Amine-Reactive BODIPY Dye: Spectral Properties and Application for Protein Labeling
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Reactive BODIPY
2.2. UV-Vis and Fluorescence Spectroscopy Experiments of BODIPYs
2.3. Quantum Chemical Calculations of BODIPYs
2.4. Fluorescent Labeling of Proteins
2.5. Molecular Docking of Protein–BODIPY Conjugates
3. Materials and Methods
3.1. Materials
3.2. Instruments
3.3. Synthesis of Reactive BODIPY
3.4. Fluorescent Labeling of Proteins
3.5. Determination of Photophysical Characteristics
3.6. Description of Solvent Effects via Multiparameter Approach
3.7. Determination of Degree of Labeling
3.8. Quantum Chemical Calculations Procedure
3.9. Molecular Docking Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lavis, L.D.; Raines, R.T. Bright Ideas for Chemical Biology. ACS Chem. Biol. 2008, 3, 142–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Specht, E.A.; Braselmann, E.; Palmer, A.E. A Critical and Comparative Review of Fluorescent Tools for Live-Cell Imaging. Annu. Rev. Physiol. 2017, 79, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Singh, K. Recent Advances in the Application of BODIPY in Bioimaging and Chemosensing. J. Mater. Chem. C 2019, 7, 11361–11405. [Google Scholar] [CrossRef]
- Nakamura, M.; Tsumoto, K.; Ishimura, K.; Kumagai, I. Detection of Biotinylated Proteins in Polyacrylamide Gels Using an Avidin-Fluorescein Conjugate. Anal. Biochem. 2002, 304, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Hama, Y.; Urano, Y.; Koyama, Y.; Kamiya, M.; Bernardo, M.; Paik, R.S.; Shin, I.S.; Paik, C.H.; Choyke, P.L.; Kobayashi, H. A Target Cell-Specific Activatable Fluorescence Probe for In Vivo Molecular Imaging of Cancer Based on a Self-Quenched Avidin-Rhodamine Conjugate. Cancer Res. 2007, 67, 2791–2799. [Google Scholar] [CrossRef] [Green Version]
- Beija, M.; Afonso, C.A.M.; Martinho, J.M.G. Synthesis and Applications of Rhodamine Derivatives as Fluorescent Probes. Chem. Soc. Rev. 2009, 38, 2410–2433. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, S.Z.; Carneiro, H.C.; Lara, H.A.; Alves, R.B.; Resende, J.M.; Oliveira, H.M.; Silva, L.M.; Santos, D.A.; Freitas, R.P. Synthesis of a New Peptide-Coumarin Conjugate: A Potential Agent against Cryptococcosis. ACS Med. Chem. Lett. 2015, 6, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.; Wu, J. Far-Red and Near Infrared BODIPY Dyes: Synthesis and Applications for Fluorescent pH Probes and Bio-Imaging. Org. Biomol. Chem. 2014, 12, 3774–3791. [Google Scholar] [CrossRef]
- Kowada, T.; Maeda, H.; Kikuchi, K. BODIPY-Based Probes for the Fluorescence Imaging of Biomolecules in Living Cells. Chem. Soc. Rev. 2015, 44, 4953–4972. [Google Scholar] [CrossRef]
- Antina, E.; Bumagina, N.; Marfin, Y.; Guseva, G.; Nikitina, L.; Sbytov, D.; Telegin, F. BODIPY Conjugates as Functional Compounds for Medical Diagnostics and Treatment. Molecules 2022, 27, 1396. [Google Scholar] [CrossRef]
- Marek, M.; Kaiser, K.; Gruber, H.J. Biotin-Pyrene Conjugates with Poly(Ethylene Glycol) Spacers are Convenient Fluorescent Probes for Avidin and Streptavidin. Bioconjug. Chem. 1997, 8, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Carreon, J.R.; Stewart, K.M.; Mahon, K.P.; Shin, S.; Kelley, S.O. Cyanine Dye Conjugates as Probes for Live Cell Imaging. Bioorg. Med. Chem. Lett. 2007, 17, 5182–5185. [Google Scholar] [CrossRef]
