Novel β-Cyclodextrin and Catnip Essential Oil Inclusion Complex and Its Tick Repellent Properties
Abstract
:1. Introduction
2. Results
2.1. GC-FID Quantification of Essential Oil in Inclusion Complexes
2.2. SPME/GC-MS Quantification of Volatile Release
2.3. FT-IR Analysis of Inclusion Complexes
2.4. NMR Spectroscopy
2.5. UV-Vis Spectroscopy
2.6. Scanning Electron Microscopy (SEM)
2.7. Tick Repellency Bioassays
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Preparation of Inclusion Complexes
4.3. GC-FID Quantification of EO in Inclusion Complexes
4.3.1. Total Oil Extraction from Inclusion Complexes
4.3.2. Surface Oil Extraction from Inclusion Complexes
4.3.3. GC-FID Analysis of EO Extracts
4.4. SPME/GC-MS Quantification of Volatile Release
4.5. FT-IR Analysis of Inclusion Complexes
4.6. NMR Spectroscopy
4.7. UV-Vis Spectroscopy
4.8. Scanning Electron Microscopy (SEM)
4.9. Tick Repellency Bioassays
4.9.1. Ticks
4.9.2. Treatments
4.9.3. Horizontal Bioassays
4.9.4. Vertical Bioassays
4.9.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A
Treat | Repellency (±SEM)% | |||||||
---|---|---|---|---|---|---|---|---|
% v/v | 5 min | 30 min | 60 min | 90 min | 120 min | z | p | |
catnip | 0.0 | 21 (±1) | 14 (±7) | 0 (±0) | 0 (±0) | 0 (±0) | - | - |
0.625 | 90 (±6) | 38 (±10) | 42 (±4) | 4 (±4) | 0 (±0) | 8.417 | <0.001 | |
1.25 | 87 (±7) | 74 (±9) | 57 (±11) | 35 (±10) | 17 (±8) | 7.971 | <0.001 | |
2.5 | 94 (±5) | 96 (±4) | 84 (±7) | 56 (±10) | 52 (±10) | 8.394 | <0.001 | |
5 | 100 (±0) | 88 (±7) | 88 (±7) | 84 (±7) | 84 (±7) | 9.452 | <0.001 | |
DEET | 25 | 100 (±0) | 100 (±0) | 100 (±0) | 96 (±4) | 100 (±0) | 9.266 | <0.001 |
References
- Ciobanu, A.; Landy, D.; Fourmentin, S. Complexation Efficiency of Cyclodextrins for Volatile Flavor Compounds. Food Res. Int. 2013, 53, 110–114. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Soto-Valdez, H.; González-León, A.; Álvarez-Parrilla, E.; Martín-Belloso, O.; González-Aguilar, G.A. Microencapsulation of Cinnamon Leaf (Cinnamomum zeylanicum) and Garlic (Allium sativum) Oils in β-Cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2008, 60, 359–368. [Google Scholar] [CrossRef]
- Reddy, C.K.; Jung, E.S.; Son, S.Y.; Lee, C.H. Inclusion Complexation of Catechins-Rich Green Tea Extract by β-Cyclodextrin: Preparation, Physicochemical, Thermal, and Antioxidant Properties. LWT 2020, 131, 109723. [Google Scholar] [CrossRef]
- Guimarães, A.G.; Oliveira, M.A.; dos Santos Alves, R.; dos Passos Menezes, P.; Serafini, M.R.; de Souza Araújo, A.A.; Bezerra, D.P.; Quintans Júnior, L.J. Encapsulation of Carvacrol, a Monoterpene Present in the Essential Oil of Oregano, with β-Cyclodextrin, Improves the Pharmacological Response on Cancer Pain Experimental Protocols. Chem. Biol. Interact. 2015, 227, 69–76. [Google Scholar] [CrossRef]
- Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: Structure, Physicochemical Properties and Pharmaceutical Applications. Int. J. Pharm. 2018, 535, 272–284. [Google Scholar] [CrossRef]
- Galvão, J.G.; Silva, V.F.; Ferreira, S.G.; França, F.R.M.; Santos, D.A.; Freitas, L.S.; Alves, P.B.; Araújo, A.A.S.; Cavalcanti, S.C.H.; Nunes, R.S. β-Cyclodextrin Inclusion Complexes Containing Citrus sinensis (L.) Osbeck Essential Oil: An Alternative to Control Aedes aegypti Larvae. Thermochim. Acta 2015, 608, 14–19. [Google Scholar] [CrossRef]
