Candelilla Wax Extracted by Traditional Method and an Ecofriendly Process: Assessment of Its Chemical, Structural and Thermal Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties
2.1.1. Basic Chemical Properties
2.1.2. Color
2.2. Chemical and Structural Properties of Candelilla Wax
2.2.1. Analysis by Raman Micro-Spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR)
2.2.2. X-ray Diffraction Analysis (XRD)
2.3. Thermal Properties of Candelilla Wax
2.4. Mechanical Properties of Candelilla Wax
3. Materials and Methods
3.1. Candelilla Wax Extraction Processes
3.2. Candelilla Wax Characterizations
3.2.1. Physicochemical Properties
Chemical Basic Properties
Color
3.3. Chemical and Structural Properties of Candelilla Wax
3.3.1. Analysis of Raman Micro-Spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR)
3.3.2. X-ray Diffraction Analysis (XRD)
3.4. Thermal Properties of Candelilla Wax
Differential Scanning Calorimetry (DSC)
3.5. Mechanical Properties of Candelilla Wax
Hardness and Brittleness Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- De León-Zapata, M.A.; Ventura-Sobrevilla, J.M.; Salinas-Jasso, T.A.; Flores-Gallegos, A.C.; Rodríguez-Herrera, R.; Pastrana-Castro, L. Changes of the shelf life of candelilla wax/tarbush bioactive based-nanocoated apples at industrial level conditions. Sci. Hort. 2018, 231, 43–48. [Google Scholar] [CrossRef]
- Aguirre-Joya, J.A.; Ventura-Sobrevilla, J.; Martínez-Vásquez, G.; Ruelas-Chacón, X.; Rojas, R.; Rodríguez-Herrera, R. Effects of a natural bioactive coating on the quality and shelf-life prolongation at different storage conditions of avocado (Persea americana Mill.) cv. Hass. Food Pack. Shelf Life 2017, 14, 102–107. [Google Scholar] [CrossRef]
- De León-Zapata, M.A.; Pastrana-Castro, L.; Barbosa-Pereira, L.; Rua-Rodríguez, M.L.; Saucedo, S.; Ventura-Sobrevilla, J.M. Nanocoating with extract of tarbush to retard Fuji apples senescence. Posth. Bio. Technol. 2017, 134, 67–75. [Google Scholar] [CrossRef]
- Oregel-Zamudio, E.; Angoa-Pérez, M.V.; Oyoque-Salcedo, G.; Aguilar-González, C.N.; Mena-Violante, H.G. Effect of candelilla wax edible coatings combined with biocontrol bacteria on strawberry quality during the shelf-life. Sci. Hort. 2017, 214, 273–279. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Zieba, E.; Skrzypek, T.; Barianiak, B. Effect of carboxymethyl cellulose/candelilla wax coating containing ascorbic acid on quality of walnut (Juglans regia L.) kernels. Int. J. Food Sci. Technol. 2017, 52, 1425–1432. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Korkodowska-Wiater, M.; Kalwa, K.; Skrzypek, T.; Sikora, M.; Lupina, K. Physiological, qualitative, and microbiological changes of minimally processed Brussels sprouts in response to coating with carboxymethyl cellulose/candelilla wax emulsion. J. Food Pro. Pre. 2019, 43, 14004. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Biendl, M. Physicochemical and antioxidant properties of biopolymer/candelilla wax emulsion films containing hop extrct—A comparative study. Food Hydro. 2016, 60, 384–392. [Google Scholar] [CrossRef]
- Mert, B.; Demirkesen, I. Evaluation of highly unsaturated oleogels as shortening replacer in a short dough product. LWT-Food Sci. Technol. 2016, 68, 477–484. [Google Scholar] [CrossRef]
- Mert, B.; Demirkesen, I. Reducing saturated fat with oleogel/shortening blends in a baked product. Food Chem. 2016, 199, 809–816. [Google Scholar] [CrossRef]
- Oh, I.K.; Amoah, C.; Lim, J.; Jeong, S.; Lee, S. Assessing the effectiveness of wax-based sunflower oil oleogels in cakes as a shortening replacer. LWT-Food Sci. Technol. 2017, 86, 430–437. [Google Scholar] [CrossRef]
