A Comprehensive Review of Andrographis paniculata (Burm. f.) Nees and Its Constituents as Potential Lead Compounds for COVID-19 Drug Discovery
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Traditional Uses
3.2. Chemical Constituents
3.3. Pharmacological Activities: Anti-SARS-CoV-2 and Other Anti-Virus
3.3.1. In Silico Analysis of Potential Anti-SARS-CoV-2 Agents from A. paniculata Phytochemicals
3.3.2. In Vitro Studies of the Anti-SARS-CoV-2 Activity of A. paniculata Extract and Its Components
3.3.3. Antiviral Activity
3.4. Pharmacological Activity Relating to the COVID-19 Illness
3.4.1. Immunomodulatory Activity
3.4.2. Anti-Inflammatory Activity
3.4.3. Cold/Flu
3.5. Safety Data of Andrographis paniculata
3.5.1. Adverse Effects
3.5.2. Toxicity
3.5.3. Contraindication
3.5.4. Drug Interactions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 9 May 2022).
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Krüger, N.; Müller, M.; Drosten, C.; Pöhlmann, S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Huang, J.; Tao, G.; Liu, J.; Cai, J.; Huang, Z.; Chen, J.-x. Current Prevention of COVID-19: Natural Products and Herbal Medicine. Front. Pharmacol. 2020, 11, 588508. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.; Urbi, Z.; Karuniawati, H.; Mohiuddin, R.B.; Moh Qrimida, A.; Allzrag, A.M.M.; Ming, L.C.; Pagano, E.; Capasso, R. Andrographis paniculata (Burm. f.) Wall. ex Nees: An Updated Review of Phytochemistry, Antimicrobial Pharmacology, and Clinical Safety and Efficacy. Life 2021, 11, 348. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Chen, S.-R.; Chai, L.; Zhao, J.; Wang, Y.; Wang, Y. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit. Rev. Food Sci Nutr. 2019, 59, S17–S29. [Google Scholar] [CrossRef] [PubMed]
- Joselin, J.; Jeeva, S. Andrographis paniculata: A Review of its Traditional Uses, Phytochemistry and Pharmacology. Med Aromat Plants 2014, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Jiaqi, H.; Yunfei, D.; Daniel, T. ANDROGRAPHIS Wallich ex Nees in Wallich. Fl. China 2011, 19, 473–474. [Google Scholar]
- Jarukamjorn, K.; Nemoto, N. Pharmacological Aspects of Andrographis paniculata on Health and Its Major Diterpenoid Constituent Andrographolide. J. F Health Sci. 2008, 54, 370–381. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Monographs on Selected Medicinal Plants; World Health Organization: Geneva, Switzerland, 2002; Volume 2. [Google Scholar]
- National Drug Selection Committees. Thai National List of Essential Medicine. 2021; pp. 46–47. Available online: https://pubmiddleware.mims.com/resource/document/82AE6301-4B56-473D-A76E-ADA40096A174/pdf/MIMS_1_2022_NLEM_Web.pdf?client=MIMS%20Publication-Topic&email=&country=Thailand&referenceId=Thailand%20National%20List%20of%20Essential%20Medicines%20(NLEM) (accessed on 5 July 2022).
- Mishra, S.K.; Sangwan, N.S.; Sangwan, R.S. Andrographis paniculata (Kalmegh): A Review. Pharm. Rev 2007, 1, 16. [Google Scholar]
- Panossian, A.; Wikman, G. Efficacy of Andrographis paniculata in Upper Respiratory Tract Infectious Diseases and the Mechanism of Action. In Evidence and Rational Based Research on Chinese Drugs; Springer: Vienna, Austria, 2012; p. 138. [Google Scholar]
- Bensky, D.; Gamble, A.; Kaptchuk, T. Chinese Herbal Medicine: Materia Medica; Revised ed.; Eastland Press: Washington, DC, USA, 1993. [Google Scholar]
- Sareer, O.; Ahmad, S.; Umar, S. Andrographis paniculata: A critical appraisal of extraction, isolation and quantification of andrographolide and other active constituents. Nat. Prod. Res. 2014, 28, 2081–2101. [Google Scholar] [CrossRef]
- Tang, W.; Eisenbrand, G. Andrographis paniculata (Burm. f.) Nees. In Chinese Drugs of Plant Origin; Springer: Berlin/Heidelberg, Germany, 1992; p. 1056. [Google Scholar]
- Chakravarti, R.; Chakravarti, M.D. Andrographolide, the Active Constituent of Andrographis paniculata Nees. A Preliminary Communication. Ind. Med. Gaz 1951, 86, 96. [Google Scholar]
- Chao, W.-W.; Lin, B.-F. Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin. Medi. 2010, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Cheung, H.; Cheung, C.; Kong, C. Determination of bioactive diterpenoids from Andrographis paniculata by micellar electrokinetic chromatography. J. Chromatogr. A 2001, 930, 171–176. [Google Scholar] [CrossRef]
- Matsuda, T.; Kuroyanagi, M.; Sugiyama, S.; Umehara, K.; Ueno, A.; Nishi, K. Cell differentiation-inducing diterpenes from Andrographis paniculata Nees. Chem. Pharm. Bull. 1994, 42, 1216–1225. [Google Scholar] [CrossRef] [Green Version]
- Pholphana, N.; Rangkadilok, N.; Thongnest, S.; Ruchirawat, S.; Ruchirawat, M.; Satayavivad, J. Determination and variation of three active diterpenoids in Andrographis paniculata (Burm. f.) Nees. Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 2004, 15, 365–371. [Google Scholar] [CrossRef]
- Sharma, A.; Lal, K.; Handa, S.S. Standardization of the Indian crude drug Kalmegh by high pressure liquid chromatographic determination of andrographolide. Phytochem. Anal. 1992, 3, 129–131. [Google Scholar] [CrossRef]
- Hossain, M.; Urbi, Z.; Sule, A.; Rahman, K. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. Sci. World J. 2014, 2014, 274905. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Mandal, A. Variation in morphological characteristics and andrographolide content in Andrographis paniculata (Burm. f.) Nees of Central India. Iran. J Energy Environ. 2010, 1, 165–169. [Google Scholar]
- Kandanur, S.G.S.; Tamang, N.; Golakoti, N.R.; Nanduri, S. Andrographolide: A natural product template for the generation of structurally and biologically diverse diterpenes. Eur. J. Med. Chem. 2019, 176, 513–533. [Google Scholar] [CrossRef]
- Kumar, M.P.; Mamidala, E.; Al-Ghanim, K.A.; Al-Misned, F.; Mahboob, S. Evaluation of the andrographolides role and its indoleamine 2, 3-dioxygenase inhibitory potential and attendant molecular mechanism against STZ-induced diabetic rats. Saudi J. Biol. Sci. 2020, 27, 713–719. [Google Scholar] [CrossRef]
- Luo, S.; Li, H.; Liu, J.; Xie, X.; Wan, Z.; Wang, Y.; Zhao, Z.; Wu, X.; Li, X.; Yang, M. Andrographolide ameliorates oxidative stress, inflammation and histological outcome in complete Freund’s adjuvant-induced arthritis. Chem.-Biol. Interact. 2020, 319, 108984. [Google Scholar] [CrossRef]
- Liu, W.; Fan, T.; Li, M.; Zhang, G.; Guo, W.; Yang, X.; Jiang, C.; Li, X.; Xu, X.; Tang, A. Andrographolide potentiates PD-1 blockade immunotherapy by inhibiting COX2-mediated PGE2 release. Int. Immunopharmacol. 2020, 81, 106206. [Google Scholar] [CrossRef]
- Geng, J.; Liu, J.; Yuan, X.; Liu, W.; Guo, W. Andrographolide triggers autophagy-mediated inflammation inhibition and attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behavior in mice. Toxicol. Appl. Pharmacol. 2019, 379, 114688. [Google Scholar] [CrossRef]
- Wang, D.-P.; Chen, S.-H.; Wang, D.; Kang, K.; Wu, Y.-F.; Su, S.-H.; Zhang, Y.-Y.; Hai, J. Neuroprotective effects of andrographolide on chronic cerebral hypoperfusion-induced hippocampal neuronal damage in rats possibly via PTEN/AKT signaling pathway. Acta Histochem. 2020, 122, 151514. [Google Scholar] [CrossRef]
- Zhang, G.; Jiang, C.; Xie, N.; Xu, Y.; Liu, L.; Liu, N. Treatment with andrographolide sulfonate provides additional benefits to imipenem in a mouse model of Klebsiella pneumoniae pneumonia. Biomed. Pharmacother. 2019, 117, 109065. [Google Scholar] [CrossRef]
- Paemanee, A.; Hitakarun, A.; Wintachai, P.; Roytrakul, S.; Smith, D.R. A proteomic analysis of the anti-dengue virus activity of andrographolide. Biomed. Pharmacother. 2019, 109, 322–332. [Google Scholar] [CrossRef]
- Wu, T.-S.; Chern, H.-J.; Damu, A.G.; Kuo, P.-C.; Su, C.-R.; Lee, E.-J.; Teng, C.-M. Flavonoids and ent-labdane diterpenoids from Andrographis paniculata and their antiplatelet aggregatory and vasorelaxing effects. J. Asian Nat. Prod. Res. 2008, 10, 17–24. [Google Scholar] [CrossRef]
- Chen, L.-X.; He, H.; Xia, G.; Zhou, K.-L.; Qiu, F. A new flavonoid from the aerial parts of Andrographis paniculata. Nat. Prod. Res. 2014, 28, 138–143. [Google Scholar] [CrossRef]
- Subramanian, R.; Asmawi, M.Z.; Sadikun, A. A bitter plant with a sweet future? A comprehensive review of an oriental medicinal plant: Andrographis paniculata. Phytochem. Rev. 2012, 11, 39–75. [Google Scholar] [CrossRef]
- Chua, L.S.; Yap, K.C.; Jaganath, I.B. Comparison of total phenolic content, scavenging activity and HPLC-ESI-MS/MS profiles of both young and mature leaves and stems of Andrographis paniculata. Nat. Prod. Commun. 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Maity, G.N.; Maity, P.; Dasgupta, A.; Acharya, K.; Dalai, S.; Mondal, S. Structural and antioxidant studies of a new arabinoxylan from green stem Andrographis paniculata (Kalmegh). Carbohydr. Polym. 2019, 212, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Chou, G.X.; Wang, Z.T. A new diterpene from the leaves of Andrographis paniculata Nees. Fitoterapia 2010, 81, 610–613. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.H.; Li, R.T.; Xiao, W.L.; Xu, G.; Lin, Z.W.; Zhao, Q.S.; Sun, H.D. ent-Labdane diterpenoids from Andrographis paniculata. J. Nat. Prod. 2006, 69, 319–322. [Google Scholar] [CrossRef]