- Loudet, A.; Burgess, K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chem. Rev. 2007, 107, 4891–4932. [Google Scholar] [CrossRef] [PubMed]
- Boens, N.; Leen, V.; Dehaen, W. Fluorescent Indicators Based on BODIPY. Chem. Soc. Rev. 2012, 41, 1130–1172. [Google Scholar] [CrossRef] [PubMed]
- Rezende, L.C.D.; Emery, F.S. A Review of the Synthetic Strategies for the Development of BODIPY Dyes for Conjugation with Proteins. Orbital Electron. J. Chem. 2013, 5, 62–83. [Google Scholar] [CrossRef]
- Dilek, O.; Bane, S.L. Synthesis, Spectroscopic Properties and Protein Labeling of Water Soluble 3,5-Disubstituted Boron Dipyrromethenes. Bioorg. Med. Chem. Lett. 2009, 19, 6911–6913. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Fan, J.; Gao, X.; Wang, B.; Sun, S.; Peng, X. Carboxyl BODIPY Dyes from Bicarboxylic Anhydrides: One-Pot Preparation, Spectral Properties, Photostability, and Biolabeling. J. Org. Chem. 2009, 74, 7675–7683. [Google Scholar] [CrossRef]
- Poirel, A.; Retailleau, P.; de Nicola, A.; Ziessel, R. Synthesis of Water-Soluble Red-Emitting Thienyl-BODIPYs and Bovine Serum Albumin Labeling. Chem. Eur. J. 2014, 20, 1252–1257. [Google Scholar] [CrossRef]
- Kim, D.; Ma, D.; Kim, M.; Jung, Y.; Kim, N.H.; Lee, C.; Cho, S.W.; Park, S.; Huh, Y.; Jung, J.; et al. Fluorescent Labeling of Protein Using Blue-Emitting 8-Amino-BODIPY Derivatives. J. Fluoresc. 2017, 27, 2231–2238. [Google Scholar] [CrossRef]
- Ksenofontova, K.V.; Ksenofontov, A.A.; Khodov, I.A.; Rumyantsev, E.V. Novel BODIPY-Conjugated Amino Acids: Synthesis and Spectral Properties. J. Mol. Liq. 2019, 283, 695–703. [Google Scholar] [CrossRef]
- Amorim, V.G.; Melo, S.M.G.; Leite, R.F.; Coutinho, P.A.; da Silva, S.M.P.; Silva, A.R.; Amorim, F.G.; Pires, R.G.W.; Coitinho, J.B.; Emery, F.S.; et al. Synthesis and Characterization of Two Novel Red-Shifted Isothiocyanate BODIPYs and Their Application in Protein Conjugation. Dyes Pigment. 2020, 182, 108646:1–108646:7. [Google Scholar] [CrossRef]
- Jeon, S.; Kim, T.-I.; Jin, H.; Lee, U.; Bae, J.; Bouffard, J.; Kim, Y. Amine-Reactive Activated Esters of meso-CarboxyBODIPY: Fluorogenic Assays and Labeling of Amines, Amino Acids, and Proteins. J. Am. Chem. Soc. 2020, 142, 9231–9239. [Google Scholar] [CrossRef] [PubMed]
- Ksenofontova, K.V.; Ksenofontov, A.A.; Khodov, I.A.; Rumyantsev, E.V. Synthesis and Study of Spectral Properties of Amino Acids-BODIPY Conjugates. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2020, 63, 4–11. [Google Scholar] [CrossRef]
- Raskolupova, V.I.; Popova, T.V.; Zakharova, O.D.; Nikotina, A.E.; Abramova, T.V.; Silnikov, V.N. Human Serum Albumin Labelling with a New BODIPY Dye Having a Large Stokes Shift. Molecules 2021, 26, 2679. [Google Scholar] [CrossRef]
- Brellier, M.; Duportail, G.; Baati, R. Convenient Synthesis of Water-Soluble Nitrilotriacetic Acid (NTA) BODIPY Dyes. Tetrahedron Lett. 2010, 51, 1269–1272. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006; ISBN 978-0-387-46312-4. [Google Scholar]
