A UPLC-MS/MS Method for Simultaneous Determination of Free and Total Forms of a Phenolic Acid and Two Flavonoids in Rat Plasma and Its Application to Comparative Pharmacokinetic Studies of Polygonum capitatum Extract in Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chromatography and Mass Spectrometry
2.2. Sample Preparation and I.S. Selection
2.3. Method Validation
2.3.1. Selectivity, Matrix Effect, and Recovery
2.3.2. Linearity and Lower Limit of Quantification (LLOQ)
2.3.3. Precision and Accuracy
2.3.4. Stability
2.4. Pharmacokinetics Study
3. Materials and Methods
3.1. Materials and Reagents
3.2. Apparatus and Operation Conditions
3.2.1. Ultra-Performance Liquid Chromatography
3.2.2. Mass Spectrometry
3.3. Stock Solutions, Standards, and Quality Control Samples
3.4. Sample Preparation
3.4.1. Determination of Free Forms in Rat Plasma
3.4.2. Determination of Total Forms in Rat Plasma
3.5. Method Validation
3.5.1. Selectivity, Matrix Effect, and Recovery
3.5.2. Linearity and Lower Limit of Quantification
3.5.3. Precision and Accuracy
3.5.4. Stability
3.6. Pharmacokinetic Study
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liao, S.-G.; Zhang, L.-J.; Sun, F.; Zhang, J.-J.; Chen, A.Y.; Lan, Y.-Y.; Li, Y.-J.; Wang, A.-M.; He, X.; Xiong, Y.; et al. Antibacterial and anti-inflammatory effects of extracts and fractions from polygonum capitatum. J. Ethnopharmacol. 2011, 134, 1006–1009. [Google Scholar] [CrossRef] [PubMed]
- Editorial Committee of Chinese Materia Medica, State Administration of TCM. Miao’s Material Medica, Chinese Materia Medica (Zhonghua Bencao); Publishier of Guizhou Science and Technology: Guiyang, China, 2005; pp. 223–224. [Google Scholar]
- Editorial Committee of Chinese Pharmacopoeia. Chinese Pharmacopoeia; China Medical Science and Technology Press: Beijing, China, 2010; p. 992. [Google Scholar]
- Li, Y.-M.; Gong, Y. The research progress on the chemical component and the pharmacology of polygotum capitatum ham ex d. Don. J. Guizhou Univ. (Nat. Sci.) 2007, 24, 205–207. [Google Scholar]
- Liu, M.; Luo, C.-L.; Zhang, Y.-P.; Qiu, D.-W. Analgesic, anti-inflammatory, and diuretic effects of polygonum capitatum and toddalia asiatica. Guizhou Med. J. 2007, 31, 370–371. [Google Scholar]
- Liu, Z.-J.; Qi, J.; Zhu, D.-N.; Yu, B.-Y. Chemical constituents from polygonum capitatum and their antioxidation activities in vitro. J. Chin. Med. Mater. 2008, 31, 995–998. [Google Scholar]
- Ren, G.; Chang, F.; Lu, S.; Zhong, H.; Zhang, G. Pharmacological studies of polygonum capitatum buch ham. Ex D. don. China J. Chin. Mater. Med. 1995, 20, 107–109. [Google Scholar]
- Yang, Y.; Cai, F.; Yang, Q.; Yang, Y.-B.; Sun, L.-N.; Chen, W.-S. Study on chemical constituents of polygonum capitatum buch.-ham. Ex D. Don (i). Acad. J. Second Mil. Med. Univ. 2009, 30, 937–940. [Google Scholar]
- Zhang, L.-J.; Liao, S.-G.; Zhan, Z.-H.; Chen, X.-J.; Lan, Y.-Y. A study on the phenolic constituents of polygonum capitatum. Lishizhen Med. Mater. Med. Res. 2010, 21, 1946–1947. [Google Scholar]
- Yu, M.; Li, Z.-L.; Li, N.; Li, X. Chemical constituents of the aerial parts of polygonum capitatum. J. Shenyang Pharm. Univ. 2008, 25, 633–635. [Google Scholar]
- Ma, F.-W.; Zhao, Y.; Gong, X.-J.; Xie, Y.; Zhou, X. Optimization of quercitrin and total flavonoids extraction from herba polygoni capitati by response surface methodology. Pharmacogn. Mag. 2014, 10, S57–S64. [Google Scholar] [PubMed]
