Simultaneous Determination of Flavonoids in Different Parts of Citrus reticulata ‘Chachi’ Fruit by High Performance Liquid Chromatography—Photodiode Array Detection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the solvent to solid ratio
2.2. Optimization of the extraction time
2.3. Optimization of the wavelength
2.4. Optimization of HPLC method
2.5. Preparation of calibration curve
Compound | Regression equation | R2 | Linearity range (μg/mL) | LOD (ng/mL) | LOQ (ng/mL) |
---|---|---|---|---|---|
naringin | y = 212205 x - 140.64 | 0.9996 | 3.8-121.6 | 25.3 | 76.0 |
hesperidin | y = 240262 x - 144.7 | 0.9997 | 3.1-99.2 | 20.6 | 62.0 |
didymin | y = 403272 x - 620.05 | 0.9996 | 2.0-64.0 | 13.3 | 40.0 |
tangeretin | y = 285301 x + 40.826 | 0.9999 | 2.3-73.6 | 18.0 | 53.9 |
nobiletin | y = 345873 x + 44.507 | 0.9999 | 2.1-67.2 | 16.4 | 49.2 |
2.6. Precision
2.7. Reproducibility test
2.8. Recovery test
Components | Quantity added % | Total quantity present (mg) | Amount quantity found (mg) | Recovery (%) | R.S.D.(%) |
---|---|---|---|---|---|
naringin | 80 | 0.66 | 0.67 | 102.02 | 1.53 |
100 | 0.80 | 0.82 | 102.08 | 0.58 | |
120 | 0.95 | 0.96 | 101.40 | 1.53 | |
hesperidin | 80 | 44.22 | 44.94 | 101.62 | 4.16 |
100 | 55.24 | 54.85 | 99.29 | 4.04 | |
120 | 66.31 | 68.43 | 103.19 | 1.53 | |
didymin | 80 | 0.97 | 0.98 | 101.37 | 0.58 |
100 | 1.23 | 1.25 | 101.36 | 2.08 | |
120 | 1.48 | 1.47 | 99.55 | 0.58 | |
tangeretin | 80 | 6.27 | 6.38 | 101.81 | 4.04 |
100 | 7.75 | 7.80 | 100.65 | 1.00 | |
120 | 9.34 | 9.46 | 101.28 | 3.61 | |
nobiletin | 80 | 1.20 | 1.22 | 103.89 | 0.58 |
100 | 1.53 | 1.56 | 102.18 | 2.52 | |
120 | 1.84 | 1.81 | 98.37 | 3.00 |
2.9. Application
Analyte | Contents (μg/g) (mean ± S.D.) | ||||
---|---|---|---|---|---|
naringin | hesperidin | didymin | tangeretin | nobiletin | |
Peel | 811.5 ± 18.1 | 55260.4 ± 802.4 | 1232.7 ± 21.3 | 7702.1 ± 80.6 | 1520.4 ± 40.5 |
Pith | 7083.1 ± 90.7 | 8538.2 ± 57.6 | 2228.6 ± 50.8 | 5.2 ± 0.2 | 194.2 ± 5.6 |
Endocarp | 3180.2 ± 64.9 | 1810.8 ± 29.7 | 1668.6 ± 26.4 | 1.6 ± 0.0 | 65.7 ± 2.1 |
Pulp | 584.0 ± 14.2 | 8369.4 ± 75.1 | 291.3 ± 7.4 | 10.7 ± 0.1 | 17.8 ± 0.3 |
Seed | 79.7 ± 3.3 | 241.6 ± 9.3 | 24.9 ± 1.1 | 3.0 ± 0.1 | 4.2 ± 0.2 |
3. Experimental
3.1. Reagents and materials
3.2. Instrument and chromatography conditions
3.3. Sample preparation
3.4. Preparation of standard solutions
4. Conclusions
Acknowledgements
References
- Jing, X.; Akira, K.; Hideki, H.; Fumiyo, K. Determination of hesperidin in Pericarpium Citri Reticulatae by semi-micro HPLC with electrochemical detection. J. Pharm. Biomed. Anal. 2006, 41, 1401–1405. [Google Scholar] [CrossRef]
- Wang, Y.M.; Yi, L.Z.; Liang, Y.Z.; Li, H.D.; Yuan, D.L.; Gao, H.Y.; Zeng, M.M. Comparative analysis of essential oil components in Pericarpium Citri Reticulatae Viride and Pericarpium Citri Reticulatae by GC–MS combined with chemometric resolution method. J. Pharm. Biomed. Anal. 2008, 46, 66–74. [Google Scholar]
- The State Pharmacopoeia Commission of PR China, Pharmacopoeia of PR China; Chemical Industry Press: Beijing, China, 2005; pp. 124, 132, 136.