- Kamlet, M.J.; Abboud, J.L.M.; Abraham, M.H.; Taft, R.W. Linear Solvation Energy Relationships. 23. A Comprehensive Collection of the Solvatochromic Parameters, π*, α, and β, and Some Methods for Simplifying the Generalized Solvatochromic Equation. J. Org. Chem. 1983, 48, 2877–2887. [Google Scholar] [CrossRef]
- Catalán, J. Toward a Generalized Treatment of the Solvent Effect Based on Four Empirical Scales: Dipolarity (SdP, a New Scale), Polarizability (SP), Acidity (SA), and Basicity (SB) of the Medium. J. Phys. Chem. B 2009, 113, 5951–5960. [Google Scholar] [CrossRef]
- Mataga, N.; Kaifu, Y.; Koizumi, M. Solvent Effects upon Fluorescence Spectra and the Dipolemoments of Excited Molecules. Bull. Chem. Soc. Jpn. 1956, 29, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Boens, N.; Leen, V.; Dehaen, W.; Wang, L.; Robeyns, K.; Qin, W.; Tang, X.; Beljonne, D.; Tonnelé, C.; Paredes, J.M.; et al. Visible Absorption and Fluorescence Spectroscopy of Conformationally Constrained, Annulated BODIPY Dyes. J. Phys. Chem. A 2012, 116, 9621–9631. [Google Scholar] [CrossRef]
- Cieślik-Boczula, K.; Burgess, K.; Li, L.; Nguyen, B.; Pandey, L.; de Borggraeve, W.M.; van der Auweraer, M.; Boens, N. Photophysics and Stability of Cyano-Substituted Boradiazaindacene Dyes. Photochem. Photobiol. Sci. 2009, 8, 1006–1015. [Google Scholar] [CrossRef]
- Banerjee, S.; Stüker, T.; Saalfrank, P. Vibrationally Resolved Optical Spectra of Modified Diamondoids Obtained from Time-Dependent Correlation Function Methods. Phys. Chem. Chem. Phys. 2015, 17, 19656–19669. [Google Scholar] [CrossRef] [Green Version]
- McWeeny, R. Some Recent Advances in Density Matrix Theory. Rev. Mod. Phys. 1960, 32, 335–369. [Google Scholar] [CrossRef]
- Tariq, R.; Khera, R.A.; Rafique, H.; Azeem, U.; Naveed, A.; Ayub, A.R.; Iqbal, J. Computational and Theoretical Study of Subphthalocyanine Based Derivatives by Varying Acceptors to Increase the Efficiency of Organic Solar Cells. Comput. Theor. Chem. 2021, 1203, 113356:1–113356:11. [Google Scholar] [CrossRef]
- Tretiak, S.; Igumenshchev, K.; Chernyak, V. Exciton Sizes of Conducting Polymers Predicted by Time-Dependent Density Functional Theory. Chem. Rev. 2005, 71, 3171. [Google Scholar] [CrossRef] [Green Version]
- Titov, E. On the Low-Lying Electronically Excited States of Azobenzene Dimers: Transition Density Matrix Analysis. Molecules 2021, 26, 4245. [Google Scholar] [CrossRef]
- Hermanson, G.T. Bioconjugate Techniques, 3rd ed.; Elsevier: London, UK, 2013; ISBN 978-0-12-382239-0. [Google Scholar]
- Jones Brunette, A.M.; Farrens, D.L. Distance Mapping in Proteins Using Fluorescence Spectroscopy: Tyrosine, Like Tryptophan, Quenches Bimane Fluorescence in a Distance-Dependent Manner. Biochemistry 2014, 53, 6290–6301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karolin, J.; Johansson, L.B.-A.; Strandberg, L.; Ny, T. Fluorescence and Absorption Spectroscopic Properties of Dipyrrometheneboron Difluoride (BODIPY) Derivatives in Liquids, Lipid Membranes, and Proteins. J. Am. Chem. Soc. 1994, 116, 7801–7806. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Zhang, H.-M.; Zhang, G.-C. Studies of the Interaction between Palmatine Hydrochloride and Human Serum Albumin by Fluorescence Quenching Method. J. Pharm. Biomed. Anal. 2006, 41, 1041–1046. [Google Scholar] [CrossRef]