- da Silva, T.L.; Arellano, D.B.; Martini, S. Interactions between candelilla wax and satured triacyclycerols in oleogels. Food Res. Int. 2019, 121, 900–909. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.L.; Arellano, D.B.; Martini, S. Use of high-intensity ultrasound to change the physical properties of oleogels and emulsion gels. J. Am. Oil Chem. Soc. 2019, 96, 681–691. [Google Scholar] [CrossRef]
- Aranda-Ledesma, N.E.; Bautista-Hernández, I.; Rojas, R.; Aguilar-Zárate, P.; Medina-Herrera, N.P.; Castro-López, C. Candelilla wax: Prospective suitable applications within the food field. LWT-Food Sci. Technol. 2022, 159, 113170. [Google Scholar] [CrossRef]
- Rojas Molina, R.; Saucedo Pompa, S.; De León Zapata, M.; Jasso Cantú, D.; Aguilar, C. Pasado, presente y futuro de la candelilla. Rev. Mex. Cie. For. 2011, 2, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, K.; Nader, S.; Ibrahim, A. Orange peel fixed oil (Citrus sinensis “Valencia”), physiochemical properties, fatty acid profile, potential uses and the effect of enviromental factors on it. Bulg. J. Agri. Sci. 2018, 24, 91–98. [Google Scholar]
- Barbosa-Rocha, J.C.; Dutra-Lopes, J.; Nucci-Mascarenhas, M.C.; Barrera-Arellano, D.; Ricardo-Guerreiro, L.M.; Lopes da Cunha, R. Thermal and rheological properties of organogels formed by sugarcane or candelilla was in soybean oil. Food Res. Int. 2013, 50, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Ektakhare, N.G. Assessment of the physicochemical properties of selected oils. Int. J. Adv. Res. 2019, 04, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Dermis, S.; Can, S.; Dogru, B. Determination of Peroxide Values of Some Fixed Oils by Using the mFOX Method. Spect. Lett. 2012, 45, 359–363. [Google Scholar] [CrossRef]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society Method Cd 8b-90 Peroxide Value, Acetic Acid, Isooctane Method, 7th ed.; AOCS: Urbana, IL, USA, 2017. [Google Scholar]
- Cabello-Alvarado, C.J.; Sáenz-Galindo, A.; Barajas-Bermúdez, L.; Pérez-Berumen, C.; Ávila-Orta, C.; Valdés-Garza, J.A. Cera de Candelilla y sus aplicaciones. Ava. Quim. 2013, 8, 105–110. [Google Scholar]
- Food and Drugs Administration (FDA). Candelilla wax, proposed affirmation of GRAS status as a direct human food ingredient. Code Fed. Reg. 1982, 47, 35776–35777. [Google Scholar]
- Ruiz-Martínez, J.; Aguirre-Joya, J.A.; Rojas, R.; Vicente, A.; Aguilar-González, M.A.; Rodríguez-Herrera, R. Candelilla wax edible coating with Flourensia cernua bioactives to prolong the quality of tomato fruits. Foods 2020, 9, 1303. [Google Scholar] [CrossRef]
- Da Silva, T.L.; Chaves, K.F.; Fernandes, G.D.; Rodrigues, J.B.; Bolini, H.M.; Arellano, D.B. Sensory and technological evaluation of margarines with reduced saturated fatty acid contents using oleogel technology. J. Am. Oil Chem. Soc. 2018, 95, 673–685. [Google Scholar] [CrossRef]
- De León-Zapata, M.A.; Sáenz-Galindo, A.; Rojas-Molina, R.; Rodríguez-Herrera, R.; Jasso-Cantú, D.; Aguilar, C.N. Edible candelilla wax coating with fermented extract of tarbush improves the shelf life and quality of apples. Food Pack. Shelf Life. 2015, 3, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Moreau, R.A.; Harron, A.F.; Hoyt, J.L.; Powell, M.J.; Hums, M.E. Analysis of wax ester in seven commercial waxes using C30 reverse phase HPLC. J. Liq. Chrom. Rel. Technol. 2018, 41, 604–611. [Google Scholar] [CrossRef]
- Edwards, H.G.; Falk, M.J. Fourier-transform Raman spectroscopic study of unsaturated and saturated waxes. Spec. Acta 1997, 53, 685–694. [Google Scholar] [CrossRef]
- Farber, C.; Li, J.; Hager, E.; Chemelewski, R.; Mullet, J.; Rogachev, A.Y.; Kurouski, D. Complementarity of Raman and Infrared Spectroscopy for Structural Characterization of Plant Epicuticular Waxes. ACS Omega 2019, 4, 3700–3707. [Google Scholar] [CrossRef] [Green Version]
