Resin Diterpenes from Austrocedrus chilensis
Abstract
:1. Introduction
2. Results and Discussion
C | 4 | 6 | 12 | 13 | 14a |
---|---|---|---|---|---|
1 | 36.3 t | 41.7 t | 39. 5 t | 39.5 t | 39.5 t |
2 | 18.9 t | 19.6 t | 26.0 t | 26.0 t | 26.0 t |
3 | 35.2 t | 38.6 t | 38.1 t | 38.1 t | 38.2 t |
4 | 37.9 s | 40.1 s | 44.4 s | 44.4 s | 44.5 s |
5 | 45.5 d | 55.8 d | 56.5 d | 56.5 d | 56.2 d |
6 | 21.4 t | 24.7 t | 20.1 t | 20.1 t | 20.1 t |
7 | 35.3 t | 39.3 t | 38.7 t | 38.7 t | 38.4 t |
8 | 124.5 s | 148.9 s | 148.1 s | 148.1 s | 149.4 s |
9 | 137.2 s | 57.6 d | 56.6 d | 56.9 d | 51.1 d |
10 | 37.6 s | 33.8 s | 40.6 s | 40.6 s | 39.7 s |
11 | 18.5 t | 17.9 t | 23.5 t | 23.5 t | 33.0 t |
12 | 32.3 t | 42.4 t | 134.1 d | 131.9 d | 201.1 s |
13 | 35.2 s | 73.8 s | 133.6 s | 131.7 s | 139.1 s |
14 | 42.3 t | 145.5 d | 141.8 d | 133.9 d | 136.0 d |
15 | 146.5 d | 111.8 t | 110.1 t | 113.4 t | 14.9 q |
16 | 110.9 t | 27.9 q | 12.0 q | 12.0 q | 11.5 q |
17 | 28.1 q | 106. 7 t | 107.9 t | 108.0 t | 106.3 t |
18 | 72.5 t | 21.9 q | 29.2 q | 29.2 q | 29.0 q |
19 | 17.7 q | 33.8 q | 184.4 s | 184.4 s | 178.0 s |
20 | 20.1 q | 14.7 q | 13.0 q | 13.0 q | 13.3 q |
OMe | - | - | - | - | 51.4 q |
3. Experimental
3.1. General
3.2. GC-MS Analysis
3.3. Plant Material
3.4. Isolation of the Resin Constituents
3.5. Compound Characterization
4. Conclusions
Acknowledgements
References and Notes
- Muñoz, M.; Barrera, E.; Meza, I. El Uso Medicinal Y Alimenticio De Plantas Nativas Y Naturalizadas en Chile; Museo Nacional de Historia Natural: Santiago, Chile, 1981; Publicacion Ocasional 33; pp. 3–89. [Google Scholar]
- Hegnauer, R. Chemotaxonomie Der Pflanzen; Birkhäuser Verlag: Basel, Switzerland, 1962; Band 1. [Google Scholar]
- Castro, M.A.; Gordaliza, M.; Miguel Del Corral, J.M.; San Feliciano, A. The distribution of lignanoids in the order coniferae. Phytochemistry 1996, 41, 995–1011. [Google Scholar] [CrossRef]
- Cairnes, D.A.; Eagan, R.L.; Ekundayo, O.; Kingston, D.G.I. Plant anticancer agents. XIII. Constituents of Austrocedrus chilensis. J. Nat. Prod. 1983, 46, 135–139. [Google Scholar]
- Taylor and Francis Group, Dictionary of Natural Products on CDROM. CRC Press: Boca Raton, FL, USA, 2011; Version 20:1.