- Liu, H.Y.; Qiu, N.X.; Ding, H.H.; Yao, R.Q. Polyphenols contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses. Food Res. Int. 2008, 41, 363–370. [Google Scholar]
- Arend, K. Protection from UV-B induced DNA damage by flavonoids. Plant Mol. Biol. 1994, 26, 771–774. [Google Scholar] [CrossRef]
- Lin, N.; Sato, T.; Takayama, Y.; Mimaki, Y.; Sashida, Y.; Yano, M.; Ito, A. Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem. Pharmacol. 2003, 65, 2065–2071. [Google Scholar]
- Da Silva, E.J.A.; Oliveira, A.S.; Lapa, A.J. Pharmacological evaluation of the anti-inflammatory activity of a citrus bioflavonoid, hesperidin, and the isoflavonoids, duartin and claussequinone, in rats and mice. J. Pharm. Pharmacol. 1994, 46, 118–122. [Google Scholar]
- Majo, D.D.; Giammanco, M.; Guardia, M.L.; Tripoli, E.; Giammanco, S.; Finotti, E. Flavanones in Citrus fruit: Structure antioxidant activity relationships. Food Res. Int. 2005, 38, 1161–1166. [Google Scholar]
- Benavente-García, O.; Castillo, J.; Marin, F.R.; Ortuño, A.; Delrío, J.A. Uses and properties of citrus flavonoids. J. Agr. Food Chem. 1997, 45, 4505–4515. [Google Scholar]
- Bracke, M.; Vyncke, B.; Opdenakker, G.; Foidart, J.M.; Pestel, G.D.; Mareel, M. Effect of catechins and citrus flavonoids on invasion in vitro. Clin. Exp. Metas. 1991, 9, 13–25. [Google Scholar] [CrossRef]
- Bracke, M.E.; Vyncke, B.M.; Van Larebeke, N.A.; Bruyneel, E.A.; De Bruyne, G.K.; De Pestel, G.H.; De Coster, W.J.; Espeel, M.F.; Mareel, M.M. The flavonoid tangeretin inhibits invasion of MO4 mouse cells into chick heart in vitro. Clin. Exp. Metas. 1989, 7, 283–300. [Google Scholar] [CrossRef]
- Manach, C.; Regerat, F.; Texier, O.; Agullo, G.; Demigne, C.; Remesy, C. Bioavailability, metabolism and physiological impact of 4-oxo-flavonoids. Nutr. Res. 1996, 16, 517–544. [Google Scholar]
- Hertog, M.G.; Feskens, E.J.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease. Lancet 1993, 342, 1007–1011. [Google Scholar]
- Gao, K.; Henning, S.M.; Niu, Y.; Youssefian, A.A.; Seeram, N.P.; Xu, A.; Heber, D. The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. J. Nutr. Biochem. 2006, 17, 89–95. [Google Scholar]
- Yoshimizu, N.; Otani, Y.; Saikawa, Y.; Kubota, T.; Yoshida, M.; Furukawa, T.; Kumai, K.; Kameyama, K.; Fujii, M.; Yano, M.; Sato, T.; Ito, A.; Kitajima, M. Anti-tumour effects of nobiletin, a citrus flavonoid, on gastric cancer include: Antiproliferative effects, induction of apoptosis and cell cycle deregulation. Aliment. Pharm. Therap. 2004, 20, 95–101. [Google Scholar]
- Du, Q.Z.; Chen, H. The methoxyflavones in Citrus reticulata Blanco cv. ponkan and their antiproliferative activity against cancer cells. Food Chem. 2010, 119, 567–572. [Google Scholar] [CrossRef]
- Xu, G.H.; Ye, X.Q.; Liu, D.H.; Ma, Y.Q.; Chen, J.C. Composition and distribution of phenolic acids in Ponkan (Citrus poonensis Hort. ex Tanaka) and Huyou (Citrus paradisi Macf. Changshanhuyou) during maturity. J. Food Compos. Anal. 2008, 21, 382–389. [Google Scholar] [CrossRef]