- Ramezani, F.; Rafii-Tabar, H. An In-Depth View of Human Serum Albumin Corona on Gold Nanoparticles. Mol. Biosyst. 2015, 11, 454–462. [Google Scholar] [CrossRef]
- Zsila, F. Subdomain IB is the Third Major Drug Binding Region of Human Serum Albumin: Toward the Three-Sites Model. Mol. Pharm. 2013, 10, 1668–1682. [Google Scholar] [CrossRef]
- Fanali, G.; Di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human Serum Albumin: From Bench to Bedside. Mol. Asp. Med. 2012, 33, 209–290. [Google Scholar] [CrossRef] [PubMed]
- Iskhakova, Z.I.; Zhuravleva, D.E.; Heim, C.; Hartmann, M.D.; Laykov, A.V.; Forchhammer, K.; Kayumov, A.R. PotN Represents a Novel Energy-State Sensing PII Subfamily, Occurring in Firmicutes. FEBS J. 2022, 289, 5305–5321. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, A.; Woyda, K.; Brauburger, K.; Meiss, G.; Detsch, C.; Stülke, J.; Forchhammer, K. Interaction of the Membrane-Bound GlnK-AmtB Complex with the Master Regulator of Nitrogen Metabolism TnrA in Bacillus subtilis. J. Biol. Chem. 2006, 281, 34909–34917. [Google Scholar] [CrossRef] [Green Version]
- McPhie, P. [4] Dialysis. In Enzyme Purification and Related Techniques; Jakoby, W.B., Ed.; Elsevier: Amsterdam, The Netherlands, 1971; pp. 23–32. ISBN 978-0-12-181885-2. [Google Scholar]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Jameson, L.P.; Dzyuba, S.V. Expeditious, Mechanochemical Synthesis of BODIPY Dyes. Beilstein J. Org. Chem. 2013, 9, 786–790. [Google Scholar] [CrossRef]
- Haugland, R.P. Coupling of Monoclonal Antibodies with Fluorophores. In Monoclonal Antibody Protocols; Davis, W.C., Ed.; Humana Press: Totowa, NJ, USA, 1995; pp. 205–221. ISBN 978-1-59259-532-7. [Google Scholar]
- Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U. Relative and Absolute Determination of Fluorescence Quantum Yields of Transparent Samples. Nat. Protoc. 2013, 8, 1535–1550. [Google Scholar] [CrossRef]
- Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S.; Grimme, S. Extended Tight-Binding Quantum Chemistry Methods. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1494:1–e1494:49. [Google Scholar] [CrossRef]
- Pracht, P.; Bohle, F.; Grimme, S. Automated Exploration of the Low-Energy Chemical Space with Fast Quantum Chemical Methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192. [Google Scholar] [CrossRef]
- Wang, J.; Durbeej, B. How Accurate are TD-DFT Excited-State Geometries Compared to DFT Ground-State Geometries? J. Comput. Chem. 2020, 41, 1718–1729. [Google Scholar] [CrossRef]
- Santoro, F.; Cerezo, J.; FCclasses3. A Code for Vibronic Calculations. Available online: http://www.iccom.cnr.it/en/fcclasses (accessed on 12 October 2022).
- Neese, F. Software Update: The ORCA Program System-Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1606:1–e1606:15. [Google Scholar] [CrossRef]
- Neese, F. Software Update: The ORCA Program System, Version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1327:1–e1327:6. [Google Scholar] [CrossRef]
- Neese, F. The ORCA Program System. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Chemcraft-Graphical Software for Visualization of Quantum Chemistry Computations. Available online: https://www.chemcraftprog.com (accessed on 12 October 2022).
