Automatic On-Line Purge-and-Trap Sequential Injection Analysis for Trace Ammonium Determination in Untreated Estuarine and Seawater Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Automatic Purge-and-Trap System
2.1.1. Sample Alkalization
2.1.2. Trapping Solution
2.1.3. Temperature Effect
2.1.4. Sample Volume
2.1.5. Effect of Purge-Gas Flow Rate and Purging Time
2.2. Interferences
2.3. Figures of Merit
2.4. Applications in Spiked Environmental Water Samples
3. Materials and Methods
3.1. The Automatic Purge-and-Trap Platform
3.2. Apparatus
3.3. Chemicals and Samples
3.4. On-Line Analytical Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Clavijo, S.; Avivar, J.; Suárez, R.; Cerdà, V. Analytical strategies for coupling separation and flow-injection techniques. Trends Anal. Chem. 2015, 67, 26–33. [Google Scholar] [CrossRef]
- Melchert, W.R.; Reis, B.F.; Rocha, F.R.P. Green chemistry and the evolution of flow analysis. A review. Anal. Chim. Acta 2012, 714, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Miró, M.; Hansen, E.H. On-line sample processing involving microextraction techniques as a front-end to atomic spectrometric detection for trace metal assays: A review. Anal. Chim. Acta 2013, 782, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Trojanowicz, M.; Kołacińska, K. Recent advances in flow injection analysis. Analyst 2016, 14, 2085–2139. [Google Scholar] [CrossRef] [PubMed]
- O’Connor Šraj, L.; Almeida, M.I.G.S.; Swearer, S.E.; Kolev, S.D.; McKelvie, I.D. Analytical challenges and advantages of using flow-based methodologies for ammonia determination in estuarine and marine waters. Trends Anal. Chem. 2014, 59, 83–92. [Google Scholar] [CrossRef]
- Genfa, Z.; Dasgupta, P.K. Fluorometric measurement of aqueous ammonium ion in a flow injection system. Anal. Chem. 1989, 61, 408–412. [Google Scholar] [CrossRef]
- Kerouel, R.; Aminot, A. Fluorometric determination of ammonia in sea and estuarine waters by direct segmented flow analysis. Mar. Chem. 1997, 57, 265–275. [Google Scholar] [CrossRef]
- Lin, K.; Zhu, Y.; Zhang, Y.; Lin, H. Determination of ammonia nitrogen in natural waters: Recent advances and applications. Trends Environ. Anal. Chem. 2019, 24, e00073. [Google Scholar] [CrossRef]
- Kolev, S.D.; Fernandes, P.R.L.V.; Satinsky, D.; Solich, P. Highly sensitive gas-diffusion sequential injection analysis based on flow manipulation. Talanta 2009, 79, 1021–1025. [Google Scholar] [CrossRef]
- Segundo, R.A.; Mesquita, R.B.R.; Ferreira, M.T.S.O.B.; Teixeira, C.F.C.P.; Bordalo, A.A.; Rangel, A.O.S.S. Development of a sequential injection gas diffusion system for the determination of ammonium in transitional and coastal waters. Anal. Methods 2011, 3, 2049–2055. [Google Scholar] [CrossRef]
- Timofeeva, I.I.; Bulatov, A.V.; Moskvin, A.L.; Kolev, S.D. A gas-diffusion flow injection method coupled with online solid–liquid extraction for the determination of ammonium in solid samples. Talanta 2015, 142, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cardwell, T.J.; Cattrall, R.W.; Luque de Castro, M.D.; Kolev, S.D. Pervaporation-flow injection determination of ammonia in the presence of surfactants. Anal. Chim. Acta 2000, 416, 177–184. [Google Scholar] [CrossRef]
- Wang, L.; Cardwell, T.J.; Cattrall, R.W.; Luque de Castro, M.D.; Kolev, S.D. Determination of ammonia in beers by pervaporation flow injection analysis and spectrophotometric detection. Talanta 2003, 60, 1269–1275. [Google Scholar] [CrossRef]