- Chen, L.-X.; Qiu, F.; Wei, H.; Qu, G.-X.; Yao, X.-S. Nine New ent-Labdane Diterpenoids from the Aerial Parts of Andrographis paniculata. Helv. Chim. Acta 2006, 89, 2654–2664. [Google Scholar] [CrossRef]
- Wen, Q.; Jin, X.; Lu, Y.; Chen, D.F. Anticomplement ent-labdane diterpenoids from the aerial parts of Andrographis paniculata. Fitoterapia 2020, 142, 104528. [Google Scholar] [CrossRef]
- Balmain, A.; Connolly, J.D. Minor diterpenoid constituents of Andrographis paniculata Nees. J. Chem. Soc. Perkin Trans. 1973, 4, 1247–1251. [Google Scholar] [CrossRef]
- Pramanick, S.; Banerjee, S.; Achari, B.; Das, B.; Sen, A.K., Sr.; Mukhopadhyay, S.; Neuman, A.; Prangé, T. Andropanolide and isoandrographolide, minor diterpenoids from Andrographis paniculata: Structure and X-ray crystallographic analysis. J. Nat. Prod. 2006, 69, 403–405. [Google Scholar] [CrossRef]
- Fujita, T.; Fujitani, R.; Takeda, Y.; Takaishi, Y.; Yamada, T.; Kido, M.; Miura, I. On the Diterpenoids of Andrographis paniculata: X-Ray Crystallographic Analysis of Andrographolide and Structure Determination of New Minor Diterpenoids. Chem. Pharm. Bull. 1984, 32, 2117–2125. [Google Scholar] [CrossRef] [Green Version]
- Kulyal, P.; Tiwari, U.K.; Shukla, A.; Gaur, A.K. Chemical constituents isolated from Andrographis paniculata. Indian J. Chem. 2010, 49B, 356–359. [Google Scholar]
- Reddy, M.K.; Reddy, M.V.; Gunasekar, D.; Murthy, M.M.; Caux, C.; Bodo, B. A flavone and an unusual 23-carbon terpenoid from Andrographis paniculata. Phytochemistry 2003, 62, 1271–1275. [Google Scholar] [CrossRef]
- Niranjan Reddy, V.L.; Malla Reddy, S.; Ravikanth, V.; Krishnaiah, P.; Venkateshwar Goud, T.; Rao, T.P.; Siva Ram, T.; Gonnade, R.G.; Bhadbhade, M.; Venkateswarlu, Y. A new BIS-Andrographolide Ether from Andrographis paniculata Nees and evaluation of anti-HIV activity. Nat. Prod. Res. 2005, 19, 223–230. [Google Scholar] [CrossRef]
- Siripong, P.; Kongkathip, B.; Preechanukool, K.; Picha, P.; Tunsawan, K.; Taylor, W. Cytotoxic diterpenoid constituents from Andrographis paniculata Nees Leaves. J. Sci. Soc. Thail. 1992, 18, 187–194. [Google Scholar] [CrossRef]
- Zou, Q.Y.; Li, N.; Dan, C.; Deng, W.L.; Peng, S.L.; Ding, L.S. A new ent-labdane diterpenoid from Andrographis Paniculata. Chin. Chem. Lett. 2010, 21, 1091–1093. [Google Scholar] [CrossRef]
- My, N.; Hanh, T.; Cham, P.; Cuong, N.; Huong, T.; Quang, T.; Nam, N.; Minh, C. Andropaniosides A and B, two new ent-labdane diterpenoid glucosides from Andrographis paniculata. Phytochem. Lett. 2020, 35, 37–40. [Google Scholar] [CrossRef]
- Radhika, P.; Prasad, Y.R.; Sowjanya, K. A new diterpene from the leaves of Andrographis paniculata Nees. Nat. Prod. Commun. 2012, 7, 485–486. [Google Scholar] [CrossRef] [Green Version]
- Koteswara Rao, Y.; Vimalamma, G.; Venkata Rao, C.; Tzeng, Y.-M. Flavonoids and andrographolides from Andrographis paniculata. Phytochemistry. 2004, 65, 2317–2321. [Google Scholar] [CrossRef]
- Geethangili, M.; Rao, Y.K.; Fang, S.H.; Tzeng, Y.M. Cytotoxic constituents from Andrographis paniculata induce cell cycle arrest in jurkat cells. Phytother. Res. PTR 2008, 22, 1336–1341. [Google Scholar] [CrossRef]
- Wang, G.-Y.; Wen, T.; Liu, F.-F.; Tian, H.-Y.; Chun-Lin, F.A.N.; Huang, X.-J.; Ye, W.-C.; Wang, Y. Two new diterpenoid lactones isolated from Andrographis paniculata. Chin. J. Nat. Med. 2017, 15, 458–462. [Google Scholar] [CrossRef]
- Arifullah, M.; Namsa, N.D.; Mandal, M.; Chiruvella, K.K.; Vikrama, P.; Gopal, G.R. Evaluation of anti-bacterial and anti-oxidant potential of andrographolide and echiodinin isolated from callus culture of Andrographis paniculata Nees. Asian Pac. J. Trop. Biomed. 2013, 3, 604–610. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Zhou, B. Isolation and structure of two new diterpenoid glucosides from Andrographis paniculata Nees. Acta Pharm. Sin. 1982, 17, 435–440. [Google Scholar]
- Chen, L.; Zhu, H.; Wang, R.; Zhou, K.; Jing, Y.; Qiu, F. ent-Labdane Diterpenoid Lactone Stereoisomers from Andrographis paniculata. J. Nat. Prod. 2008, 71, 852–855. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.P.; Yang, Z.J.; Zhao, W.Y.; Zhang, R.Y.; Li, H.; Chen, L.X. A novel 15-spiro diterpenoid dimer from Andrographis paniculata with inhibitory potential against human carboxylesterase 2. Bioorg. Chem. 2020, 97, 103680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Q.; Wang, G.-C.; Ye, W.-C.; Li, Q.; Zhou, G.-X.; Yao, X.-S. New Diterpenoids from Andrographis paniculata (Burm. f.) Nees. J. Integr. Plant Biol. 2006, 48, 1122–1125. [Google Scholar] [CrossRef]
- Zhou, K.-L.; Chen, L.-X.; Zhuang, Y.-L.; Wang, N.-L.; Yao, X.-S.; Qiu, F. Two new ent-labdane diterpenoid glycosides from the aerial parts of Andrographis paniculata. J. Asian Nat. Prod. Res. 2008, 10, 939–943. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, G.-D.; Ong, C.-S.; Ong, C.-N.; Shen, H.-M. Andrographolide sensitizes cancer cells to TRAIL-induced apoptosis via p53-mediated death receptor 4 up-regulation. Mol. Cancer Ther. 2008, 7, 2170–2180. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.C.; Gou, Z.P.; Wang, C.Y.; Yao, J.H.; Xin, X.L.; Lin, Y.; Liu, K.X. A new ent-labdane diterpenoid lactone from Andrographis paniculata. Chin. Chem. Lett. 2010, 21, 587–589. [Google Scholar] [CrossRef]
- Ji, L.L.; Wang, Z.; Dong, F.; Zhang, W.B.; Wang, Z.T. Andrograpanin, a compound isolated from anti-inflammatory traditional Chinese medicine Andrographis paniculata, enhances chemokine SDF-1alpha-induced leukocytes chemotaxis. J. Cell. Biochem. 2005, 95, 970–978. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.T.; Ge, B.X. Andrograpanin, isolated from Andrographis paniculata, exhibits anti-inflammatory property in lipopolysaccharide-induced macrophage cells through down-regulating the p38 MAPKs signaling pathways. Int. Immunopharmacol. 2008, 8, 951–958. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Z.T. Chemical constituents from roots of Andrographis paniculata. Yao Xue Xue Bao = Acta Pharm. Sin. 2011, 46, 317–321. [Google Scholar]
- Li, W.; Xu, X.; Zhang, H.; Ma, C.; Fong, H.; van Breemen, R.; Fitzloff, J. Secondary metabolites from Andrographis paniculata. Chem. Pharm. Bull. 2007, 55, 455–458. [Google Scholar] [CrossRef] [Green Version]
- Kuroyanagi, M.; Sato, M.; Ueno, A.; Nishi, K. Flavonoids from Andrographis paniculata. Chem. Pharm. Bull. 1987, 35, 4429–4435. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Chou, G.-X.; Wang, C.-H.; Wang, Z.-T. Rare noriridoids from the roots of Andrographis paniculata. Phytochemistry 2012, 77, 275–279. [Google Scholar] [CrossRef]
- Wang, G.-C.; Wang, Y.; Williams, I.D.; Sung, H.H.-Y.; Zhang, X.-Q.; Zhang, D.-M.; Jiang, R.-W.; Yao, X.-S.; Ye, W.-C. Andrographolactone, a unique diterpene from Andrographis paniculata. Tetrahedron Lett. 2009, 50, 4824–4826. [Google Scholar] [CrossRef]
- Cava, M.P.; Chan, W.R.; Stein, R.P.; Willis, C.R. Andrographolide: Further transformations and stereochemical evidence; the structure of isoandrographolide. Tetrahedron 1965, 21, 2617–2632. [Google Scholar] [CrossRef]
- Kleipool, R.J.C. Constituents of Andrographis paniculata Nees. Nature 1952, 169, 33–34. [Google Scholar] [CrossRef]
- Weiming, C.; Xiaotian, L. Deoxyandrographolide-19beta-D-glucoside from the leaves of Andrographis paniculata. Planta Med. 1982, 45, 245–246. [Google Scholar] [CrossRef]
- Chan, W.R.; Taylor, D.R.; Willis, C.R.; Bodden, R.L.; Fehlhaber, H.W. The structure and stereochemistry of neoandrographolide, a diterpene glucoside from Andrographis paniculata nees. Tetrahedron 1971, 27, 5081–5091. [Google Scholar] [CrossRef]
- Allison, A.J.; Butcher, D.N.; Connolly, J.D.; Overton, K.H. Paniculides A, B, and C, bisabolenoid lactones from tissue cultures of Andrographis paniculata. Chem. Commun. 1968, 23, 1493. [Google Scholar] [CrossRef]
- Jalal, M.A.; Overton, K.; Rycroft, D. Formation of three new flavones by differentiating callus cultures of Andrographis paniculata. Phytochemistry 1979, 18, 149–151. [Google Scholar] [CrossRef]
- Chen, H.; Ma, Y.-B.; Huang, X.-Y.; Geng, C.-A.; Zhao, Y.; Wang, L.-J.; Guo, R.-H.; Liang, W.-J.; Zhang, X.-M.; Chen, J.-J. Synthesis, structure–activity relationships and biological evaluation of dehydroandrographolide and andrographolide derivatives as novel anti-hepatitis B virus agents. Bioorg. Med. Chem. Lett. 2014, 24, 2353–2359. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Du, G.; Zhou, B.; Zong, K.; Ma, B. Study on spectroscopy of two flavonyl glycosides from Andrographis paniculata. Front. Chem. China 2008, 3, 178–181. [Google Scholar] [CrossRef]
