Synthesis, Structure and Biological Evaluations of Zn(II) Pincer Complexes Based on S-Triazine Type Chelator
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterizations
2.2. Structure Description of [Zn(BPMT)(NCS)2] Complex; (1)
2.3. Hirshfeld Analysis
2.4. Biological Studies
2.4.1. Antimicrobial Activity
2.4.2. Antioxidant and Anticancer Activities
3. Materials and Methods
3.1. Synthesis of Zn(II) Complexes
3.2. Biological Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hunt, J.T.; Mitt, T.; Borzilleri, R.; Brown, J.G.; Fargnoli, J.; Fink, B.; Han, W.C.; Mortillo, S.; Vite, G.; Wautlet, B.; et al. Discovery of the pyrrolo[2,1-f][1,2,4] triazine nucleus as a new kinase inhibitor template. J. Med. Chem. 2004, 47, 4054–4059. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.K.; Singh, A.; Singh, A. Antimicrobial studies of some novel quinazolinones fused with [1,2,4]-triazole, [1,2,4]-triazine and [1,2,4,5]-tetrazine rings. Eur. J. Med. Chem. 2009, 44, 1188–1197. [Google Scholar] [CrossRef] [PubMed]
- El-Gendy, Z.; Morsy, J.M.; Allimony, H.A.; Ali, W.R.; Abdel-Rahman, R.M. Synthesis of heterobicyclic nitrogen systems bearing the 1,2,4-triazine moiety as anti-HIV and anticancer drugs, part III. Die Pharm. 2001, 56, 376–383. [Google Scholar]
- Krauth, F.; Dahse, H.-M.; Rüttinger, H.-H.; Frohberg, P. Synthesis and characterization of novel 1,2,4-triazine derivatives with antiproliferative activity. Bioorganic Med. Chem. 2010, 18, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, R.M. Chemistry of uncondensed 1,2,4-triazines, Part IV. Synthesis and chemistry of bioactive 3-amino-1,2,4-triazines and related compounds–an overview. Die Pharm. 2001, 56, 275–286. [Google Scholar]
- Xiong, Y.-Z.; Chen, F.-E.; Balzarini, J.; De Clercq, E.; Pannecouque, C. Non-nucleoside HIV-1 reverse transcriptase inhibitors. Part 11: Structural modulations of diaryltriazines with potent anti-HIV activity. Eur. J. Med. Chem. 2008, 43, 1230–1236. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, H.-C. A Metal−Organic Framework with Entatic Metal Centers Exhibiting High Gas Adsorption Affinity. J. Am. Chem. Soc. 2006, 128, 11734. [Google Scholar] [CrossRef]
- Hee, K.C.; Jaheon, K.; Olaf, D.F.; Michael, O.; Omar, M.Y. Design of Frameworks with Mixed Triangular and Octahedral Building Blocks Exemplified by the Structure of [Zn4O(TCA)2] Having the Pyrite Topology. Angew. Chem. Int. Ed. 2003, 42, 3907–3909. [Google Scholar]
- Kepert, C.J.; Rosseinsky, M.J. Zeolite-like crystal structure of an empty microporous molecular framework. Chem. Commun. 1999, 4, 375–376. [Google Scholar] [CrossRef]
- Wang, S.-N.; Xing, H.; Li, Y.-Z.; Bai, J.; Scheer, M.; Pan, Y.; You, X.-Z. Unprecedented interweaving of single-helical and unequal double-helical chains into chiral metal–organic open frameworks with multiwalled tubular structures. Chem. Commun. 2007, 22, 2293–2295. [Google Scholar] [CrossRef] [Green Version]
- Soliman, S.M.; El-Faham, A. One pot synthesis of two Mn(II) perchlorate complexes with s-triazine NNN-pincer ligand; molecular structure, Hirshfeld analysis and DFT studies. J. Mol. Struct. 2018, 1164, 344–353. [Google Scholar] [CrossRef]
- Soliman, S.M.; El-Faham, A. Synthesis, Molecular and Supramolecular Structures of New Mn(II) Pincer-Type Complexes with s-Triazine Core Ligand. J. Coord. Chem. 2018, 71, 2373–2388. [Google Scholar] [CrossRef]
- Soliman, S.M.; Almarhoon, Z.; Sholkamy, E.N.; El-Faham, A. Bis-pyrazolyl-s-triazine Ni(II) pincer complexes as selective gram positive antibacterial agents; synthesis, structural and antimicrobial studies. J. Mol. Struct. 2019, 1195, 315–322. [Google Scholar] [CrossRef]
