Inhibitory Effects of Constituents from Euphorbia lunulata on Differentiation of 3T3-L1 Cells and Nitric Oxide Production in RAW264.7 Cells
Abstract
:1. Introduction
2. Results and Discussion
Position | 1 | 2 | 4 | |||
---|---|---|---|---|---|---|
δH | δC | δH | δC | δH | δC | |
2 | 156.4 | 156.6 | 146.7 | |||
3 | 134.0 | 134.0 | 135.6 | |||
4 | 177.6 | 177.4 | 175.8 | |||
4a | 104.6 | 104.7 | 103.3 | |||
5 | 161.7 | 161.7 | 161.1 | |||
6 | 6.14 (d 2.1) | 98.5 | 6.13 (d 2.1) | 98.5 | 6.17 (d 2.1) | 98.1 |
7 | 164.5 | 164.4 | 164.2 | |||
8 | 6.31 (d 2.1) | 93.3 | 6.30 (d 2.1) | 93.3 | 6.36 (d 2.1) | 93.2 |
8a | 156.6 | 156.8 | 156.8 | |||
1' | 120.6 | 120.8 | 121.8 | |||
2' | 7.27 (s) | 108.6 | 7.25 (s) | 108.6 | 7.32 (s) | 107.3 |
3' | 144.9 | 144.9 | 145.4 | |||
4' | 136.6 | 136.6 | 136.1 | |||
5' | 144.9 | 144.9 | 145.4 | |||
6' | 7.27 (s) | 108.6 | 7.25 (s) | 108.6 | 7.32 (s) | 107.3 |
1'' | 5.94 (d 8.1) | 100.1 | 5.77 (d 7.8) | 100.2 | ||
2'' | 5.81 (dd 10.2, 8.1) | 74.8 | 5.43 (dd 9.9, 7.8) | 73.5 | ||
3'' | 5.18 (dd 10.2, 3.0) | 70.7 | 3.84 (dd 9.9, 3.6) | 72.4 | ||
4'' | 4.28 (d 3.0) | 66.9 | 3.95 (d 3.6) | 69.5 | ||
5'' | 3.75 (m) | 76.3 | 3.61 (m) | 76.4 | ||
6'' | 3.71, 3.69 (m) | 60.8 | 3.71, 3.69 (m) | 61.0 | ||
1''' | 119.1, 118.7 | 120.4 | ||||
2''',6''' | 7.03, 7.02 (s) | 109.4, 109.3 | 7.12 (s) | 109.5 | ||
3''',5''' | 145.1 | 145.0 | ||||
4''' | 138.8, 138.7 | 138.5 | ||||
C=O | 166.4, 166.2 | 166.7 |
Compound | IC50 (μM) | Compound | IC50 (μM) |
---|---|---|---|
1 | 62.3 | 13 | 42.6 |
2 | 48.6 | 14 | 18.5 |
3 | >100 | 15 | 14.2 |
4 | 37.2 | 16 | 21.7 |
5 | 56.8 | 17 | 16.9 |
6 | 43.2 | 18 | >100 |
7 | >100 | 19 | 19.8 |
8 | >100 | 20 | >100 |
9 | 20.6 | 21 | >100 |
10 | 21.5 | 22 | 18.5 |
11 | 17.9 | 23 | 26.1 |
12 | 23.8 | 24 | >100 |
Aminoguanidine | 17.5 |
3. Experimental
3.1. General
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Acid Hydrolysis of 1 and Identification of Sugar
3.5. Triglyceride (TG) Content and Glycerol-3-phosphate Dehydrogenase (GPDH) Activity in 3T3-L1 Cells [10,35]
3.6. NO Production in Activated Macrophage-Like Cell Line, RAW 264.7 [10,36]
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Shang, T.M.; Wang, L.; Liang, X.T.; Lin, X.Y.; Xiao, J.M.; Niu, S.L. Studies on the constituents of Mao-Yan-Cao (Euphorbia lunulata Bge.). Huaxue Xuebao 1979, 37, 119–128. [Google Scholar]
- Wang, D.X.; Liang, X.T. Structure and stereochemistry of Maoyancaosu. Yaoxue Xuebao 1984, 19, 261–267. [Google Scholar]
- Nishimura, T.; Wang, L.Y.; Kusano, K.; Kitanaka, S. Flavonoids that mimic human ligands from the whole plants of Euphorbia lunulata. Chem. Pharm. Bull. 2005, 53, 305–308. [Google Scholar] [CrossRef]
- Xiao, B.H.; Zhang, C.L.; Wu, X. Experimental study on the theraputic effect of crescent euphorbia on lewis lung cancer in mice. Zhongguo Zhongyao Zazhi 2006, 31, 1002–1005. [Google Scholar]
- Li, R.; Wang, J.; Wu, H.X.; Li, L.; Wang, N.L. Isolation, identification and activity determination on antioxidative components from whole plant of Euphorbia lunulata Bge. Shenyang Yaoke Daxue Xuebao 2011, 28, 25–29. [Google Scholar]
- Dandona, P.; Aljada, A.; Bandyopadhyay, A. Inflammation: The link between insulin resistance, obesity and diabetes. Trends Immunol. 2004, 25, 4–7. [Google Scholar] [CrossRef]
- Suganami, T.; Nishida, J.; Ogawa, Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: Role of free fatty acids and tumor necrosis factor α, Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2062–2068. [Google Scholar]