- Gadek, P.A.; Quinn, C.J. Biflavones of the subfamily Callitroideae, Cupressaceae. Phytochemistry 1983, 33, 969–972. [Google Scholar]
- Flores, C.; Alarcón, J.; Becerra, J.; Bittner, M.; Hoeneisen, M.; Silva, M. Extractable compounds of native trees. Chemical and biological study I: Bark of Prumnopytis andina (Podocarpaceae) and Austrocedrus chilensis (Cupressaceae). Bol. Soc. Chil. Quím. 2001, 46, 61–64. [Google Scholar]
- Cox, R.E.; Yamamoto, S.; Otto, A.; Simoneit, B.R.T. Oxygenated di- and tricyclic diterpenoids of shouthern hemisphere conifers. Biochem. Syst. Ecol. 2007, 35, 342–362. [Google Scholar] [CrossRef]
- San Feliciano, A.; Miguel del Corral, J.M.; Lopez, J.L.; de Pascual-Teresa, B. Labdane acids from polar extracts of Juniperus thurifera. Phytochemistry 1992, 31, 1719–1722. [Google Scholar] [CrossRef]
- San Feliciano, A.; Miguel del Corral, J.M.; Lopez, J.L.; de Pascual-Teresa, B. Further diterpene acids from Juniperus thurifera. Phytochemistry 1993, 33, 1165–1167. [Google Scholar] [CrossRef]
- Piovetti, L.; Gonzalez, E.; Diara, A. Diterpene composition of Cupressus dupreziana and Cupressus sempervirens. Phytochemistry 1980, 19, 2772–2773. [Google Scholar] [CrossRef]
- Otto, A.; Walther, H.; Püttmann, W. Sesqui- and diterpenoid biomarkers preserved in Taxodium-rich Oligocene oxbow lake clays, Weisselster basin, German. Org. Geochem. 1997, 26, 105–115. [Google Scholar] [CrossRef]
- Otto, A.; Simoneit, B.R.T. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochim. Cosmochim. Acta 2001, 65, 3505–3527. [Google Scholar] [CrossRef]
- Otto, A.; Simoneit, B.R.T.; Rember, W.C. Resin compounds from the seed cones of three fossil conifer species from the Miocene Clarkia flora, Emerald Creek, Idaho, USA, and from related extant species. Rev. Palaeobot. Palynol. 2003, 126, 225–241. [Google Scholar] [CrossRef]
- Mathe, C.; Culioli, G.; Archier, P.; Vieillescazes, C. Characterization of archaeological frankincense by gas chromatography-mass spectrometry. J. Chromatogr. A 2004, 1023, 277–285. [Google Scholar] [CrossRef]
- Lambert, J.B.; Kozminski, M.A.; Santiago-Blay, J.A. Distinctions among conifer exudates by proton magnetic resonance spectroscopy. J. Nat. Prod. 2007, 70, 1283–1294. [Google Scholar] [CrossRef]
- Su, W.-C.; Fang, J.-M.; Cheng, Y.-S. Labdanes from Cryptomeria japonica. Phytochemistry 1994, 37, 1109–1114. [Google Scholar] [CrossRef]
- Su, W.-C.; Fang, J.-M.; Cheng, Y.-S. Diterpenoids from leaves of Cryptomeria japonica. Phytochemistry 1996, 41, 255–261. [Google Scholar] [CrossRef]
- Yoshida, T.; Toyota, M.; Asakawa, Y. Scapaundulins A and B, two novel dimeric labdane diterpenoids and related compounds from the Japanese liverwort Scapania undulata (L.) Dum. Tetrahedron Lett. 1997, 38, 1975–1978. [Google Scholar]
- Li, C.-J.; Zhang, D.-M.; Luo, Y.-M.; Yu, S.-S.; Li, Y.; Lu, Y. Bis-sesquiterpenes and diterpenes from Chloranthus henryi. Phytochemistry 2008, 69, 2867–2874. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Tang, C.-P.; Ke, C.-Q.; Weiss, H.-C.; Gesing, E.-R.; Ye, Y. Diterpenoids from the pericarp of Platycladus orientalis. Phytochemistry 2008, 69, 518–526. [Google Scholar] [CrossRef]