- Junnila, A.; Revay, E.E.; Müller, G.C.; Kravchenko, V.; Qualls, W.A.; Xue, R.; Allen, S.A.; Beier, J.C.; Schlein, Y. Efficacy of Attractive Toxic Sugar Baits (ATSB) against Aedes albopictus with Garlic Oil Encapsulated in Beta-Cyclodextrin as the Active Ingredient. Acta Trop. 2015, 152, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Abarca, R.L.; Rodríguez, F.J.; Guarda, A.; Galotto, M.J.; Bruna, J.E. Characterization of Beta-Cyclodextrin Inclusion Complexes Containing an Essential Oil Component. Food Chem. 2016, 196, 968–975. [Google Scholar] [CrossRef]
- Kotronia, M.; Kavetsou, E.; Loupassaki, S.; Kikionis, S.; Vouyiouka, S.; Detsi, A. Encapsulation of Oregano (Origanum onites L.) Essential Oil in β-Cyclodextrin (β-CD): Synthesis and Characterization of the Inclusion Complexes. Bioengineering 2017, 4, 74. [Google Scholar] [CrossRef] [Green Version]
- Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Melville, C.C.; Della Vechia, J.F.; de Andrade, D.J.; Fraceto, L.F. Chitosan Nanoparticles Functionalized with β-Cyclodextrin: A Promising Carrier for Botanical Pesticides. Sci. Rep. 2018, 8, 2067. [Google Scholar] [CrossRef] [PubMed]
- Junco, S.; Casimiro, T.; Ribeiro, N.; Nunes Da Ponte, M.; Cabral Marques, H. A Comparative Study of Naproxen—Beta Cyclodextrin Complexes Prepared by Conventional Methods and Using Supercritical Carbon Dioxide. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 117–121. [Google Scholar] [CrossRef]
- Siva, S.; Meenatchi, V.; Li, C.; Abdel-Samie, M.A.; Cui, H.; Lin, L. Encompassment of Phthalyl Sulfacetamide in α- and β-Cyclodextrin Using Ultrasonication: Physicochemical and Computational Modeling Investigations. J. Mol. Liq. 2020, 319, 114184. [Google Scholar] [CrossRef]
- Uppal, S.; Kaur, K.; Kumar, R.; Kahlon, N.K.; Singh, R.; Mehta, S.K. Encompassment of Benzyl Isothiocyanate in Cyclodextrin Using Ultrasonication Methodology to Enhance Its Stability for Biological Applications. Ultrason. Sonochem. 2017, 39, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Canbolat, M.F.; Celebioglu, A.; Uyar, T. Drug Delivery System Based on Cyclodextrin-Naproxen Inclusion Complex Incorporated in Electrospun Polycaprolactone Nanofibers. Colloids Surf. B 2014, 115, 15–21. [Google Scholar] [CrossRef]
- Cabral-Marques, H.; Almeida, R. Optimisation of Spray-Drying Process Variables for Dry Powder Inhalation (DPI) Formulations of Corticosteroid/Cyclodextrin Inclusion Complexes. Eur. J. Pharm. Biopharm. 2009, 73, 121–129. [Google Scholar] [CrossRef]
- Junior, O.V.; Dantas, J.H.; Barão, C.E.; Zanoelo, E.F.; Cardozo-Filho, L.; de Moraes, F.F. Formation of Inclusion Compounds of (+)Catechin with β-Cyclodextrin in Different Complexation Media: Spectral, Thermal and Antioxidant Properties. J. Supercrit. Fluids 2017, 121, 10–18. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Marques, C.A.; Machado, A.A.S.C. Environmental Sustainability: Implications and Limitations to Green Chemistry. Found. Chem. 2014, 16, 125–147. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Asgarpanah, J.; Sarabian, S.; Ziarati, P. Essential Oil of Nepeta Genus (Lamiaceae) from Iran: A Review. J. Essent. Oil Res. 2014, 26, 1–12. [Google Scholar] [CrossRef]
- Kfoury, M.; Landy, D.; Ruellan, S.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Nootkatone Encapsulation by Cyclodextrins: Effect on Water Solubility and Photostability. Food Chem. 2017, 236, 41–48. [Google Scholar] [CrossRef]