- Gupta, K.K.; Taneja, S.C.; Dhar, K.L.; Atal, C.K. Flavonoids of Andrographis paniculata. Phytochemistry 1983, 22, 314–315. [Google Scholar] [CrossRef]
- Radhika, P.; Prasad, Y.R.; Lakshmi, K.R. Flavones from the Stem of Andrographis paniculata Nees. Nat. Prod. Commun. 2010, 5. [Google Scholar] [CrossRef] [Green Version]
- Alazmi, M.; Motwalli, O. Molecular basis for drug repurposing to study the interface of the S protein in SARS-CoV-2 and human ACE2 through docking, characterization, and molecular dynamics for natural drug candidates. J. Mol. Model. 2020, 26, 1–10. [Google Scholar] [CrossRef]
- Alagu Lakshmi, S.; Shafreen, R.M.B.; Priya, A.; Shunmugiah, K.P. Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: Using structure-based drug discovery approach. J. Biomol. Struct. Dyn 2020, 39, 4597–4609. [Google Scholar] [CrossRef]
- Dua, V.K.; Ojha, V.P.; Roy, R.; Joshi, B.C.; Valecha, N.; Devi, C.U.; Bhatnagar, M.C.; Sharma, V.P.; Subbarao, S.K. Anti-malarial activity of some xanthones isolated from the roots of Andrographis paniculata. J. Ethnopharmacol. 2004, 95, 247–251. [Google Scholar] [CrossRef]
- Şimşek Yavuz, S.; Ünal, S. Antiviral treatment of COVID-19. Turk. J. Med. Sci. 2020, 50, 611–619. [Google Scholar] [CrossRef]
- Gupta, S.; Mishra, K.P.; Ganju, L. Broad-spectrum antiviral properties of andrographolide. Arch. Virol. 2017, 162, 611–623. [Google Scholar] [CrossRef]
- Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M.Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E. COVID-19: Drug targets and potential treatments. J. Med. Chem. 2020, 63, 12359–12386. [Google Scholar] [CrossRef]
- Yang, J.; Petitjean, S.J.; Koehler, M.; Zhang, Q.; Dumitru, A.C.; Chen, W.; Derclaye, S.; Vincent, S.P.; Soumillion, P.; Alsteens, D. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Suryamohan, K.; Diwanji, D.; Stawiski, E.W.; Gupta, R.; Miersch, S.; Liu, J.; Chen, C.; Jiang, Y.-P.; Fellouse, F.A.; Sathirapongsasuti, J.F. Human ACE2 receptor polymorphisms and altered susceptibility to SARS-CoV-2. Commun. Biol. 2021, 4, 1–11. [Google Scholar] [CrossRef]
- Hiremath, S.; Kumar, H.V.; Nandan, M.; Mantesh, M.; Shankarappa, K.; Venkataravanappa, V.; Basha, C.J.; Reddy, C.L. In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in Ayurveda medicine in inhibiting SARS-CoV-2. 3 Biotech 2021, 11, 1–18. [Google Scholar] [CrossRef]
- Khanal, P.; Dey, Y.N.; Patil, R.; Chikhale, R.; Wanjari, M.M.; Gurav, S.S.; Patil, B.M.; Srivastava, B.; Gaidhani, S.N. Combination of system biology to probe the anti-viral activity of andrographolide and its derivative against COVID-19. RSC Adv. 2021, 11, 5065–5079. [Google Scholar] [CrossRef]
- Srivastava, N.; Garg, P.; Srivastava, P.; Seth, P.K. A molecular dynamics simulation study of the ACE2 receptor with screened natural inhibitors to identify novel drug candidate against COVID-19. PeerJ 2021, 9, e11171. [Google Scholar] [CrossRef]
- Sukardiman, M.E.; Pratama, M.R.F.; Poerwono, H.; Siswodihardjo, S. The coronavirus disease 2019 main protease inhibitor from Andrographis paniculata (Burm. f) Ness. J. Adv. Pharm. Technol. Res. 2020, 11, 157. [Google Scholar] [CrossRef]
- Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. Biomol. Struct. Dyn. 2020, 39, 3092–3098. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B 2020, 10, 766–788. [Google Scholar] [CrossRef]
- Murugan, N.A.; Pandian, C.J.; Jeyakanthan, J. Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials. J. Biomol. Struct. Dyn. 2020, 39, 4415–4426. [Google Scholar] [CrossRef]
- Rajagopal, K.; Varakumar, P.; Baliwada, A.; Byran, G. Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): An in silico approach. Future J. Pharm. Sci. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Shi, T.-H.; Huang, Y.-L.; Chen, C.-C.; Pi, W.-C.; Hsu, Y.-L.; Lo, L.-C.; Chen, W.-Y.; Fu, S.-L.; Lin, C.-H. Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage. Biochem. Biophys. Res. Commun. 2020, 533, 467–473. [Google Scholar] [CrossRef]
- Hillen, H.S.; Kokic, G.; Farnung, L.; Dienemann, C.; Tegunov, D.; Cramer, P. Structure of replicating SARS-CoV-2 polymerase. Nature 2020, 584, 154–156. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, W.; Xu, H.E. RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19. Biochem. Biophys. Res. Commun. 2021, 538, 47–53. [Google Scholar] [CrossRef]
- Sharma, A.; Vora, J.; Patel, D.; Sinha, S.; Jha, P.C.; Shrivastava, N. Identification of natural inhibitors against prime targets of SARS-CoV-2 using molecular docking, molecular dynamics simulation and MM-PBSA approaches. J. Biomol. Struct. Dyn. 2020, 40, 3296–3311. [Google Scholar] [CrossRef] [PubMed]
- Sa-ngiamsuntorn, K.; Suksatu, A.; Pewkliang, Y.; Thongsri, P.; Kanjanasirirat, P.; Manopwisedjaroen, S.; Charoensutthivarakul, S.; Wongtrakoongate, P.; Pitiporn, S.; Khemawoot, P. Anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component Andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. J. Nat. Prod 2021, 84, 1261–1270. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Dai, C.Q.; Jiang, Z.Y.; Li, E.Q.; Chen, C.; Wu, X.L.; Chen, J.; Liu, Q.; Zhao, C.L.; He, J.X.; et al. Andrographolide as an anti-H1N1 drug and the mechanism related to retinoic acid-inducible gene-I-like receptors signaling pathway. Chin. J. Integr. Med. 2014, 20, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.X.; Xue, H.J.; Ye, W.C.; Fang, B.H.; Liu, Y.H.; Yuan, S.H.; Yu, P.; Wang, Y.Q. Activity of andrographolide and its derivatives against influenza virus in vivo and in vitro. Biol. Pharm. Bull. 2009, 32, 1385–1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, L.; Zhang, C.; Sun, H.; Liu, Q.; Huang, J.; Sheng, L.; Lin, B.; Wang, J.; Chen, L. The semi-synthesis of novel andrographolide analogues and anti-influenza virus activity evaluation of their derivatives. Bioorg. Med. Chem. Lett. 2016, 26, 769–773. [Google Scholar] [CrossRef]
- Cai, W.; Li, Y.; Chen, S.; Wang, M.; Zhang, A.; Zhou, H.; Chen, H.; Jin, M. 14-Deoxy-11,12-dehydroandrographolide exerts anti-influenza A virus activity and inhibits replication of H5N1 virus by restraining nuclear export of viral ribonucleoprotein complexes. Antivir. Res. 2015, 118, 82–92. [Google Scholar] [CrossRef]
- Shihman Chang, R.; Yeung, H.W. Inhibition of growth of human immunodeficiency virus in vitro by crude extracts of Chinese medicinal herbs. Antivir. Res. 1988, 9, 163–175. [Google Scholar] [CrossRef]
- Uttekar, M.M.; Das, T.; Pawar, R.S.; Bhandari, B.; Menon, V.; Nutan; Gupta, S.K.; Bhat, S.V. Anti-HIV activity of semisynthetic derivatives of andrographolide and computational study of HIV-1 gp120 protein binding. Eur. J. Med. Chem. 2012, 56, 368–374. [Google Scholar] [CrossRef]
- Chang, R.S.; Ding, L.; Gai-Qing, C.; Qi-Choa, P.; Ze-Lin, Z.; Smith, K.M. Dehydroandrographolide Succinic Acid Monoester as an Inhibitor against the Human Immunodeficiency Virus. Proc. Soc. Exp. Biol. Med. 1991, 197, 59–66. [Google Scholar] [CrossRef]
- Basak, A.; Cooper, S.; Roberge, A.G.; Banik, U.K.; Chrétien, M.; Seidah, N.G. Inhibition of proprotein convertases-1, -7 and furin by diterpines of Andrographis paniculata and their succinoyl esters. Biochem. J. 1999, 338 Pt 1, 107–113. [Google Scholar] [CrossRef]
- Calabrese, C.; Berman, S.H.; Babish, J.G.; Ma, X.; Shinto, L.; Dorr, M.; Wells, K.; Wenner, C.A.; Standish, L.J. A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother. Res. 2000, 14, 333–338. [Google Scholar] [CrossRef]
- Wiart, C.; Kumar, K.; Yusof, M.Y.; Hamimah, H.; Fauzi, Z.M.; Sulaiman, M. Antiviral properties of ent-labdene diterpenes of Andrographis paniculata nees, inhibitors of herpes simplex virus type 1. Phytother. Res. 2005, 19, 1069–1070. [Google Scholar] [CrossRef]
- Suebsasana, S.; Pientong, C.; Ekalaksananan, T.; Thongchai, S.; Aromdee, C. A potential andrographolide analogue against the replication of herpes simplex virus type 1 in vero cells. Med. Chem. 2011, 7, 237–244. [Google Scholar] [CrossRef]
- Lin, T.-P.; Chen, S.-Y.; Duh, P.-D.; Chang, L.-K.; Liu, Y.-N. Inhibition of the Epstein–Barr Virus Lytic Cycle by Andrographolide. Biol. Pharm. Bull. 2008, 31, 2018–2023. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.C.; Tseng, C.K.; Young, K.C.; Sun, H.Y.; Wang, S.W.; Chen, W.C.; Lin, C.K.; Wu, Y.H. Andrographolide exerts anti-hepatitis C virus activity by up-regulating haeme oxygenase-1 via the p38 MAPK/Nrf2 pathway in human hepatoma cells. Br. J. Pharmacol. 2014, 171, 237–252. [Google Scholar] [CrossRef]
- Chandramohan, V.; Kaphle, A.; Chekuri, M.; Gangarudraiah, S.; Bychapur Siddaiah, G. Evaluating Andrographolide as a Potent Inhibitor of NS3-4A Protease and Its Drug-Resistant Mutants Using In Silico Approaches. Adv. Virol. 2015, 2015, 972067. [Google Scholar] [CrossRef] [Green Version]
- Nithya, P.; Jeyaram, C.; Sundaram, K.M.; Chandrasekar, A.; Ramasamy, M.S. Anti-Dengue Viral Compounds from Andrographis paniculata by Insilico Approach. World J. Altern. Med. 2014, 1, 10–16. [Google Scholar]