- Hall, S.F.; Oehlschlager, A.C. Cationic rearrangements and cyclizations of diterpenoid olefins. Tetrahedron 1972, 28, 3155–3173. [Google Scholar] [CrossRef]
- Oikawa, H.; Toshima, H.; Ohashi, S.; König, W.A.; Kenmoku, H.; Sassa, T. Diversity of diterpene hydrocarbons in fungus Phoma betae. Tetrahedron Lett. 2001, 42, 2329–2332. [Google Scholar]
- Chamy, M.C.; Piovano, M.; Garbarino, J.A.; Gambaro, V. Diterpenes from Calceolaria polifolia. Phytochemistry 1991, 30, 3365–3368. [Google Scholar] [CrossRef]
- Garbarino, J.A.; Molinari, A. Diterpenes from Calceolaria latifolia. Phytochemistry 1990, 29, 3037–3039. [Google Scholar] [CrossRef]
- Yang, S.-J.; Fang, J.-M.; Cheng, Y.-S. Diterpenes from Taxus mairei. Phytochemistry 1998, 49, 2037–2043. [Google Scholar] [CrossRef]
- Fang, J.-M.; Sou, Y.-C.; Chiu, Y.-H.; Cheng, Y.-S. Diterpenes from the bark of Juniperus chinensis. Phytochemistry 1993, 34, 1581–1584. [Google Scholar] [CrossRef]
- Cambie, R.C.; Cox, R.E.; Sidwell, D. Phenolic diterpenoids of Podocarpus ferrugineus and other Podocarps. Phytochemistry 1984, 23, 333–336. [Google Scholar] [CrossRef]
- Inoue, M.; Hasegawa, S.; Hirose, Y. Terpenoids from the seed of Platycladus orientalis. Phytochemistry 1985, 24, 1602–1604. [Google Scholar] [CrossRef]
- Seca, A.M.L.; Silva, A.M.S.; Bazzocchi, I.L.; Jimenez, I.A. Diterpene constituents of leaves from Juniperus brevifolia. Phytochemistry 2008, 69, 498–505. [Google Scholar] [CrossRef]
- Barrero, A.F.; Quílez del Moral, J.F.; Herrador, M.M.; Akssira, M.; Bennamara, A.; Akkad, S.; Aitigri, N. Oxygenated diterpenes and other constituents from Moroccan Juniperus phoenicea and Juniperus thurifera var. africana. Phytochemistry 2004, 65, 2507–2515. [Google Scholar] [CrossRef]
- Liu, Y.; Nair, M.G. Labdane diterpenes in Curcuma mangga rhizomes inhibit lipid peroxidation, cyclooxygenase enzymes and human tumour cell proliferation. Food Chem. 2011, 124, 527–532. [Google Scholar] [CrossRef]
- Gordien, A.Y.; Gray, A.I.; Franzblau, S.G.; Seidel, V. Antimycobacterial terpenoids from Juniperus communis L. (Cuppressaceae). J. Ethnopharmacol. 2009, 126, 500–505. [Google Scholar] [CrossRef]
- Areche, C.; Rodríguez, J.A.; Razmilic, I.; Yánez, T.; Theoduloz, C.; Schmeda-Hirschmann, G. Gastroprotective and cytotoxic effect of semisynthetic ferruginol derivatives. J. Pharm. Pharmacol. 2007, 59, 289–300. [Google Scholar]
- Iwamoto, M.; Minami, T.; Tokuda, H.; Ohtsu, H.; Tanaka, R. Potencial antitumor promoting diterpenoids from the stem bark of Thuja standishii. Planta Med. 2003, 69, 69–72. [Google Scholar]
- Bispo de Jesus, M.; Zambuzzi, W.F.; Ruela de Sousa, R.R.; Areche, C.; Santos de Souza, A.C.; Aoyama, H.; Schmeda-Hirschmann, G.; Rodríguez, J.A.; de Souza Brito, A.R.M.; Peppelenbosch, M.P.; den Hertog, J.; de Paula, E.; Ferreira, C.V. Ferruginol suppresses survival signaling pathways in androgen-independent human prostate cancer cells. Biochimie 2008, 90, 843–854. [Google Scholar]