- Mornane, P.; van den Haaka, J.; Cardwell, T.J.; Cattrall, R.W.; Dasgupta, P.K.; Kolev, S.D. Thin layer distillation for matrix isolation in flow analysis. Talanta 2007, 72, 741–746. [Google Scholar] [CrossRef]
- Almeida, M.I.G.S.; Estela, J.M.; Segundo, M.A.; Cerdà, V. A membraneless gas-diffusion unit – multisyringe flow injection spectrophotometric method for ammonium determination in untreated environmental samples. Talanta 2011, 84, 1244–1252. [Google Scholar] [CrossRef]
- Alahmad, W.; Pluangklang, T.; Mantim, T.; Cerdà, V.; Wilairat, P.; Ratanawimarnwong, N.; Nacapricha, D. Development of flow systems incorporating membraneless vaporization units and flow-through contactless conductivity detector for determination of dissolved ammonium and sulfide in canal water. Talanta 2018, 177, 34–40. [Google Scholar] [CrossRef]
- Sramkova, I.; Horstkotte, B.; Sklenarova, H.; Solich, P.; Kolev, S.D. A novel approach to lab-in-syringe head-space single-drop microextraction and on-drop sensing of ammonia. Anal. Chim. Acta 2016, 934, 132–144. [Google Scholar] [CrossRef]
- Timofeeva, I.; Khubaibullin, I.; Kamencev, M.; Moskvin, A.; Bulatov, A. Automated procedure for determination of ammonia in concrete with headspace single-drop micro-extraction by stepwise injection spectrophotometric analysis. Talanta 2015, 133, 34–37. [Google Scholar] [CrossRef]
- Luque de Castro, M.D.; Gamiz-Gracia, L. Analytical pervaporation: An advantageous alternative to headspace and purge-and-trap techniques. Chromatographia 2000, 52, 265–272. [Google Scholar] [CrossRef]
- Giakisikli, G.; Anthemidis, A.N. Automatic pressure-assisted dual-headspace gas-liquid microextraction. Lab-in-syringe platform for membraneless gas separation of ammonia coupled with fluorimetric sequential injection analysis. Anal. Chim. Acta 2018, 1033, 73–80. [Google Scholar] [CrossRef]
- Martínez, E.; Lacorte, S.; Llobeta, I.; Viana, P.; Barceló, D. Multicomponent analysis of volatile organic compounds in water by automated purge and trap coupled to gas chromatography–mass spectrometry. J. Chromatogr. A 2002, 959, 181–190. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, J.; Yuan, D.; Yang, Z.; Shi, X.; Li, H.; Jin, H.; Ran, L. Development of analytical methods for ammonium determination in seawater over the last two decades. Trends Anal. Chem. 2019, 119, 115627. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Wu, J.-Y.; Chen, H.-J.; Lin, T.-Y.; Wu, C.-H. Purge-and-trap ion chromatography for the determination of trace ammonium ion in high-salinity water samples. J. Chromatogr. A 2008, 1188, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yuan, D.; Lin, H.; Zhou, T. Determination of ammonium in seawater by purge-and-trap and flow injection with fluorescence detection. Anal. Lett. 2016, 49, 665–675. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Pan, Y.-T.; Lee, H.-Y.; Wang, P.-Y.; Wu, C.-H. Markedly enhanced purge-and-trap performance and efficiency for the determination of ammonium ion in high-salinity water samples. J. Chin. Chem. Soc. 2012, 59, 718–726. [Google Scholar] [CrossRef]
- Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. [Google Scholar] [CrossRef] [Green Version]
- Saridara, C.; Brukh, R.; Mitra, S. Development of continuous on-line purge and trap analysis. J. Sep. Sci. 2006, 29, 446–452. [Google Scholar] [CrossRef]