- Zhao, H.-X.; Bai, H.; Li, W.; Wang, Y.-S.; Liu, Y.-J.; Liu, A.-Q. Chemical constituents from polygonum capitatum. Nat. Prod. Res. Dev. 2011, 23, 262–266. [Google Scholar]
- Liao, S.-G.; Zhang, L.-J.; Sun, F.; Wang, Z.; He, X.; Wang, A.-M.; Li, Y.-J.; Huang, Y.; Lan, Y.-Y.; Zhang, B.-L.; et al. Identification and characterisation of phenolics in polygonum capitatum by ultrahigh-performance liquid chromatography with photodiode array detection and tandem mass spectrometry. Phytochem. Anal. 2013, 24, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, J.; Wei, S.; Jing, W.; Wang, Y.; Liu, A. Development and validation of hplc coupled with triple quadrupole ms for the simultaneous determination of six phenolic acids, six flavonoids, and a lignan in polygonum capitatum. J. Sep. Sci. 2013, 36, 2407–2413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.-X.; Wang, Y.-S.; Jing, W.-G.; Zhang, J.; Liu, A. Improved quality control method for prescriptions of polygonum capitatum through simultaneous determination of nine major constituents by HPLC coupled with triple quadruple mass spectrometry. Molecules 2013, 18, 11824–11835. [Google Scholar] [CrossRef] [PubMed]
- Van der Woude, H.; Boersma, M.G.; Vervoort, J.; Rietjens, I.M. Identification of 14 quercetin phase ii mono-and mixed conjugates and their formation by rat and human phase II in vitro model systems. Chem. Res. Toxicol. 2004, 17, 1520–1530. [Google Scholar] [CrossRef] [PubMed]
- Wu, B. Use of physiologically based pharmacokinetic models to evaluate the impact of intestinal glucuronide hydrolysis on the pharmacokinetics of aglycone. J. Pharm. Sci. 2012, 101, 1281–1301. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Xu, F.; Shang, M.-Y.; Liu, G.-X.; Wang, X.; Cai, S.-Q. Metabolite profiling of propyl gallate in rat plasma and urine by HPLC-DAD-ESI-IT-TOF-MSN technique. China J. Chin. Mater. Med. 2013, 38, 3970–3976. [Google Scholar]
- Yasuda, T.; Inaba, A.; Ohmori, M.; Endo, T.; Kubo, S.; Ohsawa, K. Urinary metabolites of gallic acid in rats and their radical-scavenging effects on 1, 1-diphenyl-2-picrylhydrazyl radical. J. Nat. Prod. 2000, 63, 1444–1446. [Google Scholar] [CrossRef] [PubMed]
- Walle, T. Absorption and metabolism of flavonoids. Free Radic. Biol. Med. 2004, 36, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.-G.; Zhang, L.-J.; Wang, Z.; Sun, F.; Li, Y.-J.; Wang, A.-M.; Huang, Y.; Lan, Y.-Y.; Wang, Y.-L. Electrospray ionization and collision-induced dissociation tandem mass spectrometric discrimination of polyphenolic glycosides: Exact acylation site determination of the o-acylated monosaccharide residues. Rapid Commun. Mass Spectrom. 2012, 26, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.-G.; Wang, Z.; Sun, F.; Zhang, L.-J.; He, X.; Zheng, L.; Wang, A.-M.; Li, Y.-J.; Huang, Y.; Lan, Y.-Y.; et al. Differentiation of isomeric polyphenolic glycosides that possess regioisomeric acylated monosaccharide residues by electrospray ionization-tandem mass spectrometry. Spectrosc. Lett. 2014, 47, 19–23. [Google Scholar] [CrossRef]
- Zhang, W.-D.; Wang, X.-J.; Zhou, S.-Y.; Gu, Y.; Wang, R.; Zhang, T.-L.; Gan, H.-Q. Determination of free and glucuronidated kaempferol in rat plasma by LC-MS/MS: Application to pharmacokinetic study. J. Chromatogr. B 2010, 878, 2137–2140. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhao, L.; Zuo, L.; Qi, C.; Zhao, P.; Hou, X. A UHPLC-MS/MS method for simultaneous determination of six flavonoids, gallic acid and 5,8-dihydroxy-1,4-naphthoquinone in rat plasma and its application to a pharmacokinetic study of cortex juglandis mandshuricae extract. J. Chromatogr. B 2014, 958, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, F. UHPLC-MS strategies and applications for bioanalyses related to pharmacokinetics and drug metabolism. TrAC Trends Anal. Chem. 2014, 63, 170–179. [Google Scholar] [CrossRef]