- Soliman, S.M.; El-Faham, A. Synthesis, X-ray structure, and DFT studies of five- and eight-coordinated Cd(II) complexes with s-triazine N-pincer chelates. J. Coord. Chem. 2019, 72, 1621–1636. [Google Scholar] [CrossRef]
- Soliman, S.M.; Almarhoon, Z.; El-Faham, A. Synthesis, Molecular and Supramolecular Structures of New Cd(II) Pincer-Type Complexes with s-TriazineCore Ligand. Crystals 2019, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Murray, R.K.; Granner, D.K.; Mayes, P.A.; Rodwell, V.W. Harper’s Biochemistry, 21st ed.; Appleton and Lange: Roseville, CA, USA, 1988. [Google Scholar] [CrossRef]
- Fujimoto, S.; Yasui, H.; Yoshikawa, Y. Development of a novel antidiabetic zinc complex with an organoselenium ligand at the lowest dosage in KK-A(y) mice. J. Inorg. Biochem. 2013, 121, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Poulter, N.; Donaldson, M.; Mulley, G.; Duque, L.; Waterfield, N.; Shard, A.G.; Spencer, S.; Tobias, A.; Jenkins, A.T.A.; Johnson, A.L. Plasma deposited metal Schiff-base compounds as antimicrobials. New J. Chem. 2011, 35, 1477–1484. [Google Scholar] [CrossRef]
- Anbu, S.; Kamalraj, S.; Varghese, B.; Muthumary, J.; Kandaswamy, M. A Series of Oxyimine-Based Macrocyclic Dinuclear Zinc(II) Complexes Enhances Phosphate Ester Hydrolysis, DNA Binding, DNA Hydrolysis, and Lactate Dehydrogenase Inhibition and Induces Apoptosis. Inorg. Chem. 2012, 51, 5580–5592. [Google Scholar] [CrossRef]
- Huang, Q.; Pan, Z.; Wang, P.; Chen, Z.; Zhang, X.; Xu, H. Zinc(II) and copper(II) complexes of β-substituted hydroxylporphyrins as tumor photosensitizers. Bioorganic Med. Chem. Lett. 2006, 16, 3030–3033. [Google Scholar] [CrossRef]
- Emami, S.; Hosseinimehr, S.J.; Taghdisi, S.M.; Akhlaghpoor, S. Kojic acid and its manganese and zinc complexes as potential radioprotective agents. Bioorganic Med. Chem. Lett. 2007, 17, 45–48. [Google Scholar] [CrossRef]
- Thomas, K.V. Determination of the antifouling agent zinc pyrithione in water samples by copper chelate formation and high-performance liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 1999, 833, 105–109. [Google Scholar] [CrossRef]
- Soliman, S.M.; Elsilk, S.E.; El-Faham, A. Synthesis, structure and biological activity of zinc(II) pincer complexes with 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine. Inorg. Chim. Acta 2020, 508, 119627. [Google Scholar] [CrossRef]
- Soliman, S.M.; Elsilk, S.E.; El-Faham, A. Syntheses, structure, Hirshfeld analysis and antimicrobial activity of four new Co(II) complexes with s-triazine-based pincer ligand, Inorg. Chim. Acta 2020, 510, 119753. [Google Scholar]
- Addison, A.W.; Rao, T.N.; Reedijk, J.; Rijn, J.V.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 7, 1349–1356. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer 17 (2017) University of Western Australia. Available online: http://hirshfeldsurface.net (accessed on 25 May 2018).
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Bruker. APEX2, SAINT, SADABS, and XSHELL; Bruker AXS Inc.: Madison, WI, USA, 2013. [Google Scholar]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2020, 53, 226–235. [Google Scholar] [CrossRef] [Green Version]
- CLSI, Clinical and Laboratory Standards Institute. 2012. Available online: https://www.google.com/search?q=performance+standards+for+antimicrobial+susceptibility+testing&source=lnt&tbs=cdr%3A1%2Ccd_min%3A2012%2Ccd_max%3A2012&tbm= (accessed on 25 May 2018).