- Inczedy, J.; Lengyel, T.; Ure, A.M. International Union of Pure and Applied Chemistry, Compendium of Analytical Nomenclature (definitive rules 1997), 3rd ed.; Blackwell Science: Oxford, UK, 1998. [Google Scholar]
- Marques, K.L.; Pires, C.K.; Santos, J.L.M.; Zagatto, E.A.G.; Lima, J.L.F.C. A multi-pumping flow system for chemiluminescent determination of ammonium in natural waters. Int. J. Environ. Anal. Chem. 2007, 87, 77–85. [Google Scholar] [CrossRef]
- Oliveira, S.M.; Lopes, T.I.M.S.; Tóth, I.V.; Rangel, A.O.S.S. A multi-commuted flow injection system with a multi-channel propulsion unit placed before detection: Spectrophotometric determination of ammonium. Anal. Chim. Acta 2007, 600, 29–34. [Google Scholar] [CrossRef]
- Hong, L.; Sun, X.; Wang, L. Determination of ammonia in water using flow injection analysis with automatic pervaporation enrichment. Anal. Lett. 2009, 42, 2364–2377. [Google Scholar] [CrossRef]
- Federation, Water Environmental, and American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 1999. [Google Scholar]
- Giakisikli, G.; Trikas, E.; Petala, M.; Karapantsios, T.; Zachariadis, G.; Anthemidis, A. An integrated sequential injection analysis system for ammonium determination in recycled hygiene and potable water samples for future use in manned space missions. Microchem. J. 2017, 133, 490–495. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Flow System | Separation Technique | Detection System | Linear Range (mg L−1) | LOD (μg L−1) | RSD (%) | F (h−1) | Sample Type | Ref. |
---|---|---|---|---|---|---|---|---|
MPFS | GD | Chemiluminescence | 0.3–0.5 | 20 | < 1.2 | 50 | Tap, river, wastewater | [29] |
MCFIA | GD | Spectrophotometry/BTB | 0.050–1.0 | 27 | < 1.5 | 20 | Surface and tap water | [30] |
SIA | GD | Spectrophotometry/BTB | 0.10–1.0 | 27 | < 2 | 20 | Estuarine, river, well, marine water | [10] |
FIA | PV | Spectrophotometry/CR - TB | 0.2–20 | 100 | < 3 | 11 | Industrial effluents | [12] |
FIA | PV | Spectrophotometry/BTB | 0.05–50 | 30 | 1.9 | 10/8 | Surface, urban sewage, industrial effluents | [31] |
LIS | HS-SDME | Spectrophotometry/BTB | up to 0.425 | 30 | < 8 | 17 | River, coastal seawater | [17] |
MSFIA | MGD | Spectrophotometry/BTB | 10.0–50.0 | 2200 | 4.8 | 11 | River, wastewater | [15] |
SIA | MBL-VP | Conductivity | 0.09–1.44 | 36 | 2.0 | 12 | Canal water | [16] |
LIS-SIA | PA-D-HS | Fluorimetry | 0.15–10.0 * | 0.05 | 3.6 | 8 | Seawater, river, lake, ditch water | [20] |
FIA | P&T (off-line) | Fluorimetry | 0.18–7.2 * | 0.13 | 4.4 | 4 | Seawater | [24] |
SIA | P&T | Fluorimetry | 2.66–150 * | 0.80 | 4.2 | 4 | Estuarine, lake, seawater | ** |
Sample | True Value (μg L−1) | Certified Method * (μg L−1) | P&T-SIA Method * (μg L−1) | Relative Error (%) | texp |
---|---|---|---|---|---|
PWA-1 | 25.0 | 24.2 ± 1.8 | 23.8 ± 1.5 | 1.7 | 0.831 |
PWA-2 | 50.0 | 48.0 ± 3.2 | 46.8 ± 2.5 | 2.5 | 0.462 |
Overall relative error | 2.1 | ||||
HWA-1 | 50.0 | 51.6 ± 4.3 | 48.8 ± 2.4 | 5.4 | 2.021 |
HWA-2 | 100.0 | 97.8 ± 8.6 | 96.6 ± 5.2 | 1.2 | 0.400 |
Overall relative error | 3.3 |
Sample Type | Added * (μg L−1) | Found * (μg L−1) | R (%) |
---|---|---|---|
Strymon estuarine water | N.D. | ||
20.0 | 19.2 ± 0.9 | 96.0 | |
50.0 | 48.8 ± 1.5 | 97.6 | |
Prespa lake water | 35.2 ± 2.2 | ||
20.0 | 54.7 ± 2.7 | 97.5 | |
50.0 | 86.2 ± 2.8 | 102.0 | |
