaterials in water environments. Environ. Res. 2019, 174, 54–60. [Google Scholar] [CrossRef]
- Orooji, Y.; Mortazavi-Derazkola, S.; Ghoreishi, S.M.; Amiri, M. Mesopourous Fe3O4@ SiO2-hydroxyapatite nanocomposite: Green sonochemical synthesis using strawberry fruit extract as a capping agent, characterization and their application in sulfasalazine delivery and cytotoxicity. J. Hazard. Mater. 2020, 400, 123140. [Google Scholar] [CrossRef] [PubMed]
- Obey, G.; Adelaide, M.; Ramaraj, R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 2022, 7, 109–115. [Google Scholar] [CrossRef]
- Dikshit, P.K.; Kumar, J.; Das, A.K.; Sadhu, S.; Sharma, S.; Singh, S.; Gupta, P.K.; Kim, B.S. Green Synthesis of Metallic Nanoparticles: Applications and Limitations. Catalysts 2021, 11, 902. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Al Washahi, K.K.O.; Alkende, N.S.M.; Reddy, G.B.; Seku, K. Frankincense resin mediated green method for optimized biosynthesis of gold nanoparticles for simple and visual detection of Cu2+ ions. Mater. Today Proc. 2021, 43, 1376–1382. [Google Scholar] [CrossRef]
- Seku, K.; Hussaini, S.S.; Golla, N.; Rapolu, S.; Bandi, R.; Reddy, B. Microwave-assisted synthesis of palladium nanoparticles using Frankincense resin and evaluation of their catalytic properties. Mater. Lett. 2020, 278, 128427. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, Z.; Hu, Y.; Li, J.; Fan, X. Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl. Surf. Sci. 2013, 276, 476–481. [Google Scholar] [CrossRef]
- Regert, M.; Devièse, T.; LE Hô, A.; Rougeulle, A. Reconstructing ancient Yemeni commercial routes during the Middle Ages using structural characterization of terpenoid resins. Archaeometry 2008, 50, 668–695. [Google Scholar] [CrossRef]
- Ma, P.C.; Kim, J.-K.; Tang, B.Z. Functionalization of carbon nanotubes using a silane coupling agent. Carbon 2006, 44, 3232–3238. [Google Scholar] [CrossRef]
- Chiang, I.W.; Brinson, B.E.; Smalley, R.E.; Margrave, J.L.; Hauge, R.H. Purification and Characterization of Single-Wall Carbon Nanotubes. J. Phys. Chem. B 2001, 105, 1157–1161. [Google Scholar] [CrossRef]
- Misra, A.; Tyagi, P.; Rai, P.; Misra, D.S. FTIR Spectroscopy of Multiwalled Carbon Nanotubes: A Simple Approachto Study the Nitrogen Doping. J. Nanosci. Nanotechnol. 2007, 7, 1820–1823. [Google Scholar] [CrossRef] [PubMed]
- Temnuch, N.; Suwattanamala, A.; Inpaeng, S.; Tedsree, K. Magnetite nanoparticles decorated on multi-walled carbon nanotubes for removal of Cu2+ from aqueous solution. Environ. Technol. 2020, 42, 3572–3580. [Google Scholar] [CrossRef] [PubMed]
- Boruah, P.K.; Borah, D.J.; Handique, J.; Sharma, P.; Sengupta, P.; Das, M.R. Facile synthesis and characterization of Fe3O4 nanopowder and Fe3O4/reduced graphene oxide nanocomposite for methyl blue adsorption: A comparative study. J. Environ. Chem. Eng. 2015, 3, 1974–1985. [Google Scholar] [CrossRef]
- Singh, D.K.; Iyer, P.; Giri, P. Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by X-ray diffraction and Raman scattering studies. Diam. Relat. Mater. 2010, 19, 1281–1288. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, M.; Zhang, Q.; Li, Y.; Wang, H. The formation of magnetite nanoparticles on the sidewalls of multi-walled carbon nanotubes. Compos. Sci. Technol. 2009, 69, 633–638. [Google Scholar] [CrossRef]