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Protein Data Bank. 4F5S: Crystal Structure of Bovine Serum Albumin. Available online: https://www.rcsb.org/structure/4F5S (accessed on 20 August 2022).
- Protein Data Bank. 7O4X: Crystal Structure of the PII-Like Protein PotN from Lentilactobacillus Hilgardii. Available online: https://www.rcsb.org/structure/7O4X (accessed on 20 August 2022).
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Zhu, K.; Borrelli, K.W.; Greenwood, J.R.; Day, T.; Abel, R.; Farid, R.S.; Harder, E. Docking Covalent Inhibitors: A Parameter Free Approach to Pose Prediction and Scoring. J. Chem. Inf. Model. 2014, 54, 1932–1940. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
Solvent | λabs max, nm | λem max, nm | Δν, cm−1 | ε, M−1·cm−1 | Φ | τ, ns | kr, ns−1 | knr, ns−1 | |
---|---|---|---|---|---|---|---|---|---|
COOH-Ph-BODIPY | |||||||||
1 | n-Hexane | 527 | 543 | 559 | 98,500 | 0.61 | 3.23 | 0.19 | 0.12 |
2 | Toluene | 529 | 549 | 689 | 99,500 | 0.61 | 4.09 | 0.15 | 0.09 |
3 | Ethyl acetate | 524 | 541 | 600 | 118,500 | 0.73 | 4.27 | 0.17 | 0.06 |
4 | Chloroform | 529 | 546 | 589 | 91,400 | 0.56 | 4.32 | 0.13 | 0.10 |
5 | DCM | 528 | 547 | 658 | 61,500 | 0.38 | 3.76 | 0.10 | 0.16 |
6 | Acetone | 523 | 542 | 670 | 51,900 | 0.32 | 3.66* | 0.09 | 0.19 |
7 | DMSO | 525 | 541 | 563 | 70,900 | 0.44 | 4.57 | 0.09 | 0.12 |
8 | Acetonitrile | 521 | 538 | 606 | 59,200 | 0.36 | 4.25* | 0.09 | 0.15 |
9 | n-Propanol | 523 | 539 | 568 | 70,400 | 0.43 | 4.76* | 0.09 | 0.12 |
10 | Ethanol | 523 | 539 | 568 | 56,700 | 0.35 | 4.85* | 0.07 | 0.13 |
NHS-Ph-BODIPY | |||||||||
1 | n-Hexane | 529 | 547 | 622 | 69,800 | 0.35 | 3.17 | 0.11 | 0.21 |
2 | Toluene | 532 | 552 | 681 | 61,900 | 0.43 | 4.02 | 0.11 | 0.14 |
3 | Ethyl acetate | 527 | 544 | 593 | 56,900 | 0.56 | 3.70 | 0.15 | 0.12 |
4 | Chloroform | 531 | 550 | 651 | 73,100 | 0.46 | 3.64 | 0.13 | 0.15 |
5 | DCM | 530 | 550 | 686 | 55,000 | 0.40 | 3.75 | 0.11 | 0.16 |
6 | Acetone | 526 | 545 | 663 | 55,200 | 0.35 | 3.23 | 0.11 | 0.20 |
7 | DMSO | 529 | 548 | 655 | 59,600 | 0.47 | 4.14 | 0.11 | 0.13 |
8 | Acetonitrile | 525 | 544 | 665 | 46,500 | 0.39 | 3.43 | 0.11 | 0.18 |
9 | n-Propanol | 527 | 546 | 660 | 52,600 | 0.49 | 3.60 | 0.13 | 0.14 |
10 | Ethanol | 527 | 545 | 627 | 54,000 | 0.38 | 3.85 | 0.10 | 0.16 |
y0 | aSA | bSB | cSP | dSdP | R2 | |
---|---|---|---|---|---|---|
COOH-Ph-BODIPY | ||||||
νabs(max), cm−1 | 19,553 ± 129 | −108 ± 113 | 131 ± 77 | −988 ± 190 | 203 ± 54 | 0.93 |