- Ando, C.; Takahashi, N.; Hirai, S.; Nishimura, K.; Lin, S.; Uemura, T.; Goto, T.; Yu, R.; Nakagami, J.; Murakami, S.; Kawada, T. Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation. FEBS Lett. 2009, 583, 3649–3654. [Google Scholar] [CrossRef]
- MacMicking, J.; Xie, Q.W.; Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 1997, 15, 323–350. [Google Scholar] [CrossRef]
- Yang, Z.G.; Matsuzaki, K.; Takamatsu, S.; Kitanaka, S. Inhibitory effects of constituents from Morus alba var. multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells. Molecules 2011, 16, 6010–6022. [Google Scholar]
- Sun, D.W.; Zhao, Z.C.; Foo, L.Y; Wong, H. Flavonols from Myrica esculenta bark. Chem. Ind. Forest. Prod. 1991, 11, 251–257. [Google Scholar]
- Zhang, Z.Z.; ElSohly, H.N.; Li, X.C.; Khan, S.I.; Broedel, S.E., Jr.; Raulli, R.E.; Cihlar, R.L.; Burandt, C.; Walker, L.A. Phenolic compounds from Nymphaea odorata. J. Nat. Prod. 2003, 66, 548–550. [Google Scholar] [CrossRef]
- Shen, C.C.; Chang, Y.S.; Ho, L.K. Nuclear magnetic resonance studies of 5,7-dihydroxy flavonoids. Phytochemistry 1993, 34, 843–845. [Google Scholar] [CrossRef]
- Kim, H.J.; Woo, E.R.; Shin, C.G.; Park, H. A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. J. Nat. Prod. 1998, 61, 145–148. [Google Scholar] [CrossRef]
- Lee, S.H.; Shin, D.S.; Oh, K.B.; Kim, K.H. Antibacterial compounds from the leaves of Acanthopanax senticosus. Arch. Pharm. Res. 2003, 26, 40–42. [Google Scholar] [CrossRef]
- Han, J.T.; Bang, M.H.; Chun, O.K.; Kim, D.O.; Lee, C.Y.; Baek, N.I. Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities. Arch. Pharm. Res. 2004, 27, 390–395. [Google Scholar] [CrossRef]
- Wenkert, E.; Gottlieb, H.E. Carbon-13 nuclear magnetic resonance spectroscopy of flavonoid and isoflavonoid compounds. Phytochemistry 1977, 16, 1811–1816. [Google Scholar] [CrossRef]
- Okuyama, T.; Hosoyama, K.; Hiraga, Y.; Kurono, G.; Takemoto, T. The constituents of Osmunda spp. II: A new flavonol glycoside of Osmunda asiatica. Chem. Pharm. Bull. 1978, 26, 3071–3074. [Google Scholar] [CrossRef]
- Wagner, H.; Chari, V.M.; Sonnenbichler, J. 13C-NMR-spektren natürlich vorkommender flavonoide. Tetrahedron Lett. 1976, 17, 1799–1802. [Google Scholar] [CrossRef]
- Lin, C.N.; Lu, C.M.; Lin, H.C.; Ko, F.N.; Teng, C.M. Novel antiplatelet naphthalene from Rhamnus nakaharai. J. Nat. Prod. 1995, 58, 1934–1940. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Guo, Y.Z.; Onda, M.; Hashimoto, K.; Ikeya, Y.; Okada, M.; Maruno, M. Four flavonoids from Scutellaria baicalensis. Phytochemistry 1994, 35, 511–514. [Google Scholar] [CrossRef]
- Lee, S.H.; Tanaka, T.; Nonaka, G.; Nishioka, I. Hydrolyzable tannins from Euphorbia thymifolia. Phytochemistry 1990, 29, 3621–3625. [Google Scholar]
- Duan, D.L.; Li, Z.Q.; Luo, H.P.; Zhang, W.; Chen, L.R.; Xu, X.J. Antiviral compounds from traditional Chinese medicines Galla Chinese as inhibitors of HCV NS3 protease. Biol. Med. Chem. Lett. 2004, 14, 6041–6044. [Google Scholar] [CrossRef]
- Yoshida, T.; Hatano, T.; Okuda, T.; Memon, M.U.; Shingu, T.; Inoue, K. Spectral and chromatographic analyses of tannins. I. 13C nuclear magnetic resonance spectra of hydrolyzable tannins. Chem. Pharm. Bull. 1984, 32, 1790–1799. [Google Scholar] [CrossRef]
- Ma, J.; Yang, H.; Basile, M.J.; Kennelly, E.J. Analysis of polyphenolic antioxidants from the fruits of three Pouteria species by selected ion monitoring liquid chromatography-mass spectrometry. J. Agric. Food Chem. 2004, 52, 5873–5878. [Google Scholar]