- Ramalingam, S.; Karupannan, S.; Padmanaban, P.; Vijayan, S.; Sheriff, K.; Palani, G.; Krishnasamy, K.K. Anti-dengue activity of Andrographis paniculata extracts and quantification of dengue viral inhibition by SYBR green reverse transcription polymerase chain reaction. Ayu 2018, 39, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.I.C.; Ling, A.P.K.; Koh, R.Y.; Chye, S.M.; Voon, K.G.L. Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC Complement. Altern. Med. 2012, 12, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wintachai, P.; Kaur, P.; Lee, R.; Ramphan, S.; Kuadkitkan, A.; Wikan, N.; Ubol, S.; Roytrakul, S.; Chu, J.H.; Smith, D. Activity of andrographolide against chikungunya virus infection. Sci. Rep. 2015, 5, 14179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Mishra, K.; Dash, P.; Parida, M.; Ganju, L.; Singh, S. Andrographolide inhibits chikungunya virus infection by up-regulating host innate immune pathways. Asian Pac. J. Trop. Med. 2018, 11, 214–221. [Google Scholar] [CrossRef]
- Fangkham, S.; Ekalaksananan, T.; Aromdee, C.; Seubsasana, S.; Kongyingyoes, B.; Patarapadungkit, N.; Pientong, C. The effect of andrographolide on Human papillomavirus type 16 (HPV16) positive cervical cancer cells (SiHa). Int. J. Infect. Dis. 2012, 16, e80. [Google Scholar] [CrossRef] [Green Version]
- Ekalaksananan, T.; Sookmai, W.; Fangkham, S.; Pientong, C.; Aromdee, C.; Seubsasana, S.; Kongyingyoes, B. Activity of Andrographolide and Its Derivatives on HPV16 Pseudovirus Infection and Viral Oncogene Expression in Cervical Carcinoma Cells. Nutr. Cancer 2015, 67, 687–696. [Google Scholar] [CrossRef]
- Brodin, P. Immune determinants of COVID-19 disease presentation and severity. Nat. Med. 2021, 27, 28–33. [Google Scholar] [CrossRef]
- Puri, A.; Saxena, R.; Saxena, R.P.; Saxena, K.C.; Srivastava, V.; Tandon, J.S. Immunostimulant Agents from Andrographis paniculata. J. Nat. Prod. 1993, 56, 995–999. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Dong, S.-f.; Liu, C.-h.; Italiani, P.; Sun, S.-h.; Xu, J.; Boraschi, D.; Ma, S.-p.; Qu, D. Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response. Acta Pharmacol. Sin. 2010, 31, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.A.; Sridevi, K.; Kumar, N.V.; Nanduri, S.; Rajagopal, S. Anticancer and immunostimulatory compounds from Andrographis paniculata. J. Ethnopharmacol. 2004, 92, 291–295. [Google Scholar] [CrossRef]
- Radhika, P.; Annapurna, A.; Rao, S.N. Immunostimulant, cerebroprotective & nootropic activities of Andrographis paniculata leaves extract in normal & type 2 diabetic rats. Indian J. Med. Res. 2012, 135, 636–641. [Google Scholar]
- Churiyah; Pongtuluran, O.B.; Rofaani, E.; Tarwadi. Antiviral and Immunostimulant Activities of Andrographis paniculata. HAYATI J. Biosci. 2015, 22, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Bukoye, O.; Musbau, A. Immune Modulation Potentials of Aqueous Extract of Andrographis paniculata Leaves in Male Rat. Researcher 2011, 3, 48–57. [Google Scholar]
- Peng, G.Y.; Zhou, F.; Ding, R.L.; Li, H.D.; Yao, K. Modulation of lianbizi injection (andrographolide) on some immune functions. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China J. Chin. Mater. Med. 2002, 27, 147–150. [Google Scholar]
- Panossian, A.; Davtyan, T.; Gukassyan, N.; Gukasova, G.; Mamikonyan, G.; Gabrielian, E.; Wikman, G. Effect of andrographolide and Kan Jang—Fixed combination of extract SHA-10 and extract SHE-3—On proliferation of human lymphocytes, production of cytokines and immune activation markers in the whole blood cells culture. Phytomed. Int. J. Phytother. Phytopharm. 2002, 9, 598–605. [Google Scholar] [CrossRef]
- Naik, S.R.; Hule, A. Evaluation of immunomodulatory activity of an extract of andrographolides from Andographis paniculata. Planta Med. 2009, 75, 785–791. [Google Scholar] [CrossRef]
- Banerjee, S.; Kar, A.; Mukherjee, P.; Haldar, P.; Sharma, N.; Katiyar, C. Immunoprotective potential of Ayurvedic herb Kalmegh (Andrographis paniculata) against respiratory viral infections—LC–MS/MS and network pharmacology analysis. Phytochem. Anal. 2021, 32, 629–639. [Google Scholar] [CrossRef]
- Panigrahy, D.; Gilligan, M.M.; Huang, S.; Gartung, A.; Cortés-Puch, I.; Sime, P.J.; Phipps, R.P.; Serhan, C.N.; Hammock, B.D. Inflammation resolution: A dual-pronged approach to averting cytokine storms in COVID-19? Cancer Metastasis Rev. 2020, 39, 337–340. [Google Scholar] [CrossRef]
- Calò Carducci, F.I.; De Ioris, M.A.; Agrati, C.; Carsetti, R.; Perrotta, D.; D’Argenio, P.; De Benedetti, F.; Notari, S.; Rossi, P.; Campana, A. Hyperinflammation in Two Severe Acute Respiratory Syndrome Coronavirus 2-Infected Adolescents Successfully Treated With the Interleukin-1 Inhibitor Anakinra and Glucocorticoids. Front. Pediatr. 2020, 8. [Google Scholar] [CrossRef]
- Ma, Q.; Pan, W.; Li, R.; Liu, B.; Li, C.; Xie, Y.; Wang, Z.; Zhao, J.; Jiang, H.; Huang, J.; et al. Liu Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-κB signaling pathway. Pharmacol. Res. 2020, 158, 104850. [Google Scholar] [CrossRef]
- Habtemariam, S. Andrographolide inhibits the tumour necrosis factor-α-induced upregulation of ICAM-1 expression and endothelial-monocyte adhesion. Phytother. Res. 1998, 12, 37–40. [Google Scholar] [CrossRef]
- Chen, H.-W.; Lin, A.-H.; Chu, H.-C.; Li, C.-C.; Tsai, C.-W.; Chao, C.-Y.; Wang, C.-J.; Lii, C.-K.; Liu, K.-L. Inhibition of TNF-α-Induced Inflammation by Andrographolide via Down-Regulation of the PI3K/Akt Signaling Pathway. J. Nat. Prod. 2011, 74, 2408–2413. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.A.; Romero, A.; Figueroa, J.; Cortés, P.; Concha, I.I.; Hancke, J.L.; Burgos, R.A. Andrographolide interferes with binding of nuclear factor-κB to DNA in HL-60-derived neutrophilic cells. Br. J. Pharmacol. 2005, 144, 680–686. [Google Scholar] [CrossRef] [Green Version]
- Parichatikanond, W.; Suthisisang, C.; Dhepakson, P.; Herunsalee, A. Study of anti-inflammatory activities of the pure compounds from Andrographis paniculata (burm.f.) Nees and their effects on gene expression. Int. Immunopharmacol. 2010, 10, 1361–1373. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, C.V.; Gupta, A.; Agarwal, A. Effect of an extract of Andrographis paniculata leaves on inflammatory and allergic mediators in vitro. J. Ethnopharmacol. 2010, 129, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Sheeja, K.; Kuttan, G. Ameliorating effects of Andrographis paniculata extract against cyclophosphamide-induced toxicity in mice. Asian Pac. J. Cancer Prev. 2006, 7, 609–614. [Google Scholar] [PubMed]
- Freedland, S.; Abrahamsson, P.-A. Androgen deprivation therapy and side effects: Are GnRH antagonists safer? Int. J. Nutr. Pharmacol. Neurol. Dis. 2013, 3, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Chen, L.; Wu, W.; Yang, J.; Yang, Z.; Liu, S. Andrographolide inhibits influenza A virus-induced inflammation in a murine model through NF-κB and JAK-STAT signaling pathway. Microbes Infect. 2017, 19, 605–615. [Google Scholar] [CrossRef]
- Li, J.; Luo, L.; Wang, X.; Liao, B.; Li, G. Inhibition of NF-kappaB expression and allergen-induced airway inflammation in a mouse allergic asthma model by andrographolide. Cell Mol. Immunol. 2009, 6, 381–385. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.S.; Peh, H.Y.; Liao, W.; Pang, C.H.; Chan, T.K.; Lau, S.H.; Chow, V.T.; Wong, W.S. Cigarette Smoke-Induced Lung Disease Predisposes to More Severe Infection with Nontypeable Haemophilus influenzae: Protective Effects of Andrographolide. J. Nat. Prod. 2016, 79, 1308–1315. [Google Scholar] [CrossRef]
- Ko, H.C.; Wei, B.L.; Chiou, W.F. The effect of medicinal plants used in Chinese folk medicine on RANTES secretion by virus-infected human epithelial cells. J. Ethnopharmacol. 2006, 107, 205–210. [Google Scholar] [CrossRef]
- Peng, S.; Hang, N.; Liu, W.; Guo, W.; Jiang, C.; Yang, X.; Xu, Q.; Sun, Y. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways. Acta Pharm. Sin. B 2016, 6, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.C.; Chan, T.K.; Ng, D.S.; Sagineedu, S.R.; Stanslas, J.; Wong, W.S. Andrographolide and its analogues: Versatile bioactive molecules for combating inflammation and cancer. Clin. Exp. Pharmacol. Physiol. 2012, 39, 300–310. [Google Scholar] [CrossRef]
- Burgos, R.A.; Alarcón, P.; Quiroga, J.; Manosalva, C.; Hancke, J. Andrographolide, an Anti-Inflammatory Multitarget Drug: All Roads Lead to Cellular Metabolism. Molecules 2020, 26, 5. [Google Scholar] [CrossRef]
- Vedavathy, S.; Rao, K.N. Antipyretic activity of six indigenous medicinal plants of Tirumala Hills, Andhra Pradesh, India. J. Ethnopharmacol. 1991, 33, 193–196. [Google Scholar] [CrossRef]
- Madav, S.; Tripathi, C.; Tandan, S.K.; Mishra, S. Analgesic, antipyretic, and antiulcerogenic effects of andrographolide. Indian J. Pharm. Sci. 1995, 57, 121–125. [Google Scholar]