- Ou-Yang, Z.; Cao, X.; Wei, Y.; Zhang, W.-W.-Q.; Zhao, M.; Duan, J.-A. Pharmacokinetic study of rutin and quercetin in rats after oral administration of total flavones of mulberry leaf extract. Rev. Bras. Farmacogn. 2013, 23, 776–782. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, X.; Gu, L.; Lv, C.; He, B.; Liu, Z.; Hou, P.; Bi, K.; Chen, X. Simultaneous determination of five free and total flavonoids in rat plasma by ultra hplc-ms/ms and its application to a comparative pharmacokinetic study in normal and hyperlipidemic rats. J. Chromatogr. B 2014, 953–954, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ader, P.; Wessmann, A.; Wolffram, S. Bioavailability and metabolism of the flavonol quercetin in the pig. Free Radic. Biol. Med. 2000, 28, 1056–1067. [Google Scholar] [CrossRef]
- Graefe, E.U.; Wittig, J.; Mueller, S.; Riethling, A.-K.; Uehleke, B.; Drewelow, B.; Pforte, H.; Jacobasch, G.; Derendorf, H.; Veit, M. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharmacol. 2001, 41, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Murota, K.; Terao, J. Antioxidative flavonoid quercetin: Implication of its intestinal absorption and metabolism. Arch. Biochem. Biophys. 2003, 417, 12–17. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, J.; Qian, D.; Guo, J.; Shang, E.-X.; Duan, J.-A.; Xu, J. Rapid screening and identification of metabolites of quercitrin produced by the human intestinal bacteria using ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. Arch. Pharmacal Res. 2014, 37, 204–213. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services; Food and Drug Administration; Center for Drug Evaluation and Research; Center for Veterinary Medicine. Guidance for Industry, Bioanalytical Method Validation USA. 2013. Available online: http://www.fda.gov/ucm/groups/fdagov-public/@fdagov-drugs-gen/documents/document/ucm368107.pdf (accessed on 26 January 2017). [Google Scholar]
- Sample Availability: Samples of the compounds are not available from the authors.
Analytes | Spiked Conc. (µg/mL) | Matrix Effects (%) | RSD (%) | Recoveries (%) | RSD (%) |
---|---|---|---|---|---|
Gallic acid | 0.533 | 94.2 ± 0.3 | 0.3 | 97.1 ± 1.2 | 1.2 |
4.798 | 98.4 ± 1.6 | 1.6 | 94.3 ± 0.7 | 0.7 | |
43.179 | 96.3 ± 0.9 | 0.9 | 98.8 ± 0.2 | 0.2 | |
Quercitrin | 0.020 | 91.0 ± 3.4 | 3.7 | 88.9 ± 4.1 | 4.6 |
0.177 | 93.7 ± 4.4 | 4.7 | 98.8 ± 2.0 | 2.0 | |
1.596 | 92.5 ± 1.9 | 2.1 | 95.1 ± 2.3 | 2.4 | |
Quercetin | 0.112 | 90.9 ± 4.7 | 5.2 | 95.7 ± 1.7 | 1.8 |
1.004 | 95.2 ± 4.1 | 4.3 | 97.6 ± 2.4 | 2.5 | |
9.032 | 100.5 ± 3.0 | 3.0 | 98.5 ± 0.6 | 0.6 |
Analytes | Calibration Curves | Linear Range (µg/mL) | r2 | LLOQ (µg/mL) |
---|---|---|---|---|
Gallic acid | y = 0.1314x + 0.1893 | 0.178–129.537 | 0.998 | 0.178 |
Quercitrin | y = 0.9007x + 0.0846 | 0.007–4.789 | 0.999 | 0.007 |
Quercetin | y = 0.0622x + 0.0576 | 0.037–27.096 | 0.998 | 0.037 |
Analytes | Spiked Conc. (µg/mL) | Intra-Day Precision (%, RSD) | Intra-Day Accuracy (%, RE) | Inter-Day Precision (%, RSD) | Inter-Day Accuracy (%, RE) |
---|---|---|---|---|---|
Gallic acid | 0.533 | 1.9 | 7.4 | 1.2 | 12.5 |
4.798 | 1.2 | −6.5 | 0.7 | −5.8 | |
43.179 | 1.2 | 3.4 | 0.8 | 2.0 | |