- Edwards, H.G.; De Faria, D.L. Infrared, Raman microscopy and fibre-optic Raman spectroscopy (FORS). Compr. Anal. Chem. 2004, 42, 359–395. [Google Scholar] [CrossRef]
- Lionetto, F.; López-Muñoz, R.; Espinoza-González, C.; Mis-Fernández, R.; Rodríguez-Fernández, O.; Maffezzoli, A. A study on exfoliation of expanded graphite stacks in candelilla wax. Materials 2019, 12, 2530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, K.; Ensikat, H.J. The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 2008, 39, 759–772. [Google Scholar] [CrossRef] [PubMed]
- Muscat, D.; Tobin, M.J.; Guo, Q.; Adhikari, B. Understanding the distribution of natural wax in starch–wax films using synchrotron-based FTIR (S-FTIR). Carb. Poly. 2014, 102, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, E.; Saucedo-Pompa, S.; Rojas-Molina, R.; de la Garza, H.; Charles-Rodríguez, A.V.; Aguilar, C.N. Evaluation of a candelilla wax-based edible coating to prolong the shelf-life quality and safety of apples. Am. J. Agri. Bio. Sci. 2011, 6, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Bucio, A.; Moreno-Tovar, R.; Bucio, L.; Espinosa-Dávila, J.; Anguebes-Fransceschi, F. Characterization of Beeswax, Candelilla Wax and Paraffin Wax and Paraffin Wax for Coating Cheeses. Coatings 2021, 11, 261. [Google Scholar] [CrossRef]
- Aguirre-Joya, J.A.; Cerqueira, M.A.; Ventura-Sobrevilla, J.; Aguilar-Gonzalez, M.A.; Carbó-Argibay, E.; Pastrana-Castro, L.; Aguilar, C.N. Candelilla wax-based coatings and films: Functional and physicochemical characterization. Food Bioprocess Technol. 2019, 12, 1787–1797. [Google Scholar] [CrossRef]
- Chopin-Doroteo, M.; Morales-Rueda, J.A.; Dibildox-Alvarado, E.; Charó-Alonso, M.A.; de la Peña-Gil, A.; Toro-Vazquez, J.F. The Effect of Shearing in the Thermo-mechanical Properties of Candelilla Wax and Candelilla Wax-Tripalmitin Organogels. Food Bioprocess 2011, 6, 359–376. [Google Scholar] [CrossRef]
- Navarro-Guajardo, N.; García-Carrillo, E.M.; Espinoza-González, C.; Téllez-Zablah, R.; Dávila-Hernández, F.; Romero-García, J.; Pariona, N. Candelilla wax as natural slow-release matrix for fertilizers encapsulated by spray chilling. J. Renew. Mater. 2018, 6, 226–236. [Google Scholar] [CrossRef]
- Yue, S.; Guo, Y.; Feng, X.; Wang, M.; Li, P.; Gao, Y.; Jiang, T. Are different crystallinity-index-calculating methods of hydroxyapatite efficient and consistent? New J. Chem. 2017, 41, 5723–5731. [Google Scholar] [CrossRef]
- Ensikat, H.J.; Boese, M.; Mader, W.; Barthlott, W.; Koch, K. Crystallinity of plant epicuticular waxes: Electron and X-ray diffraction studies. Chem. Phys. Lip. 2006, 144, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Feijoó, I.; Cabeza, M.; Merino, P.; Pena, G.; Pérez, M.C.; Cruz, S.; Rey, P. Evaluación del tamaño de cristalito y la micro-deformación durante el proceso de molienda mecánica del material compuesto AA60005A+ 10% nano-TiC. Rev. Aso. Esp. Mat Comp. 2017, 2, 117–121. [Google Scholar]
- Cruz-Gandarilla, F.; Cabañas-Moreno, G.; Ortega-Avilés, M. Aplicaciones de la Difracción de Rayos X a Materiales Policristalinos. Sociedad Mexicana Cristalografía A. C. Sociedad Mexicana de Cristalografía, Escuela Superior de Física y Maatemáticas; Instituto Politécnico Nacional: Ciudad de México, México, 2005; ISBN 970-98888-00-5. [Google Scholar]
- Morales-Hernández, M. Evaluación de las Propiedades de Candelilla y Carnauba Para su Aplicación en Emulsiones Cereas de Uso Comercial; Instituto Politécnico Nacional: Ciudad de México, México, 2015. Available online: http://tesis.ipn.mx:8080/xmlui/handle/123456789/18240 (accessed on 3 February 2022).