- Yao, C.; Li, J.; Zhang, Z.; Gou, C.; Zhang, Z.; Pan, G.; Zhang, J. Hierarchical Core–Shell Co2N/CoP Embedded in N, P-doped Carbon Nanotubes as Efficient Oxygen Reduction Reaction Catalysts for Zn-air Batteries. Small 2022, 18, 2108094. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, W.; Lu, M.; Shao, Z.; Huang, W.; Li, J.; Li, Y.; Mo, J.; Li, Y.; Chen, C. Magnetic Fe3O4/activated carbon for combined adsorption and Fenton oxidation of 4-chlorophenol. Carbon 2020, 167, 351–363. [Google Scholar] [CrossRef]
- Bezzina, J.P.; Robshaw, T.; Dawson, R.; Ogden, M.D. Single metal isotherm study of the ion exchange removal of Cu (II), Fe (II), Pb (II) and Zn (II) from synthetic acetic acid leachate. Chem. Eng. J. 2020, 394, 124862. [Google Scholar] [CrossRef]
- Javed, M.; Iqbal, S.; Qamar, M.A.; Shariq, M.; Ahmed, I.A.; BaQais, A.; Alzahrani, H.; Ali, S.K.; Masmali, N.A.; Althagafi, T.M.; et al. Fabrication of Effective Co-SnO2/SGCN Photocatalysts for the Removal of Organic Pollutants and Pathogen Inactivation. Crystals 2023, 13, 163. [Google Scholar] [CrossRef]
- Ezzati, R. Derivation of Pseudo-First-Order, Pseudo-Second-Order and Modified Pseudo-First-Order rate equations from Langmuir and Freundlich isotherms for adsorption. Chem. Eng. J. 2019, 392, 123705. [Google Scholar] [CrossRef]
- Rajendran, S.; Priya, A.; Kumar, P.S.; Hoang, T.K.; Sekar, K.; Chong, K.Y.; Khoo, K.S.; Ng, H.S.; Show, P.L. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. Chemosphere 2022, 303, 135146. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, T.R.; Prelot, B. Adsorption processes for the removal of contaminants from wastewater: The perspective role of nanomaterials and nanotechnology. In Nanomaterials for the Detection and Removal of Wastewater Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 161–222. [Google Scholar]
- Bullen, J.C.; Saleesongsom, S.; Gallagher, K.; Weiss, D.J. A Revised Pseudo-Second-Order Kinetic Model for Adsorption, Sensitive to Changes in Adsorbate and Adsorbent Concentrations. Langmuir 2021, 37, 3189–3201. [Google Scholar] [CrossRef]
- Bujdák, J. Adsorption kinetics models in clay systems. The critical analysis of pseudo-second order mechanism. Appl. Clay Sci. 2020, 191, 105630. [Google Scholar] [CrossRef]
- Du, X.; Cheng, Y.; Liu, Z.; Yin, H.; Wu, T.; Huo, L.; Shu, C. CO2 and CH4 adsorption on different rank coals: A thermodynamics study of surface potential, Gibbs free energy change and entropy loss. Fuel 2020, 283, 118886. [Google Scholar] [CrossRef]
- Hu, C.; Zhu, P.; Cai, M.; Hu, H.; Fu, Q. Comparative adsorption of Pb (II), Cu (II) and Cd (II) on chitosan saturated montmorillonite: Kinetic, thermodynamic and equilibrium studies. Appl. Clay Sci. 2017, 143, 320–326. [Google Scholar] [CrossRef]
- Ben Khalifa, E.; Rzig, B.; Chakroun, R.; Nouagui, H.; Hamrouni, B. Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent. Chemom. Intell. Lab. Syst. 2019, 189, 18–26. [Google Scholar] [CrossRef]
- Fito, J.; Tefera, N.; Van Hulle, S.W. Adsorption of distillery spent wash on activated bagasse fly ash: Kinetics and thermodynamics. J. Environ. Chem. Eng. 2017, 5, 5381–5388. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Q.; Liu, M.; Tian, J.; Zeng, G.; Li, Z.; Wang, K.; Zhang, Q.; Wan, Q.; Deng, F.; et al. Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal. Appl. Surf. Sci. 2015, 343, 19–27. [Google Scholar] [CrossRef]
- Jiang, D.B.; Yuan, S.; Cai, X.; Xiang, G.; Zhang, Y.X.; Pehkonen, S.; Liu, X.Y. Magnetic nickel chrysotile nanotubes tethered with pH-sensitive poly (methacrylic acid) brushes for Cu (II) adsorption. J. Mol. Liq. 2019, 276, 611–623. [Google Scholar] [CrossRef]