- Gao, S.; Jiang, J.; Li, X.; Ye, F.; Fu, Y.; Zhao, L. An Environmentally Safe Formulation with Enhanced Solubility and Fungicidal Activity: Self-Assembly and Characterization of Difenoconazole-β-CD Inclusion Complex. J. Mol. Liq. 2021, 327, 114874. [Google Scholar] [CrossRef]
- Kfoury, M.; Auezova, L.; Greige-Gerges, H.; Larsen, K.L.; Fourmentin, S. Release Studies of Trans-Anethole from β-Cyclodextrin Solid Inclusion Complexes by Multiple Headspace Extraction. Carbohydr. Polym. 2016, 151, 1245–1250. [Google Scholar] [CrossRef]
- Acimovic, M.; Zeremski, T.; Kiprovski, B.; Brdar-Jokanovic, M.; Popovic, V.; Koren, A.; Sikora, V. Nepeta cataria—Cultivation, Chemical Composition and Biological Activity. J. Agron. Technol. Eng. Manag. 2021, 4, 620–634. [Google Scholar]
- Baranauskienė, R.; Bendžiuvienė, V.; Ragažinskienė, O.; Venskutonis, P.R. Essential Oil Composition of Five Nepeta Species Cultivated in Lithuania and Evaluation of Their Bioactivities, Toxicity and Antioxidant Potential of Hydrodistillation Residues. Food Chem. Toxicol. 2019, 129, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Gilani, A.H.; Shah, A.J.; Zubair, A.; Khalid, S.; Kiani, J.; Ahmed, A.; Rasheed, M.; Ahmad, V.U. Chemical Composition and Mechanisms Underlying the Spasmolytic and Bronchodilatory Properties of the Essential Oil of Nepeta cataria L. J. Ethnopharmacol. 2009, 121, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Saharkhiz, M.J. Changes in Essential Oil Content and Composition of Catnip (Nepeta cataria L.) during Different Developmental Stages. J. Essent. Oil Bear. Plants 2011, 14, 396–400. [Google Scholar] [CrossRef]
- Reichert, W.; Ejercito, J.; Guda, T.; Dong, X.; Wu, Q.; Ray, A.; Simon, J.E. Repellency Assessment of Nepeta cataria Essential Oils and Isolated Nepetalactones on Aedes aegypti. Sci. Rep. 2019, 9, 1524. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Q.-B.D.; Vu, M.-A.N.; Hebert, A.A. Insect Repellents: An Updated Review for the Clinician. J. Am. Acad. Dermatol. 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.J.; Zeng, X.-P.; Berkebile, D.; Du, H.-J.; Tong, Y.; Qian, K. Efficacy and Safety of Catnip (Nepeta cataria) as a Novel Filth Fly Repellent. Med. Vet. Entomol. 2009, 23, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Melo, N.; Capek, M.; Arenas, O.M.; Afify, A.; Yilmaz, A.; Potter, C.J.; Laminette, P.J.; Para, A.; Gallio, M.; Stensmyr, M.C. The Irritant Receptor TRPA1 Mediates the Mosquito Repellent Effect of Catnip. Curr. Biol. 2021, 31, 1988–1994. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.J.; Coats, J.R. Catnip Essential Oil and Its Nepetalactone Isomers as Repellents for Mosquitoes. In Recent Developments in Invertebrate Repellents; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2011; Volume 1090, pp. 59–65. ISBN 978-0-8412-2675-3. [Google Scholar]
- Feaster, J.E.; Scialdone, M.A.; Todd, R.G.; Gonzalez, Y.I.; Foster, J.P.; Hallahan, D.L. Dihydronepetalactones Deter Feeding Activity by Mosquitoes, Stable Flies, and Deer Ticks. J. Med. Entomol. 2009, 46, 832–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birkett, M.A.; Hassanali, A.; Hoglund, S.; Pettersson, J.; Pickett, J.A. Repellent Activity of Catmint, Nepeta cataria, and Iridoid Nepetalactone Isomers against Afro-Tropical Mosquitoes, Ixodid Ticks and Red Poultry Mites. Phytochemistry 2011, 72, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Bush, L.M.; Vazquez-Pertejo, M.T. Tick Borne Illness—Lyme Disease. Dis. Mon. 2018, 64, 195–212. [Google Scholar] [CrossRef]