- Deng, W.L. Preliminary studies on the pharmacology of the Andrographis product dihydroandrographolide sodium succinate. Newsl. Chin. Herb. Med. 1978, 8, 26–28. [Google Scholar]
- Suebsasana, S.; Pongnaratorn, P.; Sattayasai, J.; Arkaravichien, T.; Tiamkao, S.; Aromdee, C. Analgesic, antipyretic, anti-inflammatory and toxic effects of andrographolide derivatives in experimental animals. Arch. Pharmacal Res. 2009, 32, 1191–1200. [Google Scholar] [CrossRef]
- Thamlikitkul, V.; Dechatiwongse, T.; Theerapong, S.; Chantrakul, C.; Boonroj, P.; Punkrut, W.; Ekpalakorn, W.; Boontaeng, N.; Taechaiya, S.; Petcharoen, S.; et al. Efficacy of Andrographis paniculata, Nees for pharyngotonsillitis in adults. J. Med. Assoc. Thail. = Chotmaihet Thangphaet 1991, 74, 437–442. [Google Scholar]
- Panossian, A.; Hovhannisyan, A.; Mamikonyan, G.; Abrahamian, H.; Hambardzumyan, E.; Gabrielian, E.; Goukasova, G.; Wikman, G.; Wagner, H. Pharmacokinetic and oral bioavailability of andrographolide from Andrographis paniculata fixed combination Kan Jang in rats and human. Phytomed. Int. J. Phytother. Phytopharm. 2000, 7, 351–364. [Google Scholar] [CrossRef]
- Cáceres, D.D.; Hancke, J.L.; Burgos, R.A.; Sandberg, F.; Wikman, G.K. Use of visual analogue scale measurements (VAS) to asses the effectiveness of standardized Andrographis paniculata extract SHA-10 in reducing the symptoms of common cold. A randomized double blind-placebo study. Phytomed. Int. J. Phytother. Phytopharm. 1999, 6, 217–223. [Google Scholar] [CrossRef]
- Spasov, A.A.; Ostrovskij, O.V.; Chernikov, M.V.; Wikman, G. Comparative controlled study of Andrographis paniculata fixed combination, Kan Jang and an Echinacea preparation as adjuvant, in the treatment of uncomplicated respiratory disease in children. Phytother. Res. PTR 2004, 18, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Poolsup, N.; Suthisisang, C.; Prathanturarug, S.; Asawamekin, A.; Chanchareon, U. Andrographis paniculata in the symptomatic treatment of uncomplicated upper respiratory tract infection: Systematic review of randomized controlled trials. J. Clin. Pharm. Ther. 2004, 29, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Thompson-Coon, J.; Ernst, E. Andrographis paniculata in the Treatment of Upper Respiratory Tract Infections: A Systematic Review of Safety and Efficacy. Planta Med. 2004, 70, 293–298. [Google Scholar] [CrossRef]
- Hu, X.-Y.; Wu, R.-H.; Logue, M.; Blondel, C.; Lai, L.Y.W.; Stuart, B.; Flower, A.; Fei, Y.-T.; Moore, M.; Shepherd, J.; et al. Andrographis paniculata (Chuān Xīn Lián) for symptomatic relief of acute respiratory tract infections in adults and children: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0181780. [Google Scholar] [CrossRef] [Green Version]
- Melchior, J.; Spasov, A.; Ostrovskij, O.; Bulanov, A.; Wikman, G. Double-blind, placebo-controlled pilot and phase III study of activity of standardized Andrographis paniculata Herba Nees extract fixed combination (Kan jang) in the treatment of uncomplicated upper-respiratory tract infection. Phytomed. Int. J. Phytother. Phytopharm. 2000, 7, 341–350. [Google Scholar] [CrossRef]
- Amaryan, G.; Astvatsatryan, V.; Gabrielyan, E.; Panossian, A.; Panosyan, V.; Wikman, G. Double-blind, placebo-controlled, randomized, pilot clinical trial of ImmunoGuard®–a standardized fixed combination of Andrographis paniculata Nees, with Eleutherococcus senticosus Maxim, Schizandra chinensis Bail. and Glycyrrhiza glabra L. extracts in patients with Familial Mediterranean Fever. Phytomed. Int. J. Phytother. Phytopharm. 2003, 10, 271–285. [Google Scholar]
- Mkrtchyan, A.; Panosyan, V.; Panossian, A.; Wikman, G.; Wagner, H. A phase I clinical study of Andrographis paniculata fixed combination Kan Jang™ versus ginseng and valerian on the semen quality of healthy male subjects. Phytomed. Int. J. Phytother. Phytopharm. 2005, 12, 403–409. [Google Scholar] [CrossRef]
- Caceres, D.; Hancke, J.; Burgos, R.; Wikman, G. Prevention of common colds with Andrographis paniculata dried extract. A pilot double blind trial. Phytomed. Int. J. Phytother. Phytopharm. 1997, 4, 101–104. [Google Scholar] [CrossRef]
- Hancke, J.; Burgos, R.; Caceres, D.; Wikman, G. A double-blind study with a new monodrug Kan Jang: Decrease of symptoms and improvement in the recovery from common colds. Phytother. Res. 1995, 9, 559–562. [Google Scholar] [CrossRef]
- Saxena, R.; Singh, R.; Kumar, P.; Yadav, S.; Negi, M.; Saxena, V.; Joshua, A.; Vijayabalaji, V.; Goudar, K.; Venkateshwarlu, K. A randomized double blind placebo controlled clinical evaluation of extract of Andrographis paniculata (KalmCold™) in patients with uncomplicated upper respiratory tract infection. Phytomed. Int. J. Phytother. Phytopharm. 2010, 17, 178–185. [Google Scholar] [CrossRef]
- Ulbricht, C.; Seamon, E. Natural Standard Herbal Pharmacotherapy an Evidence Based Approach; Mosby Elsevier: St. Louis, MI, USA, 2009. [Google Scholar]
- Burgos, R.; Hancke, J.; Bertoglio, J.; Aguirre, V.; Arriagada, S.; Calvo, M.; Cáceres, D. Efficacy of an Andrographis paniculata composition for the relief of rheumatoid arthritis symptoms: A prospective randomized placebo-controlled trial. Clin. Rheumatol. 2009, 28, 931–946. [Google Scholar] [CrossRef]
- Farah, M.; Meyboom, R.; Ploen, M. Acute hypersensitivity reactions to Andrographis paniculata containing products, as reported in international pharmacovigilance. Drug Saf. 2008, 31, 885. [Google Scholar]
- Panossian, A.; Kochikian, A.; Gabrielian, E.; Muradian, R.; Stepanian, H.; Arsenian, F.; Wagner, H. Effect of Andrographis paniculata extract on progesterone in blood plasma of pregnant rats. Phytomed. Int. J. Phytother. Phytopharm. 1999, 6, 157–161. [Google Scholar] [CrossRef]
- Chandrasekaran, C.; Thiyagarajan, P.; Sundarajan, K.; Goudar, K.S.; Deepak, M.; Murali, B.; Allan, J.J.; Agarwal, A. Evaluation of the genotoxic potential and acute oral toxicity of standardized extract of Andrographis paniculata (KalmCold™). Food Chem. Toxicol. 2009, 47, 1892–1902. [Google Scholar] [CrossRef]
- Bothiraja, C.; Pawar, A.P.; Shende, V.S.; Joshi, P.P. Acute and subacute toxicity study of andrographolide bioactive in rodents: Evidence for the medicinal use as an alternative medicine. Comp. Clin. Pathol. 2013, 22, 1123–1128. [Google Scholar] [CrossRef]
- Worasuttayangkurn, L.; Nakareangrit, W.; Kwangjai, J.; Sritangos, P.; Pholphana, N.; Watcharasit, P.; Rangkadilok, N.; Thiantanawat, A.; Satayavivad, J. Acute oral toxicity evaluation of Andrographis paniculata-standardized first true leaf ethanolic extract. Toxicol. Rep. 2019, 6, 426–430. [Google Scholar] [CrossRef]
- Chang, H.; But, P.; Wang, L. Chuanxinlian. In Pharmacology and Applications of Chinese Material Medica; Chang, H., But, P., Eds.; World Scientific Publishing Co. Pte. Ltd: Singapore, 1987; Volume 2, pp. 913–926. [Google Scholar]
- Rana, A.C.; Avadhoot, Y. Hepatoprotective effects of Andrographis paniculata against carbon tetrachloride-induced liver damage. Arch. Pharmacal Res. 1991, 14, 93–95. [Google Scholar] [CrossRef]
- Burgos, R.A.; Caballero, E.E.; Sánchez, N.S.; Schroeder, R.A.; Wikman, G.K.; Hancke, J.L. Testicular toxicity assessment of Andrographis paniculata dried extract in rats. J. Ethnopharmacol. 1997, 58, 219–224. [Google Scholar] [CrossRef]
- Handa, S.S.; Sharma, A. Hepatoprotective activity of andrographolide from Andrographis paniculata against carbontetrachloride. Indian J. Med. Res. 1990, 92, 276–283. [Google Scholar]
- Sakila, S.; Begum, N.; Kawsar, S.; Begum, Z.; Zola, M. Relationship of anti-fertility effects of Andrographis paniculata and hormonal assay in female rats. Bangladesh J. Med. Sci 2009, 8, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Zoha, M.; Hussain, A.; Choudhury, S. Antifertility effect of Andrographis paniculata in mice. Bangladesh Med. Res. Counc. Bull. 1989, 15, 34–37. [Google Scholar]
- Noordalilati, M.N.; Sembulingam, K.; Chan, K.L.; Siti Amrah, S. The teratogenic effect of standardised Andrographis paniculata extract in sprague dawley rats. Malays. J. Med. Sci 2007, 14, 91. [Google Scholar]
- Mills, S.Y.; Bone, K. The Essential Guide to Herbal Safety; Elsevier Health Sciences: London, UK, 2004. [Google Scholar]
- Singh, A.; Zhao, K. Herb–drug interactions of commonly used Chinese medicinal herbs. Int. Rev. Neurobiol. 2017, 135, 197–232. [Google Scholar] [PubMed]