- Vanamala, J.; Reddivari, L.; Yoo, K.S.; Pike, L.M.; Patil, B.S. Variation in the content of bioactive flavonoids in different brands of orange and grapefruit juices. J. Food Compos. Anal. 2006, 19, 157–166. [Google Scholar]
- Kanaze, F.I.; Gabrieli, C.; Kokkalou, E.; Georgarakis, M.; Niopas, I. Simultaneous reversed-phase high-performance liquid chromatographic method for the determination of diosmin, hesperidin and naringin in different citrus fruit juices and pharmaceutical formulations. J. Pharmaceut. Biomed. 2003, 33, 243–249. [Google Scholar] [CrossRef]
- Abeysinghe, D.C.; Li, X.; Sun, C.D.; Zhang, W.S.; Zhou, C.H.; Chen, K.S. Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem. 2007, 104, 1338–1344. [Google Scholar]
- Peterson, J.J.; Dwyer, J.T.; Beecher, G.R.; Bhagwat, S.A.; Gebhardt, S.E.; Haytowitz, D.B.; Holden, J.M. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: A compilation and review of the data from the analytical literature. J. Food Compos. Anal. 2006, 19, S66–S73. [Google Scholar] [CrossRef]
- Moulya, P.; Gaydou, E.M.; Auffray, A. Simultaneous separation of flavanone glycosides and polymethoxylated flavones in citrus juices using liquid chromatography. J. Chromatogr. A. 1998, 800, 171–179. [Google Scholar] [CrossRef]
- Li, H.; Chen, B.; Yao, S.Z. Application of ultrasonic technique for extracting chlorogenic acid from Eucommia ulmodies Oliv. (E. ulmodies). Ultrason. Sonochem. 2005, 12, 295–300. [Google Scholar] [CrossRef]
- Valachovic, P.; Pechova, A.; Mason, T.J. Towards the industrial production of medicinal tincture by ultrasound assisted extraction. Ultrason. Sonochem. 2001, 8, 111–117. [Google Scholar] [CrossRef]
- Sample Availability: Contact the authors.
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sun, Y.; Wang, J.; Gu, S.; Liu, Z.; Zhang, Y.; Zhang, X. Simultaneous Determination of Flavonoids in Different Parts of Citrus reticulata ‘Chachi’ Fruit by High Performance Liquid Chromatography—Photodiode Array Detection. Molecules 2010, 15, 5378-5388. https://doi.org/10.3390/molecules15085378
Sun Y, Wang J, Gu S, Liu Z, Zhang Y, Zhang X. Simultaneous Determination of Flavonoids in Different Parts of Citrus reticulata ‘Chachi’ Fruit by High Performance Liquid Chromatography—Photodiode Array Detection. Molecules. 2010; 15(8):5378-5388. https://doi.org/10.3390/molecules15085378
Chicago/Turabian StyleSun, Yinshi, Jianhua Wang, Shubo Gu, Zhengbo Liu, Yujie Zhang, and Xiaoxia Zhang. 2010. "Simultaneous Determination of Flavonoids in Different Parts of Citrus reticulata ‘Chachi’ Fruit by High Performance Liquid Chromatography—Photodiode Array Detection" Molecules 15, no. 8: 5378-5388. https://doi.org/10.3390/molecules15085378
APA StyleSun, Y., Wang, J., Gu, S., Liu, Z., Zhang, Y., & Zhang, X. (2010). Simultaneous Determination of Flavonoids in Different Parts of Citrus reticulata ‘Chachi’ Fruit by High Performance Liquid Chromatography—Photodiode Array Detection. Molecules, 15(8), 5378-5388. https://doi.org/10.3390/molecules15085378