- Xiao, D.-L.; Li, H.; He, H.; Lin, R.; Zuo, P.-L. Adsorption performance of carboxylated multi-wall carbon nanotube-Fe3O4 magnetic hybrids for Cu(II) in water. New Carbon Mater. 2014, 29, 15–25. [Google Scholar] [CrossRef]
- Dou, J.; Gan, D.; Huang, Q.; Liu, M.; Chen, J.; Deng, F.; Zhu, X.; Wen, Y.; Zhang, X.; Wei, Y. Functionalization of carbon nanotubes with chitosan based on MALI multicomponent reaction for Cu2+ removal. Int. J. Biol. Macromol. 2019, 136, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Bayazit, S.; Inci, I. Adsorption of Cu (II) ions from water by carbon nanotubes oxidized with UV-light and ultrasonication. J. Mol. Liq. 2014, 199, 559–564. [Google Scholar] [CrossRef]
- Wu, C.-H. Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto as-produced and modified carbon nanotubes. J. Colloid Interface Sci. 2007, 311, 338–346. [Google Scholar] [CrossRef]
- Li, Y.-H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.; Wu, D.; Wei, B. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 2003, 41, 2787–2792. [Google Scholar] [CrossRef]
- Moradi, O.; Zare, K.; Monajjemi, M.; Yari, M.; Aghaie, H. The studies of equilibrium and thermodynamic adsorption of Pb (II), Cd (II) and Cu (II) ions from aqueous solution onto SWCNTs and SWCNT–COOH surfaces. Fuller. Nanotub. Carbon Nanostructures 2010, 18, 285–302. [Google Scholar] [CrossRef]
- Zeng, G.; Liu, X.; Liu, M.; Huang, Q.; Xu, D.; Wan, Q.; Huang, H.; Deng, F.; Zhang, X.; Wei, Y. Facile preparation of carbon nanotubes based carboxymethyl chitosan nanocomposites through combination of mussel inspired chemistry and Michael addition reaction: Characterization and improved Cu2+ removal capability. J. Taiwan Inst. Chem. Eng. 2016, 68, 446–454. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biomass type effect on biochar surface characteristic and adsorption capacity relative to silver and copper. Fuel 2020, 278, 118168. [Google Scholar] [CrossRef]
- Sabry, D.; El-Shahat, M.F. Heavy metals removal from aqueous solution using magnetite Dowex 50WX4 resin nanocomposite. J. Mater. 2017, 8, 503–511. [Google Scholar]
- Kowanga, K.D.; Gatebe, E.; Mauti, G.O.; Mauti, E.M. Kinetic, sorption isotherms, pseudo-first-order model and pseudo-second-order model studies of Cu (II) and Pb (II) using defatted Moringa oleifera seed powder. J. Phytopharm. 2016, 5, 71–78. [Google Scholar] [CrossRef]
- Benzaoui, T.; Selatnia, A.; Djabali, D. Adsorption of copper (II) ions from aqueous solution using bottom ash of expired drugs incineration. Adsorpt. Sci. Technol. 2017, 36, 114–129. [Google Scholar] [CrossRef]
- Khamwichit, A.; Dechapanya, W.; Dechapanya, W. Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell. Heliyon 2022, 8, e09610. [Google Scholar] [CrossRef] [PubMed]
- Dou, D.; Wei, D.; Guan, X.; Liang, Z.; Lan, L.; Lan, X.; Liu, P.; Mo, H.; Lan, P. Adsorption of copper (II) and cadmium (II) ions by in situ doped nano-calcium carbonate high-intensity chitin hydrogels. J. Hazard. Mater. 2021, 423, 127137. [Google Scholar] [CrossRef] [PubMed]
- An, B. Cu(II) and As(V) Adsorption Kinetic Characteristic of the Multifunctional Amino Groups in Chitosan. Processes 2020, 8, 1194. [Google Scholar] [CrossRef]
- Hassel, O. Ueber die Kristallstruktur des Graphits. Z. Fuer Phys. 1924, 25, 317–337. [Google Scholar] [CrossRef]