- Pandit, S.; Kanjilal, S.; Awasthi, A.; Chaudhary, A.; Banerjee, D.; Bhatt, B.; Narwaria, A.; Singh, R.; Dutta, K.; Jaggi, M. Evaluation of herb-drug interaction of a polyherbal Ayurvedic formulation through high throughput cytochrome P450 enzyme inhibition assay. J. Ethnopharmacol. 2017, 197, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Ooi, J.P.; Kuroyanagi, M.; Sulaiman, S.F.; Muhammad, T.S.T.; Tan, M.L. Andrographolide and 14-deoxy-11, 12-didehydroandrographolide inhibit cytochrome P450s in HepG2 hepatoma cells. Life Sci. 2011, 88, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Abd-Rashid, B.A.; Ismail, Z.; Ismail, R.; Mak, J.W.; Pook, P.C.; Er, H.M.; Ong, C.E. In vitro determination of the effect of Andrographis paniculata extracts and andrographolide on human hepatic cytochrome P450 activities. J. Nat. Med. 2011, 65, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Hou, X.-L.; Takahashi, K.; Chen, L.-X.; Azuma, J.; Kang, N. Andrographolide inhibits the expression and metabolic activity of cytochrome P450 3A4 in the modified Caco-2 cells. J. Ethnopharmacol. 2012, 141, 709–713. [Google Scholar] [CrossRef]
- Jaruchotikamol, A.; Jarukamjorn, K.; Sirisangtrakul, W.; Sakuma, T.; Kawasaki, Y.; Nemoto, N. Strong synergistic induction of CYP1A1 expression by andrographolide plus typical CYP1A inducers in mouse hepatocytes. Toxicol. Appl. Pharmacol. 2007, 224, 156–162. [Google Scholar] [CrossRef]
- Kondo, S.; Chatuphonprasert, W.; Jaruchotikamol, A.; Sakuma, T.; Nemoto, N. Cellular glutathione content modulates the effect of andrographolide on β-naphthoflavone-induced CYP1A1 mRNA expression in mouse hepatocytes. Toxicology 2011, 280, 18–23. [Google Scholar] [CrossRef]
- Chatuphonprasert, W.; Remsungnen, T.; Nemoto, N.; Jarukamjorn, K. Different AhR binding sites of diterpenoid ligands from Andrographis paniculata caused differential CYP1A1 induction in primary culture in mouse hepatocytes. Toxicol. Vitr. 2011, 25, 1757–1763. [Google Scholar] [CrossRef]
- Jarukamjorn, K.; Don-in, K.; Makejaruskul, C.; Laha, T.; Daodee, S.; Pearaksa, P.; Sripanidkulchai, B.-o. Impact of Andrographis paniculata crude extract on mouse hepatic cytochrome P450 enzymes. J. Ethnopharmacol. 2006, 105, 464–467. [Google Scholar] [CrossRef]
- Ismail, S.; Aziah Hanapi, N.; Ab Halim, M.R.; Uchaipichat, V.; Mackenzie, P.I. Effects of Andrographis paniculata and Orthosiphon stamineus extracts on the glucuronidation of 4-methylumbelliferone in human UGT isoforms. Molecules 2010, 15, 3578–3592. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.-Y.; Sun, D.-X.; Cao, Y.-F.; Ai, C.-Z.; Qu, Y.-Q.; Hu, C.-M.; Jiang, C.; Dong, P.-P.; Sun, X.-Y.; Hong, M. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7. Toxicol. Appl. Pharmacol. 2014, 277, 86–94. [Google Scholar] [CrossRef]
- Uchaipichat, V. In vitro inhibitory effects of major bioactive constituents of Andrographis paniculata, Curcuma longa and Silybum marianum on human liver microsomal morphine glucuronidation: A prediction of potential herb-drug interactions arising from andrographolide, curcumin and silybin inhibition in humans. Drug Metab. Pharmacokinet. 2018, 33, 67–76. [Google Scholar]
- Zhang, X.; Zhang, X.; Wang, X.; Zhao, M. Influence of andrographolide on the pharmacokinetics of warfarin in rats. Pharm. Biol. 2018, 56, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Chien, C.-F.; Wu, Y.-T.; Lee, W.-C.; Lin, L.-C.; Tsai, T.-H. Herb–drug interaction of Andrographis paniculata extract and andrographolide on the pharmacokinetics of theophylline in rats. Chem.-Biol. Interact. 2010, 184, 458–465. [Google Scholar] [CrossRef]
- Carretta, M.D.; Alarcón, P.; Jara, E.; Solis, L.; Hancke, J.L.; Concha, I.I.; Hidalgo, M.A.; Burgos, R.A. Andrographolide reduces IL-2 production in T-cells by interfering with NFAT and MAPK activation. Eur. J. Pharmacol. 2009, 602, 413–421. [Google Scholar] [CrossRef]
- Balap, A.; Lohidasan, S.; Sinnathambi, A.; Mahadik, K. Herb-drug interaction of Andrographis paniculata (Nees) extract and andrographolide on pharmacokinetic and pharmacodynamic of naproxen in rats. J. Ethnopharmacol. 2017, 195, 214–221. [Google Scholar] [CrossRef]
- Balap, A.; Atre, B.; Lohidasan, S.; Sinnathambi, A.; Mahadik, K. Pharmacokinetic and pharmacodynamic herb–drug interaction of Andrographis paniculata (Nees) extract and andrographolide with etoricoxib after oral administration in rats. J. Ethnopharmacol. 2016, 183, 9–17. [Google Scholar] [CrossRef]
- Samala, S.; Veeresham, C. Pharmacokinetic and pharmacodynamic interaction of boswellic acids and andrographolide with glyburide in diabetic rats: Including its PK/PD modeling. Phytother. Res. 2016, 30, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, S.; Kumar, R.A.; Deevi, D.S.; Satyanarayana, C.; Rajagopalan, R. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J. Exp. Ther. Oncol. 2003, 3, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Sun, Y.; Liu, W.; Wu, X.; Guo, L.; Cai, P.; Wu, X.; Wu, X.; Shen, Y.; Shu, Y. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. Autophagy 2014, 10, 972–985. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Guo, W.; Guo, L.; Gu, Y.; Cai, P.; Xie, N.; Yang, X.; Shu, Y.; Wu, X.; Sun, Y. Andrographolide sulfonate ameliorates experimental colitis in mice by inhibiting Th1/Th17 response. Int. Immunopharmacol. 2014, 20, 337–345. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, S.; Choon-Nam, O.; Shen, H.-M. Critical role of pro-apoptotic Bcl-2 family members in andrographolide-induced apoptosis in human cancer cells. Biochem. Pharmacol. 2006, 72, 132–144. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, S.-E.; Tan, S.-H.; Cao, R.; Chen, Y.; Xia, D.; Zhu, X.; Yang, X.-F.; Ong, C.-N.; Shen, H.-M. Andrographolide sensitizes cisplatin-induced apoptosis via suppression of autophagosome-lysosome fusion in human cancer cells. Autophagy 2012, 8, 338–349. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wu, D.; Luo, K.; Wu, S.; Wu, P. Andrographolide enhances 5-fluorouracil-induced apoptosis via caspase-8-dependent mitochondrial pathway involving p53 participation in hepatocellular carcinoma (SMMC-7721) cells. Cancer Lett. 2009, 276, 180–188. [Google Scholar] [CrossRef]
- Wang, W.; Guo, W.; Li, L.; Fu, Z.; Liu, W.; Gao, J.; Shu, Y.; Xu, Q.; Sun, Y.; Gu, Y. Andrographolide reversed 5-FU resistance in human colorectal cancer by elevating BAX expression. Biochem. Pharmacol. 2016, 121, 8–17. [Google Scholar] [CrossRef]
- Yuan, H.; Sun, B.; Gao, F.; Lan, M. Synergistic anticancer effects of andrographolide and paclitaxel against A549 NSCLC cells. Pharm. Biol. 2016, 54, 2629–2635. [Google Scholar] [CrossRef] [Green Version]
- Yunos, N.M.; Mutalip, S.S.; Jauri, M.H.; Yu, J.Q.; Huq, F. Anti-proliferative and pro-apoptotic effects from sequenced combinations of andrographolide and cisplatin on ovarian cancer cell lines. Anticancer Res. 2013, 33, 4365–4371. [Google Scholar]
- Pekthong, D.; Martin, H.; Abadie, C.; Bonet, A.; Heyd, B.; Mantion, G.; Richert, L. Differential inhibition of rat and human hepatic cytochrome P450 by Andrographis paniculata extract and andrographolide. J. Ethnopharmacol. 2008, 115, 432–440. [Google Scholar] [CrossRef]
- Pekthong, D.; Blanchard, N.; Abadie, C.; Bonet, A.; Heyd, B.; Mantion, G.; Berthelot, A.; Richert, L.; Martin, H. Effects of Andrographis paniculata extract and Andrographolide on hepatic cytochrome P450 mRNA expression and monooxygenase activities after in vivo administration to rats and in vitro in rat and human hepatocyte cultures. Chem. Biol. Interact. 2009, 179, 247–255. [Google Scholar] [CrossRef]
- Hanapi, N.A.; Juzaili, A.z.; Sabariah, I.; Sharif, M. Evaluation of Selected Malaysian Medicinal Plants on Phase I Drug Metabolizing Enzymes, CYP2C9, CYP2D6 and CYP3A4 Activities in vitro. Int. J. Pharmacol. 2010, 6. [Google Scholar] [CrossRef] [Green Version]
- Kar, A.; Pandit, S.; Mukherjee, K.; Bahadur, S.; Mukherjee, P.K. Safety assessment of selected medicinal food plants used in Ayurveda through CYP450 enzyme inhibition study. J. Sci. Food Agric. 2017, 97, 333–340. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Lv, L.; Zhou, Y.-L.; Xie, L.-D.; Xu, Q.; Zou, X.-F.; Ding, Y.; Tian, J.; Fan, J.-L.; Fan, H.-W.; et al. Efficacy and safety of Xiyanping injection in the treatment of COVID-19: A multicenter, prospective, open-label and randomized controlled trial. Phytother. Res. 2021, 35, 4401–4410. [Google Scholar] [CrossRef]
- Wang, C.; Sun, S.; Ding, X. The therapeutic effects of traditional Chinese medicine on COVID-19: A narrative review. Int. J. Clin. Pharm. 2021, 43, 35–45. [Google Scholar] [CrossRef]
- Ghosh, A.; Nundy, S.; Mallick, T.K. How India is dealing with COVID-19 pandemic. Sens. Int. 2020, 1, 100021. [Google Scholar] [CrossRef]
- Rattanaraksa, D.; Khempetch, R.; Poolwiwatchaikool, U.; Nimitvilai, S.; Loatrakul, O.; Srimanee, P. The Efficacy and Safety of Andrographis paniculate Extractfor Treatment of COVID-19 Patients with Mild Symptoms, Nakhonpathom Hospital. Reg. 4-5 Med. J. 2022, 40, 269–282. [Google Scholar]
Chemical Substances | Parts * | References |
---|---|---|
(13R,14R) 3,13,14,19-tetrahydroxy-ent-labda-8(17),11-dien-16,16-olide | LV | [39] |
12-epi-14-deoxy-12-methoxyandrographolide | AP AP AP | [21] [40] 13] |
12-hydroxyandrographolide | AP | [40] |
13,14,15,16-tetranor-ent-labda-8(17)-ene-3,12,19-triol | AP | [41] |
14-deoxy-11-hydroxyandrographolide | AP | [42] |