- Tavernier, I.; Doan, C.D.; Van der Meeren, P.; Heyman, B.; Dewettinck, K. The potential of waxes to alter the microestructural properties of emulsion templated oleogels. Eur. J. Lip. Sci. Technol. 2018, 120, 1700393. [Google Scholar] [CrossRef]
- Alvarez-Ramirez, J.J.; Vernon-Carter, E.J.; Carrera-Tarela, Y.; García, A.; Roldan-Cruz, C. Effects of candelilla wax/canola oil oleogel on the rheology, texture, thermal properties and in vitro starch digestibility of wheat sponge cake bread. LWT-Food Sci. Technol. 2020, 130, 109701. [Google Scholar] [CrossRef]
- Serrato-Palacios, L.L.; Toro-Vazquez, J.F.; Dibildox-Alvarado, E.; Aragon-Piña, A.; Morales-Armenta, M.D.; Ibarra-Junquera, V.; Pérez-Martínez, J.D. Phase behavior and structure of systems based on mixtures of n-hentriacontane and melissic acid. J. Am. Oil Chem. Soc. 2015, 92, 533–540. [Google Scholar] [CrossRef]
- Toro-Vazquez, J.F.; Charó-Alonso, M.A.; Pérez-Martínez, J.D.; Morales-Rueda, J.A. Candelilla wax as an organogelator for vegetable oils, an alternative to develop trans-free products for the food industry. In Edible Oleogels Structure and Health Implications; Marangoni, A.G., Garti, N., Eds.; Academic Press and AOCS Press: Urbana, IL, USA, 2011; pp. 119–148. [Google Scholar]
- Hwang, H.S.; Singh, M.; Lee, S. Properties of cookies made with natural wax-vegetable oil organogels. J. Food Sci. 2016, 81, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Donhowe, G.; Fennema, O. Water vapor and oxygen permeability of wax films. J. Am. Oil Chem. Soc. 1993, 70, 867–873. [Google Scholar] [CrossRef]
- Toro-Vazquez, J.F.; Morales-Rueda, J.A.; Dibildox-Alvarado, E.; Charó-Alonso, M.; Alonzo-Macias, M.; González-Chávez, M.M. Thermal and Textural Properties of Organogels Developed by Candelilla Wax in Safflower Oil. J. Am. Oil Chem. Soc. 2007, 84, 989–1000. [Google Scholar] [CrossRef]
- Pérez-Martínez, J.D.; Sánchez-Beceril, M.; Maragoni, A.G.; Toro-Vazquez, J.F.; Ornelas-Paz, J.J.; Ibarra-Junquera, V. Structuration, elastic properties scaling, and mechanical reversibility of candelilla wax oleogels with and without emulsifiers. Food Res. Int. 2019, 122, 471–478. [Google Scholar] [CrossRef]
- Lim, J.; Hwang, H.S.; Lee, S. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties. J. Appl. Bio. Chem. 2017, 60, 17–22. [Google Scholar] [CrossRef]
- Rojas, J.; Cabrera, S.; Benavides, J.; Lopera, Y.; Yarce, C.J. Lipidic matrixes containing clove essential oil: Biological activity, microstructural and textural studies. Molecules 2021, 26, 2425. [Google Scholar] [CrossRef]
- Andz-Ustunol, A. Sensory Attributes of Whey Protein Isolate and Candelilla Wax Emulsion Edible Films. J. Food Sci. 2001, 6, 909–911. [Google Scholar] [CrossRef]