- Snydman, D.R. Lyme Disease. Medicine 2017, 45, 743–746. [Google Scholar] [CrossRef]
- Ogden, N.H.; Bigras-Poulin, M.; Hanincová, K.; Maarouf, A.; O’Callaghan, C.J.; Kurtenbach, K. Projected Effects of Climate Change on Tick Phenology and Fitness of Pathogens Transmitted by the North American Tick Ixodes Scapularis. J. Theor. Biol. 2008, 254, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Dumic, I.; Severnini, E. “Ticking Bomb”: The Impact of Climate Change on the Incidence of Lyme Disease. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, e5719081. [Google Scholar] [CrossRef] [Green Version]
- Crupi, V.; Ficarra, R.; Guardo, M.; Majolino, D.; Stancanelli, R.; Venuti, V. UV–Vis and FTIR–ATR Spectroscopic Techniques to Study the Inclusion Complexes of Genistein with β-Cyclodextrins. J. Pharm. Biomed. Anal. 2007, 44, 110–117. [Google Scholar] [CrossRef]
- Hogenbom, J.; Jones, A.; Wang, H.V.; Pickett, L.J.; Faraone, N. Synthesis and Characterization of β-Cyclodextrin-Essential Oil Inclusion Complexes for Tick Repellent Development. Polymers 2021, 13, 1892. [Google Scholar] [CrossRef]
- Fauziah, C.I.; Zaibunnisa, A.H.; Osman, H.; Wan Aida, W.M. Thermal Analysis and Surface Morphology Study of Cholesterol: Β-Cyclodextrin Inclusion Complex. Adv. Mater. Res. 2013, 812, 221–225. [Google Scholar] [CrossRef]
- Zhu, J.J.; Wienhold, B.J.; Wehrle, J.; Davis, D.; Chen, H.; Taylor, D.; Friesen, K.; Zurek, L. Efficacy and Longevity of Newly Developed Catnip Oil Microcapsules against Stable Fly Oviposition and Larval Growth. Med. Vet. Entomol. 2014, 28, 222–227. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, T.; Tao, J.; Ji, G.; Wang, S. Preparation, Characterization, and Pharmacokinetics of the Inclusion Complex of Genipin-β-Cyclodextrin. Drug Dev. Ind. Pharm. 2009, 35, 1452–1459. [Google Scholar] [CrossRef]
- El-Barghouthi, M.I.; Masoud, N.A.; Al-Kafawein, J.K.; Zughul, M.B.; Badwan, A.A. Host–Guest Interactions of Risperidone with Natural and Modified Cyclodextrins: Phase Solubility, Thermodynamics and Molecular Modeling Studies. J. Incl. Phenom. Macrocycl. Chem. 2005, 53, 15–22. [Google Scholar] [CrossRef]
- Deng, C.; Cao, C.; Zhang, Y.; Hu, J.; Gong, Y.; Zheng, M.; Zhou, Y. Formation and Stabilization Mechanism of β-Cyclodextrin Inclusion Complex with C10 Aroma Molecules. Food Hydrocoll. 2022, 123, 107013. [Google Scholar] [CrossRef]
- Lis, M.J.; García Carmona, Ó.; García Carmona, C.; Maestá Bezerra, F. Inclusion Complexes of Citronella Oil with β-Cyclodextrin for Controlled Release in Biofunctional Textiles. Polymers 2018, 10, 1324. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.J.; Berkebile, D.R.; Dunlap, C.A.; Zhang, A.; Boxler, D.; Tangtrakulwanich, K.; Behle, R.W.; Baxendale, F.; Brewer, G. Nepetalactones from Essential Oil of Nepeta cataria Represent a Stable Fly Feeding and Oviposition Repellent. Med. Vet. Entomol. 2012, 26, 131–138. [Google Scholar] [CrossRef] [Green Version]