14-deoxy 11,12-didehydroandrographolide | WP LV AP LV AP AP LV AP AP AP LV AP AP | [43] [44] [41] [45] [46] [21] [13] [47] [48] [40] [49] [42] [50] |
14-deoxy-11,12-didehydroandrographiside | AP AP LV AP AP | [21] [41] [13] [51] [42] |
14-deoxy-11,12-dihydroandrographiside | AP | [40] |
14-deoxy-11,12-dihydroandrographolide | LV, ST LV WP WP | [37] [52] [53] [34] |
14-deoxy-11,14-didehydroandrographolide | AP | [54] |
14-deoxy-11-hydroxyandrographiside | AP | [42] |
14-deoxy-11-hydroandrographolide | LV | [37] |
14-deoxy-11-hydroxyandrographolide | AP AP WP AP | [21] [13] [53] [40] |
14-deoxy-11-hydroxy-ent-labda-8(17),12-diene-16,15-olide | LV | [37] |
14-deoxy-11-oxoandrographolide | WP LV AP AP AP | [43] [45] [46] [40] [42] |
14-deoxy-12-hydroxyandrographolide | AP AP LV AP | [21] [13] [52] [40] |
14-deoxy-12-methoxyandrographolide | LV AP AP AP WP | [45] [21] [13] [40] [34] |
14-deoxy-14,15-didehydroandrographolide | AP | [54] |
14-deoxy-15-isopropylidene-11,12 didehydroandrographolide | LV WP AP | [13] [53] [47] |
14-deoxy-15-methoxyandrographolide | AP | [55] |
14-deoxy-17-hydroxyandrographolide | AP | [40] |
14-deoxy-8,17-epoxy-andrographolide | AP | [42] |
14-deoxyandrographiside | LV AP AP LV | [37] [46] [42] [39] |
14-deoxyandrographolide | CL WP AP LV AP AP LV LV LV WP AP AP AP WP LV | [56] [43] [41] [45] [46] [21] [13] [44] [52] [53] [48] [40] [42] [34] [39] |
14-deoxyandrographolide-19-β-glucoside | N/A | [57] |
14-deoxyandrographoside | N/A | [57] |
14-epi-andrographolide | AP LV | [21] [13] |
15-methoxy-3,19-dihydroxy-8(17)11,13-ent-labda-trien-16,15-olide | AP | [58] |
15-spiro diterpenoids dimer bisandrographolide G | AP | [59] |
19-[(β-d-glucopyranosyl)oxy]-19-oxo-ent-labda-8(17),13-dien-16,15-olide | AP | [41] |
19-hydroxy-3-oxo-ent-labda-8(17),11,13-trien-16,15-olide | AP | [41] |
19-hydroxy-ent-labda-8(17),13-dien-15,16-olide | AP | [41] |
19-nor andrographolide A-C | AP | [60] |
19-O-β-d-glucopyranosyl-ent-labda-8(17),13-dien-15,16,19-triol | AP | [51] |
19-O-[β-d-apiofuranosyl-β-d-glucopyranosyl]-3,14-dideoxyandrographolide | AP | [50] |
19-O-[β-d-apiofuranosyl(1→2)-β-d-glucopyranoyl]-3,14-dideoxyandrographolide | AP | [40] |
19-O-β-d-glucopyranosyl-ent-labda-8(17),13-dien-15,16,19-triol | AP AP | [42] [50] |
19-O-[β-d-apiofuranosyl(1→2)-β-d-glucopyranoyl]-3,14-dideoxyandrographolide | AP | [40] |
21-nor-3,19-isopropylidine-14-deoxy-ent-labda-8(17),13-diene-16,15-olide | LV | [52] |
3-O-β-d-glucopyranosylandrographolide | AP | [40] |
3,13,14,19-tetrahydroxy-ent-labda-8(17),11-dien-16,15-olide | LV | [39] |
3,14-deoxy-17β-hydroxy andrographolide | AP | [42] |
3,14-dideoxyandrographolide | AP AP | [41] [46] |
3,15,19-trihydroxy-ent-labda-8(17),13-dien-16-oic acid | AP | [41] |
3,18,19-trihydroxy-ent-labda-8(17),13-dien-16,15-olide | AP LV | [41] [37] |
3,19-dihydroxy-14,15,16-trinor-ent-labda-8(17),11-dien-13-oic acid | AP LV | [41] [37] |
3,19-dihydroxy-15-methoxy-ent-labda-8(17),11,13-trien-16,15-olide | AP | [41] |
3,19-dihydroxy-ent-labda-8(17),12-dien-16,15-olide | AP AP | [42] [41] |
3,19-isopropylidene-14-deoxy-ent-labda-8(17),13-diene-16,15-olide | LV | [39] |
3-deoxy-andrographoside | AP | [55] |
3-O-β-d-glcopyranosyl 14,19-dideoxyandrographolide | AP | [40] |
3-O-β-d-glucopyranosylandrographolide | AP | [40] |
3-O-β-d-glucosyl-14-deoxy-11,12-didehydroandrographiside | AP | [61] |
3-O-β-d-glucosyl-14-deoxyandrographiside | AP | [62] |
3-oxo-14-deoxy-11,12-didehydroandrographolide | AP | [58] |
3-oxo-14-deoxyandrographolide | AP | [58] |
3-O-β-d-glucopyranosyl-14,19-dideoxyandrographolide | AP | [40] |
3-O-β-d-glucopyranosylandrographolide | AP | [42] |
3-O-β-d-glucosyl-14-deoxy-11,12-didehydroandrographiside | AP | [62] |
3-O-β-d-glucosyl-14-deoxyandrographiside | AP | [62] |
5-hydroxy-7,20,60-trimethoxyflavone | RT | [13] |
6ʹ-acetylneoandrographolide | AP AP | [21] [42] |
8,17-epoxy-14-deoxyandrographolide | AP | [40] |
8-methylandrographolide | LV | [39] |
8α-methoxyl-14-deoxy-17β-hydroxyandrographolide | AP | [63] |
Andrograpanin | CL LV LV LV LV AP AP RT | [56] [45] [64] [65] [44] [48] [40] [66] |
Andrographane | LV | [13] |
Andrographatoside | AP | [40] |
Andrographic acid | N/A | [67] |
Andrographidine A | RT N/A RT AP | [68] [67] [66] [35] |
Andrographidine B | RT RT | [68] [66] |
Andrographidine C | RT RT AP | [68] [66] [35] |
Andrographidine D | RT | [68] |
Andrographidine E | RT | [68] |
Andrographidine F | RT | [68] |
Andrographidoids A–E | RT | [69] |
Andrographiside | AP AP AP AP AP AP AP | [41] [46] [21] [51] [40] [42] [50] |
Andrographolactone | LV, ST AP | [37] [70] |
Andrographolide | N/A LV LV CL N/A AP AP AP AP AP WP LV WP AP AP AP LV LV AP WP LV RT | [18] [45] [52] [56] [71] [41] [54] [72] [46] [21] [13] [44] [53] [47] [48] [40] [49] [73] [42] [34] [39] [50] |
Andrographone | LV | [13] |
Andrographoside | N/A WP LV | [57] [53] [39] |
Andropaniculoside A | WP | [34] |
Andropaniculosin A | WP | [34] |
Andropanioside A–B | AP | [51] |
Andropanolide | LV LV AP | [45] [44] [51] |
Andropanoside | AP | [40] |
Bisandrographolide A | AP | [21] |
Bisandrographolide B | AP AP | [21] [40] |
Bisandrographolide C | AP AP | [21] [40] |
Bisandrographolide D | AP | [21] |
Bisandrographolide ether | AP | [48] |
Dehydroandrographolide | AP | [50] |
Deoxyandrographiside | AP AP WP AP | [21] [41] [34] [50] |
Deoxyandrographolide | LV | [73] |
Deoxyandrographolide-19β-d-glucoside | LV | [73] |
Dihydroxyl dimethyl 19-[(β-d-glucopyranosyl)oxy]-19-oxo-ent-labda-8(17),13-dien-16,15-olide | LV, ST | [37] |
ent-labda-8(17),13-dien-15,16,19-triol | AP | [41] |
Isoandrographiside | AP | [42] |
Isoandrographolide | AP AP LV AP AP AP WP | [54] [21] [44] [47] [40] [42] [34] |
Methyl methoxy 14-deoxyandrographiside | LV, ST | [37] |
Methyl methoxy andrographolide | LV, ST | [37] |
Methyl methoxy neoandrographolide | LV, ST | [37] |
Neoandrographolide | CL AP LV LV AP AP AP AP AP AP LV LV AP AP LV AP WP LV RT | [56] [74] [37] [45] [54] [72] [46] [21] [13] [51] [44] [52] [47] [40] [49] [42] [34] [39] [50] |
Panicolin | RT | [13] |
Paniculide A | CL | [75] |
Paniculide B | CL | [75] |
Paniculide C | CL | [75] |
Propyl neoandrographolide dimer | LV | [37] |
Tetraacetate neoandrographolide | LV | [49] |
Wightiolide | RT AP | [66] [42] |
Flavonoids | ||
onysilin | WP | [34] |
5-hydroxy-7,8-dimethoxyflavanone | AP | [44] |
(2S)-5,2ʹ-dihydroxy-7,8-dimethoxyflavanone | AP | [54] |
(2S)-7,8-dimethoxy-5β-d-glucopyranosyloxyflavanone | AP | [54] |
2ʹ,5-dihydroxy-7,8-dimethoxyflavone-2ʹ-O-β-d-glucopyranoside | AP | [54] |
2ʹ-hydroxy-2,4ʹ6ʹ-trimethoxychalone | ST | [37] |
2ʹ-hydroxy-8,7,8-trimethoxyflavone | RT | [66] |
5,2ʹ,6ʹ-trihydroxy-7-methoxyflavone 2ʹ-O-β-d-glucopyranoside | RT | [66] |
5,2ʹ-dihydroxy-7,8-dimethoxyflavone 2ʹ-O-β-d-glucopyranoside | RT | [66] |
5,2ʹ-dihydroxy-7,8-dimethoxyflavone | RT CL | [66] [76] |
5,4ʹ-dihydroxy-7,8,2ʹ,3ʹ-tetramethoxyflavone | RT AP | [66] [35] |
5,4ʹ-dihydroxy-7-methoxy-8-O-β-d-glucopyranosyloxyflavone | AP | [77] |
5,4ʹ-dihydroxy-7-methoxyflavone-8-yl-β-d-glucopyranoside | AP | [78] |
5,4ʹ-dihydroxy-7-methoxyflavone-6-yl-β-d-glucopyranoside | AP | [78] |
5,4ʹ-dihydroxy-7-O-β-d-glucopyranosyloxyflavone | AP | [77] |
5,4ʹ-dihydroxy-7-O-β-d-pyranoglycuronatebutylester | AP | [77] |
5,5ʹ-dihydroxy-7,8,2ʹ-trimethoxyflavone | RT | [66] |
5,6,4ʹ-trihydroxy-7-methoxyflavone-6-O-β-d-glucoside | AP | [54] |
5,7,2ʹ,3ʹ-tetramethoxyflavanone | WP | [53] |
5,7,2ʹ,3ʹ-tetramethoxyflavone | RT | [47] |
5,7,8,2ʹ-tetramethoxyflavone | WP RT | [53] [66] |
5,7,8-trimethoxydihydroflavone | AP | [77] |
5-hydroxy 7,8,2ʹ,3ʹ-tetramethoxyflavone | RT WP RT | [13] [53] [66] |
5-hydroxy-2ʹ,7,8-trimethoxyflavone | AP | [54] |
5-hydroxy-3,7,8,2ʹ-tetramethoxyflavone | RT | [79] |
5-hydroxy-7,2ʹ,3ʹ-trimethoxyflavone | WP | [53] |
5-hydroxy-7,2ʹ,6ʹ-trimethoxyflavone | WP RT | [53] [78] |
5-hydroxy-7,8,2ʹ,3ʹ,4ʹ-pentamethoxyflavone | RT | [66] |
5-hydroxy-7,8,2ʹ,3ʹ-tetramethoxyflavone | RT | [66] |
5-hydroxy-7,8,2ʹ,5ʹ-tetramethoxy (2R)-flavone-5-O-β-d-glucopyranoside | N/A | [67] |
5-hydroxy-7,8,2ʹ,5ʹ-tetramethoxyflavone | AP AP RT, ST WP RT WP | [35] [54] [80] [53] [66] [34] |
5-hydroxy-7,8,2ʹ,6ʹ-tetramethoxyflavone | RT | [66] |
5-hydroxy-7,8,2ʹ,3ʹ-tetramethoxyflavone | AP | [35] |
5-hydroxy-7,8,2ʹ-trimethoxyflavone | CL RT, ST RT | [76] [80] [66] |
5-hydroxy-7,8-dimethoxy (2R)-flavanone-5-O-β-d-glucopyranoside | N/A | [67] |
5-hydroxy-7,8-dimethoxyflavanone | AP RT RT | [54] [79] [66] |
5-hydroxy-7,8-dimethoxyflavone | AP RT CL RT, ST AP RT | [54] [81] [82] [80] [44] [66] |
7,8,2ʹ,5ʹ-tetramethoxy-5-O-β-d-glucopyranosyloxyflavone | AP | [77] |
7,8-dimethoxy-2ʹ-hydroxy-5-O-β-d-glucopyranosyloxyflavone | AP | [77] |
7,8-dimethoxy-5 β-d-glucopyranosyloxyflavone | AP | [54] |
7-O-methylwogonin 5-O-glucoside | WP RT | [53] [78] |
7-O-methyldihydrowogonin | LV, ST AP WP RT | [37] [77] [53] [78] |