- Yen, G.C.; Duh, P.D. Scavenging effect of methanolic extracts of peanut hulls on free radical and active oxygen species. J. Agric. Food Chem. 1994, 42, 629–632. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Bond | Distance | Bond | Distance |
---|---|---|---|
Zn1-N1 | 1.932 (8) | Zn2-N11 | 1.918 (8) |
Zn1-N2 | 1.938 (9) | Zn2-N10 | 1.935 (7) |
Zn1-N7 | 2.055 (7) | Zn2-N14 | 2.061 (6) |
Zn1-N9 | 2.191 (7) | Zn2-N12 | 2.202 (7) |
Zn1-N3 | 2.223 (7) | Zn2-N18 | 2.234 (7) |
Bond | Angle | Bond | Angle |
N1-Zn1-N2 | 117.3 (4) | N11-Zn2-N10 | 116.6 (3) |
N1-Zn1-N7 | 118.3 (3) | N10-Zn2-N14 | 114.7 (3) |
N2-Zn1-N7 | 124.4 (3) | N11-Zn2-N14 | 128.6 (3) |
N1-Zn1-N9 | 99.7 (3) | N11-Zn2-N12 | 100.1 (3) |
N2-Zn1-N9 | 100.4 (3) | N10-Zn2-N12 | 100.8 (3) |
N7-Zn1-N9 | 72.9 (3) | N14-Zn2-N12 | 73.0 (3) |
N1-Zn1-N3 | 98.1 (3) | N11-Zn2-N18 | 98.1 (3) |
N2-Zn1-N3 | 97.1 (3) | N10-Zn2-N18 | 97.1 (3) |
N7-Zn1-N3 | 72.8 (3) | N14-Zn2-N18 | 72.5 (3) |
N9-Zn1-N3 | 145.7 (3) | N12-Zn2-N18 | 145.3 (3) |
Atoms | Contacts (Å) | Symm. Code |
---|---|---|
S2…H23B | 2.915 | x, 1 − y, 1/2 + z |
S1…H30 | 2.939 | 1 + x, 2 − y, 1/2 + z |
N8…S1 | 3.326 | x, −1 + y, z |
C10…S1 | 3.163 | x, −1 + y, z |
C8…S2 | 3.377 | x, 2 − y, −1/2 + z |
N16…S3 | 3.293 | x, −1 + y, z |
C24…S3 | 3.214 | x, −1 + y, z |
S4…C26 | 3.393 | x, 1 − y, −1/2 + z |
Microbe | 1 | 2 | BPMT | Control |
---|---|---|---|---|
A. fumigatus | NA c | NA c | NA c | 17 a |
C. albicans | 12 | NA c | NA c | 20 a |
S. aureus | 16 | 16 | 8 | 24 b |
B. subtilis | 33 | 24 | NA c | 26 b |
E. coli | 20 | 13 | NA c | 30 b |
P. vulgaris | 26 | 25 | NA c | 25 b |
Microbe | 1 | 2 | Control |
---|---|---|---|
A. fumigatus | ND c | ND c | 156.25 a |
C. albicans | 1250 | ND c | 312.5 a |
S. aureus | 625 | 312.5 | 9.7 b |
B. subtilis | 2.4 | 9.7 | 4.8 b |
E. coli | 156.25 | 1250 | 4.8 b |
P. vulgaris | 4.8 | 39.1 | 4.8 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Refaat, H.M.; Alotaibi, A.A.M.; Dege, N.; El-Faham, A.; Soliman, S.M. Synthesis, Structure and Biological Evaluations of Zn(II) Pincer Complexes Based on S-Triazine Type Chelator. Molecules 2022, 27, 3625. https://doi.org/10.3390/molecules27113625
Refaat HM, Alotaibi AAM, Dege N, El-Faham A, Soliman SM. Synthesis, Structure and Biological Evaluations of Zn(II) Pincer Complexes Based on S-Triazine Type Chelator. Molecules. 2022; 27(11):3625. https://doi.org/10.3390/molecules27113625
Chicago/Turabian StyleRefaat, Heba M., Atallh A. M. Alotaibi, Necmi Dege, Ayman El-Faham, and Saied M. Soliman. 2022. "Synthesis, Structure and Biological Evaluations of Zn(II) Pincer Complexes Based on S-Triazine Type Chelator" Molecules 27, no. 11: 3625. https://doi.org/10.3390/molecules27113625
APA StyleRefaat, H. M., Alotaibi, A. A. M., Dege, N., El-Faham, A., & Soliman, S. M. (2022). Synthesis, Structure and Biological Evaluations of Zn(II) Pincer Complexes Based on S-Triazine Type Chelator. Molecules, 27(11), 3625. https://doi.org/10.3390/molecules27113625