- Haavik, C.; Stolen, S.; Fjellvag, H.; Hanfland, M.; Hausermann, D. Equation of state of magnetite and its high-pressure modification: Thermodynamics of the Fe-O system at high pressure Sample at P = 6.6 GPa. Am. Mineral. 2000, 85, 514–523. [Google Scholar] [CrossRef]
Isotherm Models | Parameter Results | Study Temperatures (K) | ||
---|---|---|---|---|
308 | 318 | 338 | ||
Langmuir | qm (mg/g) | 250 | 240 | 239.5 |
KL (L/mg) | 0.014 | 0.0132 | 0.011 | |
R2 | 0.972 | 0.9718 | 0.971 | |
Freundlich | KF | 3.119 | 3.0940 | 3.050 |
n | 0.994 | 0.9820 | 0.971 | |
R2 | 0.9488 | 0.939 | 0.940 | |
Temkin | KT | 0.3406 | 0.3550 | 0.3443 |
B | 67.750 | 67.815 | 67.912 | |
R2 | 0.6715 | 0.6823 | 0.6613 |
Study Temp (K) | qe exp (mg/g) | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|---|
k1 | qe | R2 | k2 | qe | R2 | ||
308 | 64.8 | −0.0021 | 6.079 | 0.830 | 0.0197 | 65.14 | 0.999 |
318 | 65.0 | −0.0018 | 7.022 | 0.811 | 0.0189 | 66.90 | 0.988 |
338 | 70.0 | −0.0011 | 8.01 | 0.821 | 0.0190 | 67.60 | 0.984 |
Study Temp (K) | ΔG° (kJ/mol) | ΔH° (kJ/mol) | ΔS° (J/mol.K) |
---|---|---|---|
308 | −3.28 | 11.62 | 67.42 |
318 | −3.45 | ||
338 | −3.89 |
Adsorbent | Isotherm Model | Adsorption Capacity (qmax) mg/g | Reference |
---|---|---|---|
Fr-MMWCNT-Fe3O4 | Langmuir | 250 | Present work |
MMWCNTs | Langmuir | 46.41 | [12] |
MWCNTs-COOH | Langmuir | 10.45 | [43] |
CNTs-PDA-PP | Langmuir | 26.40 | [60] |
NCNT-g-PMAA-2 | Langmuir | 89.00 | [61] |
c-MWCNTMCs | Langmuir | 60.60 | [62] |
CNTs-CHO-CS | Langmuir | 115.84 | [63] |
USSWCNT | Langmuir | 142.86 | [64] |
NaOCl-modified CNTs | Langmuir | 47.39 | [65] |
CNTs | Langmuir | 28.49 | [66] |
SWCNT-COOH | Langmuir | 77.00 | [67] |
CNT-PDA-CS | Langmuir | 112.15 | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.; Hussaini, S.S.; Shariq, M.; Alzahrani, H.; Alholaisi, A.A.; Alharbi, S.H.; Alsharif, S.A.; Al-Gethami, W.; Ali, S.K.; Alaghaz, A.-N.M.A.; et al. Enhancing Cu2+ Ion Removal: An Innovative Approach Utilizing Modified Frankincense Gum Combined with Multiwalled Carbon Tubes and Iron Oxide Nanoparticles as Adsorbent. Molecules 2023, 28, 4494. https://doi.org/10.3390/molecules28114494
Hussain M, Hussaini SS, Shariq M, Alzahrani H, Alholaisi AA, Alharbi SH, Alsharif SA, Al-Gethami W, Ali SK, Alaghaz A-NMA, et al. Enhancing Cu2+ Ion Removal: An Innovative Approach Utilizing Modified Frankincense Gum Combined with Multiwalled Carbon Tubes and Iron Oxide Nanoparticles as Adsorbent. Molecules. 2023; 28(11):4494. https://doi.org/10.3390/molecules28114494
Chicago/Turabian StyleHussain, Mushtaq, Syed Sulaiman Hussaini, Mohammad Shariq, Hanan Alzahrani, Arafa A. Alholaisi, Samar H. Alharbi, Sirajah A. Alsharif, Wafa Al-Gethami, Syed Kashif Ali, Abdel-Nasser M. A. Alaghaz, and et al. 2023. "Enhancing Cu2+ Ion Removal: An Innovative Approach Utilizing Modified Frankincense Gum Combined with Multiwalled Carbon Tubes and Iron Oxide Nanoparticles as Adsorbent" Molecules 28, no. 11: 4494. https://doi.org/10.3390/molecules28114494
APA StyleHussain, M., Hussaini, S. S., Shariq, M., Alzahrani, H., Alholaisi, A. A., Alharbi, S. H., Alsharif, S. A., Al-Gethami, W., Ali, S. K., Alaghaz, A. -N. M. A., Siddiqui, M. A., & Seku, K. (2023). Enhancing Cu2+ Ion Removal: An Innovative Approach Utilizing Modified Frankincense Gum Combined with Multiwalled Carbon Tubes and Iron Oxide Nanoparticles as Adsorbent. Molecules, 28(11), 4494. https://doi.org/10.3390/molecules28114494