Thermaikos gulf seawater | 12.5 ± 0.5 | ||
20.0 | 31.3 ± 1.8 | 94.0 | |
50.0 | 60.2 ± 2.8 | 95.4 | |
Toroneos gulf seawater | N.D. | ||
20.0 | 20.3 ± 1.3 | 101.5 | |
50.0 | 47.3 ± 2.8 | 94.6 |
Step | Valve Position | Operation | Volume (μL) | Flow Rate (μL s−1) | Commentary | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
V1 | V2 | SV1 | SV2 | V | SP1 | SP2 | |||||
Thermostated Heater: ON | PV is thermostated at 80 °C | ||||||||||
1 | OUT | IN | 2 | 5 | OUT | Aspirate | - | 10 | 5 | Trapping solution into TV | |
2 | OUT | IN | 1 | 5 | OUT | Aspirate | - | 300 | 50 | ||
3 | OUT | IN | 6 | 5 | OUT | Dispense | - | 310 | 50 | ||
4 | OUT | IN | 6 | 3 | OUT | - | Aspirate | 1000 | 100 | Transportation of NaOH into PV | |
5 | OUT | IN | 6 | 5 | OUT | - | Dispense | 1000 | 100 | ||
6 | OUT | IN | 6 | 4 | OUT | - | Aspirate | 5000 | | × 2-repeats | Loading of Sample into PV |
7 | OUT | IN | 6 | 5 | OUT | - | Dispense | 5000 | |||
10 | IN | IN | 6 | 5 | OUT | - | - | - | - | Start of Purge-and-Trap operation | |
Purging Time: 600s | Purge Gas in PV, Transportation and Dilution of NH3(g) Separation/Preconcentration | ||||||||||
11 | OUT | OUT | 2 | 5 | OUT | Aspirate | - | 10 | 5 | Delivery of trapping solution into HC-2 | |
12 | OUT | OUT | 6 | 5 | OUT | Aspirate | - | 400 | 50 | ||
13 | OUT | OUT | 4 | 5 | OUT | Dispense | - | 410 | 40 | ||
Start miniSIA operation | Measurement/Quantification | ||||||||||
14 | OUT | OUT | 4 | 5 | OUT | - | Aspirate | 5000 | | × 2-repeats | Cleaning of PV |
15 | OUT | OUT | 4 | 6 | OUT | - | Dispense | 5000 | |||
18 | OUT | OUT | 4 | 5 | OUT | - | Aspirate | 1000 | 300 | ||
19 | OUT | OUT | 4 | 6 | OUT | - | Dispense | 1000 | 300 | ||
20 | OUT | OUT | 4 | 2 | OUT | - | Aspirate | 5000 | 300 | ||
21 | OUT | OUT | 4 | 5 | OUT | - | Dispense | 5000 | 300 | ||
22 | OUT | OUT | 4 | 5 | OUT | - | Aspirate | 5000 | 200 | ||
23 | OUT | OUT | 4 | 6 | OUT | - | Dispense | 5000 | 200 | ||
24 | OUT | OUT | 3 | 6 | IN | Aspirate | - | 500 | 100 | Cleaning of TV | |
25 | OUT | OUT | 6 | 5 | OUT | Dispense | - | 500 | 100 | ||
26 | OUT | OUT | 6 | 5 | OUT | Aspirate | - | 500 | 100 | ||
27 | OUT | OUT | 3 | 5 | OUT | Dispense | - | 500 | 100 | ||
28 | OUT | IN | 3 | 6 | IN | Aspirate | - | 1000 | 100 | Cleaning of HC-2 of miniSIA | |
29 | OUT | IN | 4 | 6 | OUT | Dispense | - | 1000 | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitriadou, A.; Anthemidis, A. Automatic On-Line Purge-and-Trap Sequential Injection Analysis for Trace Ammonium Determination in Untreated Estuarine and Seawater Samples. Molecules 2020, 25, 1569. https://doi.org/10.3390/molecules25071569
Dimitriadou A, Anthemidis A. Automatic On-Line Purge-and-Trap Sequential Injection Analysis for Trace Ammonium Determination in Untreated Estuarine and Seawater Samples. Molecules. 2020; 25(7):1569. https://doi.org/10.3390/molecules25071569
Chicago/Turabian StyleDimitriadou, Athina, and Aristidis Anthemidis. 2020. "Automatic On-Line Purge-and-Trap Sequential Injection Analysis for Trace Ammonium Determination in Untreated Estuarine and Seawater Samples" Molecules 25, no. 7: 1569. https://doi.org/10.3390/molecules25071569
APA StyleDimitriadou, A., & Anthemidis, A. (2020). Automatic On-Line Purge-and-Trap Sequential Injection Analysis for Trace Ammonium Determination in Untreated Estuarine and Seawater Samples. Molecules, 25(7), 1569. https://doi.org/10.3390/molecules25071569