νem(max), cm−1 | 18,901 ± 291 | 13 ± 254 | 184 ± 172 | −924 ± 482 | 157 ± 122 | 0.75 |
Δν, cm−1 | 653 ± 189 | −122 ± 165 | −53 ± 112 | −64 ± 278 | 46 ± 79 | 0.29 |
NHS-Ph-BODIPY | ||||||
νabs(max), cm−1 | 19,461 ± 76 | −167 ± 66 | 100 ± 45 | −940 ± 112 | 150 ± 32 | 0.96 |
νem(max), cm−1 | 18,912 ± 104 | −258 ± 91 | 204 ± 62 | −1064 ± 154 | 81 ± 44 | 0.94 |
Δν, cm−1 | 549 ± 73 | 91 ± 63 | −104 ± 43 | 124 ± 107 | 68 ± 31 | 0.70 |
Compound | Solvent | ||µGS||, a.u. | ||µTD||, a.u. | ||µGS|| − ||µTD||, a.u. | ||µGS − µTD||, a.u. |
---|---|---|---|---|---|
COOH-Ph-BODIPY | n-Hexane | 1.405 | 0.724 | 0.681 | 0.714 |
DMSO | 1.658 | 0.975 | 0.683 | 0.711 | |
NHS-Ph-BODIPY | n-Hexane | 1.990 | 1.310 | 0.679 | 0.718 |
DMSO | 2.336 | 1.659 | 0.678 | 0.711 |
λabs max, nm | λem max, nm | Δν, cm−1 | Φ | τ1, ns | τ2, ns | |
---|---|---|---|---|---|---|
NHS-Ph-BODIPY | 526 | 542 | 561 | 0.41 | 4.96 | – |
BSA–NHS-Ph-BODIPY | 280 | 350 | 7143 | 0.30 | 2.79 | 8.00 |
530 | 554 | 817 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ksenofontova, K.V.; Kerner, A.A.; Ksenofontov, A.A.; Shagurin, A.Y.; Bocharov, P.S.; Lukanov, M.M.; Kayumov, A.R.; Zhuravleva, D.E.; Iskhakova, Z.I.; Molchanov, E.E.; et al. Amine-Reactive BODIPY Dye: Spectral Properties and Application for Protein Labeling. Molecules 2022, 27, 7911. https://doi.org/10.3390/molecules27227911
Ksenofontova KV, Kerner AA, Ksenofontov AA, Shagurin AY, Bocharov PS, Lukanov MM, Kayumov AR, Zhuravleva DE, Iskhakova ZI, Molchanov EE, et al. Amine-Reactive BODIPY Dye: Spectral Properties and Application for Protein Labeling. Molecules. 2022; 27(22):7911. https://doi.org/10.3390/molecules27227911
Chicago/Turabian StyleKsenofontova, Ksenia V., Anastasia A. Kerner, Alexander A. Ksenofontov, Artyom Yu. Shagurin, Pavel S. Bocharov, Michael M. Lukanov, Airat R. Kayumov, Darya E. Zhuravleva, Zalina I. Iskhakova, Evgeniy E. Molchanov, and et al. 2022. "Amine-Reactive BODIPY Dye: Spectral Properties and Application for Protein Labeling" Molecules 27, no. 22: 7911. https://doi.org/10.3390/molecules27227911
APA StyleKsenofontova, K. V., Kerner, A. A., Ksenofontov, A. A., Shagurin, A. Y., Bocharov, P. S., Lukanov, M. M., Kayumov, A. R., Zhuravleva, D. E., Iskhakova, Z. I., Molchanov, E. E., Merkushev, D. A., Khodov, I. A., & Marfin, Y. S. (2022). Amine-Reactive BODIPY Dye: Spectral Properties and Application for Protein Labeling. Molecules, 27(22), 7911. https://doi.org/10.3390/molecules27227911