- González-Morales, M.A.; Terán, M.; Romero, A. Behavioral Responses of the Common Bed Bug to Essential Oil Constituents. Insects 2021, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Benelli, G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- López, A.; Castro, S.; Andina, M.J.; Ures, X.; Munguía, B.; Llabot, J.M.; Elder, H.; Dellacassa, E.; Palma, S.; Domínguez, L. Insecticidal Activity of Microencapsulated Schinus Molle Essential Oil. Ind. Crops Prod. 2014, 53, 209–216. [Google Scholar] [CrossRef]
- Elsana, H.; Olusanya, T.O.B.; Carr-wilkinson, J.; Darby, S.; Faheem, A.; Elkordy, A.A. Evaluation of Novel Cationic Gene Based Liposomes with Cyclodextrin Prepared by Thin Film Hydration and Microfluidic Systems. Sci. Rep. 2019, 9, 15120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Feng, C.; Li, Z.; Gu, Z.; Ban, X.; Hong, Y.; Cheng, L.; Li, C. Efficient Formation of Carvacrol Inclusion Complexes during β-Cyclodextrin Glycosyltransferase-Catalyzed Cyclodextrin Synthesis. Food Control 2021, 130, 108296. [Google Scholar] [CrossRef]
- Decock, G.; Landy, D.; Surpateanu, G.; Fourmentin, S. Study of the Retention of Aroma Components by Cyclodextrins by Static Headspace Gas Chromatography. J. Incl. Phenom. Macrocycl. Chem. 2008, 62, 297–302. [Google Scholar] [CrossRef]
- Faraone, N.; MacPherson, S.; Hillier, N.K. Behavioral Responses of Ixodes Scapularis Tick to Natural Products: Development of Novel Repellents. Exp. Appl. Acarol. 2019, 79, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, G.; Dolan, M.C.; Peralta-Cruz, J.; Schmidt, J.; Piesman, J.; Eisen, R.J.; Karchesy, J.J. Repellent Activity of Fractioned Compounds from Chamaecyparis Nootkatensis Essential Oil Against Nymphal Ixodes Scapularis (Acari: Ixodidae). J. Med. Entomol. 2006, 43, 957–961. [Google Scholar] [CrossRef]
Batch | Surface Mass Concentration EO ± SE (μg/mg) | Total Mass Concentration EO ± SE (μg/mg) | EE (%) | EY (%) |
---|---|---|---|---|
1 | 0.170 ± 0.008 | 87 ± 3 | 99.8 | 68 |
2 | 0.280 ± 0.031 | 83 ± 4 | 99.7 | 64 |
3 | 0.265 ± 0.004 | 81 ± 1 | 99.7 | 63 |
Time (h) | Volatiles Released per Mass of IC | Percentage of Initial Volatiles | ||
---|---|---|---|---|
ng/mg (±SE) | t | p | ||
0 | 0.15 (±0.04) | - | - | - |
3 | 0.13 (±0.01) | −1.746 | 0.1 | 88% |
6 | 0.10 (±0.01) | −3.073 | 0.02 | 68% |
9 | 0.10 (±0.01) | −3.073 | 0.02 | 68% |
δ β-CD (ppm) | δ [catnip: β-CD] IC (ppm) | Δδ (ppm) | β-CD Structure | |
---|---|---|---|---|
H-1 | 5.063 | 5.061 | −0.002 | |
H-2 | 3.642 | 3.640 | −0.002 | |
H-3 | 3.960 | 3.949 | −0.011 | |
H-4 | 3.576 | 3.575 | −0.001 | |
H-5 | 3.845 | 3.830 | −0.015 | |
H-6 | 3.873 | 3.867 | −0.006 |
Treat | Repellency (±SEM) | ||
---|---|---|---|
% | χ2 | p | |
β-CD-catnip | 86 (±6) | 26.34 | <0.001 |
β-CD | 20 (±4) | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hogenbom, J.; Istanbouli, M.; Faraone, N. Novel β-Cyclodextrin and Catnip Essential Oil Inclusion Complex and Its Tick Repellent Properties. Molecules 2021, 26, 7391. https://doi.org/10.3390/molecules26237391
Hogenbom J, Istanbouli M, Faraone N. Novel β-Cyclodextrin and Catnip Essential Oil Inclusion Complex and Its Tick Repellent Properties. Molecules. 2021; 26(23):7391. https://doi.org/10.3390/molecules26237391
Chicago/Turabian StyleHogenbom, Jennifer, Mouaz Istanbouli, and Nicoletta Faraone. 2021. "Novel β-Cyclodextrin and Catnip Essential Oil Inclusion Complex and Its Tick Repellent Properties" Molecules 26, no. 23: 7391. https://doi.org/10.3390/molecules26237391