7-O-methylwogonin | LV, ST WP AP WP RT | [37] [34] [77] [53] [78] |
Andrographidine A | RT | [68] |
Andropaniculoside A | WP | [34] |
Andropaniculosin A | WP | [34] |
Apigenin | WP AP | [34] [77] |
Apigenin-7-O-β-d-methylglucuronide | WP | [34] |
Apigenin-7-O-glucoronide | LV | [37] |
Cosmosiin | WP | [34] |
Dihydroneobaicalein | RT | [66] |
Dihydroskullcapflavone I | ST WP | [37] [53] |
Diosmetin-7-glycoside | LV | [37] |
Isoswertisin | WP | [34] |
Luteolin | AP | [35] |
Luteolin-7-O-glucoronide | LV | [37] |
Quercetin | WP | [34] |
Scutellarin-6-O-β-d-glucoside-7-methyl ether | WP | [34] |
Skullcapflavone I 2ʹ-O-glucoside | WP RT | [53] [78] |
Skullcapflavone I 2ʹ-methyl ether | WP RT | [53] [78] |
Skullcapflavone I | WP | [34] |
Skullcapflavone-2ʹ-methoxyether | AP | [77] |
Other Chemical Constituents | ||
1,2-dihydroxy-6,8-dimethoxyxanthone | RT | [83] |
1,8-dihydroxy-3,7-dimethoxyxanthone | RT | [83] |
3,4-dicaffeoylquinic acid | WP | [34] |
3,7,8-trimethoxy-1-hydroxyxanthone | RT | [83] |
4,8-dihydroxy-2,7-dimethoxyxanthone | RT | [83] |
4-hydroxy-2-methoxycinnamaldehyde | RT | [66] |
α-sitosterol | RT | [13] |
β-sitosterol | WP RT | [53] [66] |
β-daucosterol | RT | [66] |
Caffeoylquinic acid | ST | [37] |
Caffeic acid | WP | [53] |
Caffeic glycoside | LV | [37] |
Chloragenic glycoside | LV WP | [37] [53] |
Cinnamic acid | LV WP | [52] [53] |
Coumaroylquinic acid | LV | [37] |
Dihydroxyl glucosyl cyclohexane | LV, ST | [37] |
Ferulic acid | WP LV | [53] [52] |
Feruloylquinic acid | LV | [37] |
Methyl-3,4-dicaffeoylquinate | WP | [34] |
Oleanolic acid | RT | [66] |
Quinic acid | LV, ST | [37] |
Stigmasterol | LV | [49] |
Trans-cinnamic acid | RT | [66] |
Substance | Route/Model * | LD50 Value (g/kg Bodyweight) | Reference |
---|---|---|---|
14-deoxy-11,12-didehydroandrographolide | oral/mice | >20 | [175] |
A. paniculata alcoholic extract | N/A | 1.8 | [176] |
A. paniculata ethanolic extract (first true leaf) | oral/mice | >5 | [174] |
A. paniculata extract | N/A | >17 | [177] |
Andrographolide | oral/mice | >5 | [173] |
Andrographolide | ip/mice | 11.46 | [178] |
Andrographolide | oral/mice | >40 | [175] |
Deoxyandrographolide | oral/mice | >20 | [175] |
Neoandrographolide | oral/mice | >20 | [175] |
Total diterpene lactone | oral/mice | 13.4 | [175] |
Phase I Drug Metabolism | ||||
---|---|---|---|---|
CYP P450 Isoform | Models | Components | Effects | Reference |
CYP1A1 | in vitro | |||
Mouse hepatocytes | Andrographolide | significantly induce the expression of CYP1A1 mRNA | [188] | |
Mouse hepatocytes | Andrographolide | induce CYP1A1 mRNA expression | [189] | |
Mouse hepatocytes | Andrographolide and 11,12-didehydroandrographolide | induce CYP1A1 expression | [190] | |
in vivo | ||||
Mouse | Aqueous and ethanolic extract of A. paniculata | induce CYP1A1 mRNA expression | [191] | |
CYP1B1 | in vitro | |||
Mouse hepatocytes | Andrographolide | did not affect to the expression of CYP1B1 mRNA | [188] | |
CYP1A2 | in vitro | |||
Mouse hepatocytes | Andrographolide | significantly induce the expression of CYP1A2 mRNA | [188] | |
Wistar rat and human liver microsomes | Ethanolic extract of A. paniculata contained 1.60% andrographolide | inhibit CYP1A2 activity in rat and human liver microsomes (Ki value = 8.85 and 24.46 µM, respectively) | [210] | |
HepG2 hepatoma cells | Andrographolide and 14-Deoxy-11,12-Didehydroandrographolide | inhibit the mRNA and protein expression of CYP1A2 | [185] | |
CYP2B isoform | in vivo | |||
Mouse | Aqueous and ethanolic extract of A. paniculata | induce CYP2B mRNA expression | [191] | |
CYP2C isoform | in vitro | |||
Wistar rat and human liver microsomes | Ethanolic extract of A. paniculata containing 1.60% andrographolide | inhibits CYP2C both in rat and human liver microsomes with (Ki values 8.21 and 7.51 µM, respectively) | [210] | |
Wistar rat and human hepatocytes | Ethanolic extract of A. paniculata containing andrographolide 50 µM | inhibit CYP2C mRNA expression and activity | [211] | |
Wistar rat and human hepatocytes | Andrographolide 50 µM | inhibit CYP2C mRNA expression and activity | [211] | |
CYP2C9 | in vitro | |||
Human hepatic cytochrome P450 activities | Ethanolic extract of A. paniculata | inhibit CYP2C9 (Ki value = 17.2 ± 2.7 µg/mL) | [186] | |
Human hepatic cytochrome P450 activities | Methanolic extract of A. paniculata | inhibit CYP2C9 (Ki value = 68.5 ± 12.8 µg/mL) | [186] | |
CYP2C11 | in vivo | |||
Wistar rat | Ethanolic extract of A. paniculata containing andrographolide 5 and 25 mg/kg/day for 28 days | diminish CYP2C11 activity | [211] | |
CYP2C19 | in vitro | |||
pCWori+ plasmid cloned with cDNA of CYP2C19 | Ethanolic extract of A. paniculata | inhibit CYP2C19 (Ki value = 67.1 µg/mL) | [186] | |
CYP2D6 | in vitro | |||
HepG2 hepatoma cells | Andrographolide and 14-Deoxy-11,12-Didehydroandrographolide | inhibit the mRNA and protein expression of CYP2D6 | [185] | |
Human hepatic cytochrome P450 activities | Ethanolic extract of A. paniculata | inhibit CYP2D6 (Ki value = 96.5 ± 7.0 µg/mL) | [186] | |
Human hepatic cytochrome P450 activities | Methanolic extract of A. paniculata | inhibit CYP2D6 (Ki value = 59.0 ± 10.6 µg/mL) | [186] | |
Luminescent assay | Ethanolic extract of A. paniculata | inhibit CYP2D6 with IC50 value = 44.2 ± 4.5 µg/mL | [212] | |
CYP-CO complex assay and fluorogenic assay | Methanolic extract of A. paniculata | inhibit CYP2D6 (IC50 value = 88.80 ± 3.32 µg/mL) | [213] | |
CYP2E1 | in vitro | |||
Human liver microsomes | Andrographolide | did not affect to human liver microsomes | [210] | |
CYP3A isoform | in vitro | |||
human hepatocytes | Ethanolic extract of A. paniculata containing andrographolide 50 µM | decrease CYP3A mRNA expression and activity | [211] | |
human hepatocytes | andrographolide 50 µM | decrease CYP3A mRNA expression and activity | [211] | |
CYP3A4 | in vitro | |||
Human liver microsomes | Ethanolic extract of A. paniculata contained 1.60% andrographolide | competitively inhibits on CYP3A4 (Ki value = 25.43 µM) | [210] | |
HepG2 hepatoma cells | Andrographolide and 14-Deoxy-11,12-Didehydroandrographolide | inhibit the mRNA and protein expression of CYP3A4 | [185] | |
Human hepatic cytochrome P450 activities | Ethanolic extract of A. paniculata | inhibit CYP3A4 (Ki value = 9.4 ± 3.3 µg/mL) | [186] | |
Human hepatic cytochrome P450 activities | Methanolic extract of A. paniculata | inhibit CYP3A4 (Ki value = 17.8 ± 2.1 µg/mL) | [186] | |
Caco-2 cells | Andrographolide (1, 10, 100 µM) | down-regulates the mRNA and protein levels, and inhibits metabolic activities of nifedipine oxidation and testosterone 6β-hydroxylation | [187] | |
CYP-CO complex assay and fluorogenic assay | Methanolic extract of A. paniculata | inhibit CYP3A4 (IC50 value 63.06 ± 1.35 µg/mL) | [213] | |
Phase II Drug Metabolism * | ||||
Protein | Models | Components | Effects | References |
UGT | in vitro | |||
4MU glucuronidation assays | Ethanolic extract of A. paniculata | inhibit UGT isoforms i.e., UGT1A3, UGT1A8, UGT2B7, UGT1A1, UGT1A6, UGT1A7, and UGT1A10 (IC50 = 1.70, 2.57, 2.82, 5.00, 5.66, 9.55, 15.66 µg/mL, respectively) | [192] | |
recombinant UGT isoforms—catalyzed 4-MU glucuronidation reaction | Andrographolide, neoandrographolide, dehydroandrographolide, deoxyandrographolide, 3-oxo-dehydroandrographolide, 9β-hydroxy dehydroandrographolide, 3-oxo-deoxyandrographolide, 9β-hydroxy deoxyandrographolide, 3-oxo-9β-hydroxy deoxyandrographolide, 3,17,19-trihydroxy-7,11,13-ent-labatrien-15,16-olide | selectively inhibit UGT2B7 | [193] | |
human liver microsomes | andrographolide | strongly inhibit morphine 3- and 6-glucuronidation, the substances of UGT2B7 enzyme (IC50 = 21.6 µM) | [194] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Intharuksa, A.; Arunotayanun, W.; Yooin, W.; Sirisa-ard, P. A Comprehensive Review of Andrographis paniculata (Burm. f.) Nees and Its Constituents as Potential Lead Compounds for COVID-19 Drug Discovery. Molecules 2022, 27, 4479. https://doi.org/10.3390/molecules27144479
Intharuksa A, Arunotayanun W, Yooin W, Sirisa-ard P. A Comprehensive Review of Andrographis paniculata (Burm. f.) Nees and Its Constituents as Potential Lead Compounds for COVID-19 Drug Discovery. Molecules. 2022; 27(14):4479. https://doi.org/10.3390/molecules27144479
Chicago/Turabian StyleIntharuksa, Aekkhaluck, Warunya Arunotayanun, Wipawadee Yooin, and Panee Sirisa-ard. 2022. "A Comprehensive Review of Andrographis paniculata (Burm. f.) Nees and Its Constituents as Potential Lead Compounds for COVID-19 Drug Discovery" Molecules 27, no. 14: 4479. https://doi.org/10.3390/molecules27144479
APA StyleIntharuksa, A., Arunotayanun, W., Yooin, W., & Sirisa-ard, P. (2022). A Comprehensive Review of Andrographis paniculata (Burm. f.) Nees and Its Constituents as Potential Lead Compounds for COVID-19 Drug Discovery. Molecules, 27(14), 4479. https://doi.org/10.3390/molecules27144479