Quercitrin | 0.020 | 9.5 | −3.2 | 8.2 | −11.1 |
0.177 | 4.5 | 1.3 | 0.9 | 1.8 | |
1.596 | 1.4 | 1.2 | 2.0 | −3.5 | |
Quercetin | 0.112 | 1.5 | −2.8 | 4.8 | 10.6 |
1.004 | 1.6 | −3.3 | 0.2 | −5.7 | |
9.032 | 0.1 | 1.5 | 0.5 | 1.9 |
Analytes | Spiked Conc. (µg/mL) | Stability (%, RE) | |||
---|---|---|---|---|---|
Short-Term | Long-Term | Freeze-Thaw | Post-Preparative | ||
Gallic acid | 0.533 | −7.1 | −5.3 | −6.6 | 3.5 |
4.798 | 4.1 | 6.5 | 5.5 | −2.7 | |
43.179 | −2.3 | −2.0 | −3.0 | 4.3 | |
Quercitrin | 0.020 | 5.9 | 6.2 | 7.2 | −4.6 |
0.177 | −1.3 | −1.9 | −2.9 | −5.6 | |
1.596 | 3.0 | −4.1 | −4.6 | 6.2 | |
Quercetin | 0.112 | 3.6 | 5.1 | 13.1 | −7.8 |
1.004 | −2.9 | −5.6 | −4.6 | 2.4 | |
9.032 | 1.5 | −2.2 | 2.0 | 3.5 |
Parameters | Analytes | ||||
---|---|---|---|---|---|
Free Gallic Acid | Total Gallic Acid | Free Quercitrin | Total Quercitrin | Total Quercetin | |
AUC(0–t) (h·µg/mL) | 56.87 ± 23.43 | 425.27 ± 154.71 * | 1.12 ± 0.42 | 1.48 ± 0.67 | 12.95 ± 4.64 * |
AUC(0–∞) (h·µg/mL) | 63.10 ± 29.24 | 518.99 ± 201.34 * | 1.16 ± 0.43 | 1.58 ± 0.72 | 13.27 ± 4.81 * |
MRT(0–t) (h) | 2.14 ± 0.11 | 4.07 ± 0.19 * | 3.43 ± 0.22 | 3.40 ± 0.17 | 3.60 ± 0.21 * |
MRT(0–∞) (h) | 2.81 ± 0.55 | 6.77 ± 0.89 * | 3.88 ± 0.47 | 4.21 ± 0.54 | 3.86 ± 0.27 * |
Cmax(µg/mL) | 25.48 ± 11.92 | 95.29 ± 24.08 * | 0.51 ± 0.19 | 0.59 ± 0.19 | 3.49 ± 1.01 * |
Tmax(h) | 0.50 ± 0.26 | 0.56 ± 0.29 | 0.58 ± 0.20 | 0.42 ± 0.09 | 1.00 ± 0.00 |
Analytes | Mode (−/+) | Transition (m/z) | Dwell (s) | Cone Voltage (V) | Collision Energy (eV) |
---|---|---|---|---|---|
gallic acid | − | 169.0→125.0 | 0.05 | 35 | 15 |
quercitrin | + | 449.0→303.0 | 0.05 | 20 | 10 |
quercetin | + | 303.5→153.0 | 0.05 | 45 | 40 |
puerarin (I.S.) | + | 417.0→267.0 | 0.05 | 40 | 30 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Sun, H.-Y.; Qin, X.-L.; Li, Y.-J.; Liao, S.-G.; Gong, Z.-P.; Lu, Y.; Wang, Y.-L.; Wang, A.-M.; Lan, Y.-Y.; et al. A UPLC-MS/MS Method for Simultaneous Determination of Free and Total Forms of a Phenolic Acid and Two Flavonoids in Rat Plasma and Its Application to Comparative Pharmacokinetic Studies of Polygonum capitatum Extract in Rats. Molecules 2017, 22, 353. https://doi.org/10.3390/molecules22030353
Huang Y, Sun H-Y, Qin X-L, Li Y-J, Liao S-G, Gong Z-P, Lu Y, Wang Y-L, Wang A-M, Lan Y-Y, et al. A UPLC-MS/MS Method for Simultaneous Determination of Free and Total Forms of a Phenolic Acid and Two Flavonoids in Rat Plasma and Its Application to Comparative Pharmacokinetic Studies of Polygonum capitatum Extract in Rats. Molecules. 2017; 22(3):353. https://doi.org/10.3390/molecules22030353
Chicago/Turabian StyleHuang, Yong, Hui-Yuan Sun, Xiao-Li Qin, Yong-Jun Li, Shang-Gao Liao, Zi-Peng Gong, Yuan Lu, Yong-Lin Wang, Ai-Min Wang, Yan-Yu Lan, and et al. 2017. "A UPLC-MS/MS Method for Simultaneous Determination of Free and Total Forms of a Phenolic Acid and Two Flavonoids in Rat Plasma and Its Application to Comparative Pharmacokinetic Studies of Polygonum capitatum Extract in Rats" Molecules 22, no. 3: 353. https://doi.org/10.3390/molecules22030353
APA StyleHuang, Y., Sun, H.-Y., Qin, X.-L., Li, Y.-J., Liao, S.-G., Gong, Z.-P., Lu, Y., Wang, Y.-L., Wang, A.-M., Lan, Y.-Y., & Zheng, L. (2017). A UPLC-MS/MS Method for Simultaneous Determination of Free and Total Forms of a Phenolic Acid and Two Flavonoids in Rat Plasma and Its Application to Comparative Pharmacokinetic Studies of Polygonum capitatum Extract in Rats. Molecules, 22(3), 353. https://doi.org/10.3390/molecules22030353