- Vernon-Carter, E.J.; Alvarez-Ramirez, J.; Meraz, M.; Bello-Perez, L.A.; García-Diaz, S. Canola oil/candelilla wax oleogel improves texture, retards staling and reduces in vitro starch digestibility of maize tortillas. J. Sci. Food Agric. 2019, 100, 1238–1245. [Google Scholar] [CrossRef]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society Method Cd 3d-63 Acid Value of Fats and Oils, 7th ed.; AOCS: Urbana, IL, USA, 2017. [Google Scholar]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society Method Cd 3-25 Saponification Value of Fats and Oils, 7th ed.; AOCS: Urbana, IL, USA, 2017. [Google Scholar]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society Method Cd 1d-92 Iodine Value of Fats and Oils, 7th ed.; AOCS: Urbana, IL, USA, 2017. [Google Scholar]
- Pereira, D.; Correia, P.M.; Guiné, R. Analysis of the physical-chemical and sensorial properties of Maria type cookies. Acta Chi. Slov. 2013, 6, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Becerril, M.; Marangoni, A.G.; Perea-Flores, M.J.; Cayetano-Castro, N.; Martínez-Gutiérrez, H.; Andraca-Adame, J.A.; Pérez-Martínez, D. Characterization of the micro and nanostructure of the candelilla wax organogels crystal networks. Food Stru. 2018, 16, 1–7. [Google Scholar] [CrossRef]
- Dassanayake, S.K.; Kodali, D.R.; Ueno, S.; Sato, K. Physical properties of rice bran wax in bulk and organogels. J. Am. Oils Chem. Soc. 2019, 86, 1163–1173. [Google Scholar] [CrossRef]
- Yao, L.; Wang, T. Textural and physical properties of biorenewable “waxes” containing partial acylglycerides. J. Am. Oil Chem. Soc. 2011, 89, 155–166. [Google Scholar] [CrossRef]
Regions | Candelilla Wax | Physicochemical Properties Values | ||||
---|---|---|---|---|---|---|
Acid | Saponification | Ester | Iodine Absorption Number | Peroxide | ||
(mg KOH/g) | (mg KOH/g) | (mg KOH/g) | (g L/100 g) | (meq O/kg) | ||
Estanque de León | CWSAEL | 17.32 ± 0.23 | 71.03 ± 10.7 | 53.72 ± 10.87 | 14.14 ± 0.14 | 0.406 ± 0.099 |
CWCAEL | 17.75 ± 0.56 | 62.16 ± 11.53 | 44.41 ± 11.36 | 15.38 ± 0.26 | 0.076 ± 0.030 | |
Lucio Blanco | CWSALB | 16.82 ± 0.33 | 58.83 ± 6.67 | 42.01 ± 6.67 | 15.58 ± 1.46 | 0.225 ± 0.011 |
CWCALB | 18.49 ± 0.27 | 69.93 ± 1.94 | 51.45 ± 1.82 | 16.26 ± 0.65 | 0.126 ± 0.013 | |
San Jerónimo | CWSASJ | 17.45 ± 0.15 | 40.41 ± 1.66 | 22.96 ± 1.77 | 15.34 ± 0.52 | 0.346 ± 0.002 |
CWCASJ | 17.38 ± 0.14 | 61.05±2.78 | 43.68 ± 2.84 | 15.08 ± 1.07 | 0.091 ± 0.046 | |
San Miguel | CWSASM | 17.11 ± 0.50 | 39.95 ± 7.7 | 22.83 ± 8.18 | 14.31 ± 0.24 | 0.209 ± 0.080 |
CWCASM | 17.85 ± 0.63 | 62.83 ± 1.17 | 44.97 ± 1.53 | 14.65 ± 0.22 | 0.131 ± 0.030 | |
CWR | 12.77 ± 0.47 | 67.70 ± 6.92 | 54.92 ± 7.30 | 13.91 ± 0.88 | 0.139 ± 0.003 | |
Reference values | 12–24 [14] | 45–87 [16] | 14–45 [16] | 0–12 [19] |