- Zhang, H.L.; Nagatsu, A.; Okuyama, H.; Mizukami, H.; Sakakibara, J. Sesquiterpene glycosides from cotton oil cake. Phytochemistry 1998, 48, 665–668. [Google Scholar] [CrossRef]
- Alam, A.; Tsuboi, S. Total synthesis of 3,3',4-tri-O-methylellagic acid from gallic acid. Tetrahedron 2007, 63, 10454–10465. [Google Scholar] [CrossRef]
- Hansen, P.E.; Christoffersen, M.; Bolvig, S. Variable-temperature NMR studies of 2,6-dihydroxy acylaromatic compounds: Deuterium isotope effects on chemical shifts, isotopic perturbation of equilibrium and barriers to rotation. Magn. Reson. Chem. 1993, 31, 893–902. [Google Scholar] [CrossRef]
- Sato, T. Spectral differentiation of 3,3'-di-O-methylellagic acid from 4,4'-di-O-methylellagic acid. Phytochemistry 1987, 26, 2124–2125. [Google Scholar] [CrossRef]
- Li, X.C.; Elsohly, H.N.; Hufford, C.D.; Clark, A.M. NMR assignments of ellagic acid derivatives. Magn. Reson. Chem. 1999, 37, 856–859. [Google Scholar] [CrossRef]
- Razdan, T.K.; Qadri, B.; Harkar, S.; Waight, E.S. Chromones and coumarins from Skimmia laureola. Phytochemistry 1987, 26, 2063–2069. [Google Scholar]
- Markham, K.R.; Ternai, B.; Stanly, R.; Geiger, H.; Mabry, T.J. Carbon-13 NMR studies of flavonoids III: Naturally occurring flavonoid glycosides and their acylated derivatives. Tetrahedron 1978, 34, 1389–1397. [Google Scholar] [CrossRef]
- Ahn, J.Y.; Lee, H.J.; Kim, S.; Park, J.H.; Ha, T. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem. Biophys. Res. Commun. 2008, 373, 545–549. [Google Scholar] [CrossRef]
- Wolff, D.J.; Gauld, D.S.; Neulander, M.J.; Southan, G. Inactivation of nitric oxide synthase by substituted aminoguanidines and aminoisothioureas. J. Pharm. Exp. Ther. 1997, 283, 265–273. [Google Scholar]
- Shoji, T.; Kobori, M.; Shinmoto, H.; Yanagida, A.; Kanda, T.; Tsushida, T. Inhibitory effects ofapple polyphenols on differentiation of 3T3-L1 cells into adipocytes. Food Sci. Technol. Res. 2000, 6, 119–120. [Google Scholar]
- Yang, Z.G.; Li, H.R.; Wang, L.Y.; Li, Y.H.; Lu, S.G.; Wen, X.F.; Wang, J.; Daikonya, A.; Kitanaka, S. Triterpenoids from Hippophae rhamnoides L. and their nitric oxide production-inhibitory and DPPH radical-scavenging activities. Chem. Pharm. Bull. 2007, 55, 15–18. [Google Scholar] [CrossRef]
- Sample Availability: Contact the corresponding author.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yang, Z.-G.; Jia, L.-N.; Shen, Y.; Ohmura, A.; Kitanaka, S. Inhibitory Effects of Constituents from Euphorbia lunulata on Differentiation of 3T3-L1 Cells and Nitric Oxide Production in RAW264.7 Cells. Molecules 2011, 16, 8305-8318. https://doi.org/10.3390/molecules16108305
Yang Z-G, Jia L-N, Shen Y, Ohmura A, Kitanaka S. Inhibitory Effects of Constituents from Euphorbia lunulata on Differentiation of 3T3-L1 Cells and Nitric Oxide Production in RAW264.7 Cells. Molecules. 2011; 16(10):8305-8318. https://doi.org/10.3390/molecules16108305
Chicago/Turabian StyleYang, Zhi-Gang, Liu-Nan Jia, Yan Shen, Atsuko Ohmura, and Susumu Kitanaka. 2011. "Inhibitory Effects of Constituents from Euphorbia lunulata on Differentiation of 3T3-L1 Cells and Nitric Oxide Production in RAW264.7 Cells" Molecules 16, no. 10: 8305-8318. https://doi.org/10.3390/molecules16108305
APA StyleYang, Z.-G., Jia, L.-N., Shen, Y., Ohmura, A., & Kitanaka, S. (2011). Inhibitory Effects of Constituents from Euphorbia lunulata on Differentiation of 3T3-L1 Cells and Nitric Oxide Production in RAW264.7 Cells. Molecules, 16(10), 8305-8318. https://doi.org/10.3390/molecules16108305