- Smith, E.C.J.; Williamson, E.M.; Wareham, N.; Kaatz, G.W.; Gibbons, S. Antibacterials and modulators of bacterial resistance from the immature cones of Chamaecyparis lawsoniana. Phytochemistry 2007, 68, 210–217. [Google Scholar] [CrossRef]
- Clarkson, C.; Musonda, C.; Chibale, K.; Campbell, W.E.; Smith, P. Synthesis of totarol amino alcohol derivatives and their antiplasmodial activity and cytotoxicity. Bioorg. Med. Chem. 2003, 11, 4417–4422. [Google Scholar] [CrossRef]
- Shyur, L.-F.; Huang, C.-C.; Lo, C.-P.; Chiu, C.-Y.; Chen, Y.-P.; Wang, S.-Y.; Chang, S.-T. Hepatoprotective phytocompounds from Cryptomeria japonica are potent modulators of inflammatory mediators. Phytochemistry 2008, 69, 1348–1358. [Google Scholar] [CrossRef]
- Sepúlveda, B.; Astudillo, L.; Rodríguez, J.; Yáñez, T.; Theoduloz, C.; Schmeda-Hirschmann, G. Gastroprotective and cytotoxic effect of dehydroabietic acid derivatives. Pharmacol. Res. 2005, 52, 429–437. [Google Scholar] [CrossRef]
- Son, K.-H.; Oh, H.-M.; Choi, S.-K.; Han, D.C.; Kwon, D.-M. Anti-tumor abietane diterpenes from the cones of Sequoia sempervirens. Bioorg. Med. Chem. Lett. 2005, 15, 2019–2021. [Google Scholar] [CrossRef]
- Iwamoto, M.; Ohtsu, H.; Tokuda, H.; Nishino, H.; Matsunaga, S.; Tanaka, R. Anti-tumor promoting diterpenes from the stem bark of Thuja standishii (Cupressaceae). Bioorg. Med. Chem. 2001, 9, 1911–1921. [Google Scholar] [CrossRef]
- Pautasso, M.; Dehnen-Schmutz, K.; Holdenrieder, O.; Pietravalle, S.; Salama, N.; Jeger, M.J.; Lange, E.; Hehl-Lange, S. Plant health and global change—Some implications for landscape management. Biol. Rev. 2010, 85, 729–755. [Google Scholar]
- Greslebin, A.G.; Hansen, E.M. Pathogenicity of Phytophthora austrocedrae on Austrocedrus chilensis and its relation with mal del ciprés in Patagonia. Plant Pathol. 2010, 59, 604–612. [Google Scholar] [CrossRef]
- Greslebin, A.G.; Hansen, E.M.; Sutton, W. Phytophthora austrocedrae sp. nov., a new species associated with Austrocedrus chilensis mortality in Patagonia (Argentina). Mycol. Res. 2007, 111, 308–316. [Google Scholar] [CrossRef]
- Amoroso, M.M.; Larson, B.C. Stand development patterns as a consequence of the mortality in Austrocedrus chilensis forests. For. Ecol. Manage. 2010, 259, 1981–1992. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds communic acid, ferruginol and tree resin are available from the authors.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Olate, V.R.; Usandizaga, O.G.; Schmeda-Hirschmann, G. Resin Diterpenes from Austrocedrus chilensis. Molecules 2011, 16, 10653-10667. https://doi.org/10.3390/molecules161210653
Olate VR, Usandizaga OG, Schmeda-Hirschmann G. Resin Diterpenes from Austrocedrus chilensis. Molecules. 2011; 16(12):10653-10667. https://doi.org/10.3390/molecules161210653
Chicago/Turabian StyleOlate, Verónica Rachel, Olatz Goikoetxeaundia Usandizaga, and Guillermo Schmeda-Hirschmann. 2011. "Resin Diterpenes from Austrocedrus chilensis" Molecules 16, no. 12: 10653-10667. https://doi.org/10.3390/molecules161210653
APA StyleOlate, V. R., Usandizaga, O. G., & Schmeda-Hirschmann, G. (2011). Resin Diterpenes from Austrocedrus chilensis. Molecules, 16(12), 10653-10667. https://doi.org/10.3390/molecules161210653