Candelilla Wax | Hunter | |||
---|---|---|---|---|
L* | a* | b* | Color | |
CWSAEL | 63.95 | 3.2 | 26.46 | |
CWSALB | 58.27 | 8.05 | 34.27 | |
CWSASJ | 55.99 | 5.64 | 29.61 | |
CWSASM | 51.07 | 10.08 | 33.48 | |
CWCAEL | 70.21 | 3.02 | 24.34 | |
CWCALB | 75.88 | 2.52 | 25.40 | |
CWCASJ | 55.38 | 5.81 | 27.57 | |
CWCASM | 47.20 | 8.79 | 31.20 | |
CWR | 62.06 | 10.53 | 37.95 | |
Regions | Candelilla Wax | Approximate Assignment of Vibrational Mode (Wavenumber cm−1) | |||||
---|---|---|---|---|---|---|---|
CH2 Asymmetric | CH2 Symmetric | CH2 | CH2 Twisting | C-C | C=O | ||
Estanque de León | CWSAEL | 2874.21 | 2844.46 | 1442.90 | 1294.38 | 1137.22 | 1063.72 |
CWCAEL | NF | NF | 1442.90 | NF | 1137.22 | 1045.26 | |
Lucio Blanco | CWSALB | 2874.21 | 2844.46 | 1442.90 | 1294.38 | 1137.22 | 1063.72 |
CWCALB | 2874.21 | 2844.46 | 1442.90 | NF | 1137.22 | 1045.26 | |
San Jerónimo | CWSASJ | 2874.21 | 2844.46 | 1442.90 | 1294.38 | 1137.22 | 1063.72 |
CWCASJ | NF | NF | 1442.90 | NF | 1137.22 | 1045.26 | |
San Miguel | CWSASM | 2874.21 | 2844.46 | 1442.90 | 1294.38 | 1137.22 | 1063.72 |
CWCASM | NF | NF | 1442.90 | NF | 1137.22 | 1045.26 | |
CWR | 2874.21 | 2844.46 | 1442.90 | 1294.38 | 1137.22 | 1063.72 |
Approximate Assignment of Vibrational Mode | ||
---|---|---|
Wavenumber (cm−1) | Group | Assignment |
2953.91 | CH3 | stretching |
2914.77 | CH3 | stretching |
2847.68 | CH2 | stretching |
1734.14 | C=O | stretching |
1718.30 | C=O | stretching |
1472.29 | CH2 | scissoring |
1462.04 | CH2 | bending |
1378.18 | CH3 | symmetric deformation |
1236.54 | CH2 | twisting |
1167.58 | C-O | bending |
729.62 | CH2 | In-plane rocking |
718.44 | CH2 | In-plane rocking |
668.12 | Aromatic ring | Out of plane ring bending |
Regions | Candelilla Wax | FWHM | Crystallinity Index (CI) | Crystal Size (nm) | |||
---|---|---|---|---|---|---|---|
Estanque de León | CWSAEL | 0.48 | 0.57 | 0.12 | 0.07 | 17.58 | 14.81 |
CWCAEL | 0.43 | 0.52 | 0.17 | 0.09 | 19.65 | 16.25 | |
Lucio Blanco | CWSALB | 0.45 | 0.54 | 0.14 | 0.08 | 18.69 | 15.45 |
CWCALB | 0.71 | 0.86 | 0.03 | 0.02 | 11.79 | 9.84 | |
San Jerónimo | CWSASJ | 0.51 | 0.60 | 0.10 | 0.06 | 16.55 | 14.10 |
CWCASJ | 0.40 | 0.50 | 0.20 | 0.11 | 20.64 | 16.96 | |
San Miguel | CWSASM | 0.48 | 0.57 | 0.14 | 0.07 | 18.34 | 15.10 |
CWCASM | 0.51 | 0.59 | 0.10 | 0.06 | 16.52 | 14.20 | |
CWR | 0.46 | 0.56 | 0.13 | 0.07 | 18 | 14.99 |
Regions | Candelilla Wax | Tm (°C) | ∆Hm (J/g) | Tc (°C) | ∆Hc (J/g) |
---|---|---|---|---|---|
Estanque de León | CWSAEL | 66.11 ± 0.01 | 137.32 ± 0.12 | 63.54 ± 0.04 | 128.2 ± 0.12 |
CWCAEL | 66.84 ± 0.02 | 141.8 ± 0.18 | 63.29 ± 0.01 | 131.45 ± 0.11 | |
Lucio Blanco | CWSALB | 66.38 ± 0.05 | 142.85 ± 0.23 | 63.44 ± 0.02 | 136.6 ± 0.14 |
CWCALB | 66.42 ± 0.02 | 146.52 ± 0.05 | 63.72 ± 0.01 | 137.07 ± 0.12 | |
San Jerónimo | CWSASJ | 66.41 ± 0.29 | 105.22 ± 0.05 | 63.72 ± 0.03 | 136.32 ± 0.20 |
CWCASJ | 66.37 ± 0.14 | 142.75 ± 2.82 | 63.47 ± 0.04 | 134.55 ± 0.15 | |
San Miguel | CWSASM | 66.39 ± 0.06 | 119.3 ± 0.14 | 63.21 ± 0.02 | 111.85 ± 0.05 |
CWCASM | 66.48 ± 0.03 | 132.3 ± 0.14 | 63.33 ± 0.03 | 123.65 ± 0.15 | |
CWR | 65.79 ± 0.01 | 151.57 ± 0.15 | 63.25 ± 0.05 | 141.52 ± 0.12 |
Candelilla Wax | Hardness (N) | Brittleness (N) |
---|---|---|
CWSAEL | 134.74 ± 11.27 | 42.09 ± 28.97 |
CWSALB | 131.8 ± 6.32 | 29.46 ± 2.22 |
CWSASJ | 105.82 ± 10.11 | 113.47 ± 18.64 |
CWSASM | 92.52 ± 3.89 | 36.02 ± 2.59 |
CWCAEL | 141.72 ± 13.42 | 39.86 ± 12.92 |
CWCALB | 153.18 ± 2.94 | 71.39 ± 23.36 |
CWCASJ | 138.32 ± 8.94 | 84.22 ± 14.81 |
CWCASM | 166.06 ± 3.12 | 27.35 ± 6.26 |
CWR | 123.57 ± 17.46 | 69.61 ± 12.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-García, I.C.; Rodríguez-Flores, L.G.; Guadiana-De-Dios, M.H.; González-Hernández, M.D.; Martínez-Ávila, G.C.G.; Gallegos-Infante, J.A.; González-Laredo, R.; Rosas-Flores, W.; Martínez-Gómez, V.J.; Rojas, R.; et al. Candelilla Wax Extracted by Traditional Method and an Ecofriendly Process: Assessment of Its Chemical, Structural and Thermal Properties. Molecules 2022, 27, 3735. https://doi.org/10.3390/molecules27123735
Núñez-García IC, Rodríguez-Flores LG, Guadiana-De-Dios MH, González-Hernández MD, Martínez-Ávila GCG, Gallegos-Infante JA, González-Laredo R, Rosas-Flores W, Martínez-Gómez VJ, Rojas R, et al. Candelilla Wax Extracted by Traditional Method and an Ecofriendly Process: Assessment of Its Chemical, Structural and Thermal Properties. Molecules. 2022; 27(12):3735. https://doi.org/10.3390/molecules27123735
Chicago/Turabian StyleNúñez-García, Itzel C., Linda G. Rodríguez-Flores, Michelle H. Guadiana-De-Dios, María D. González-Hernández, Guillermo C. G. Martínez-Ávila, José A. Gallegos-Infante, Rubén González-Laredo, Walfred Rosas-Flores, Victor J. Martínez-Gómez, Romeo Rojas, and et al. 2022. "Candelilla Wax Extracted by Traditional Method and an Ecofriendly Process: Assessment of Its Chemical, Structural and Thermal Properties" Molecules 27, no. 12: 3735. https://doi.org/10.3390/molecules27123735
APA StyleNúñez-García, I. C., Rodríguez-Flores, L. G., Guadiana-De-Dios, M. H., González-Hernández, M. D., Martínez-Ávila, G. C. G., Gallegos-Infante, J. A., González-Laredo, R., Rosas-Flores, W., Martínez-Gómez, V. J., Rojas, R., Villanueva-Fierro, I., & Rutiaga-Quiñones, M. (2022). Candelilla Wax Extracted by Traditional Method and an Ecofriendly Process: Assessment of Its Chemical, Structural and Thermal Properties. Molecules, 27(12), 3735. https://doi.org/10.3390/molecules27123735