Refinements and Generalizations of the Shannon Lower Bound via Extensions of the Kraft Inequality
Abstract
1. Introduction
2. Notation Conventions and Background
2.1. Notation Conventions
2.2. Background
3. Extended Kraft Inequalities
4. Lower Bounds
4.1. One-to-One Codes
4.2. D-Semifaithful Codes
5. Sliding-Window Distortion Constraints
6. Individual Sequences and Finite-State Encoders
6.1. Background
6.2. SLB for Individual Sequences
7. Summary and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Berger, T. Rate Distortion Theory—A Mathematical Basis for Data Compression; Prentice-Hall: Englewood Cliffs, NJ, USA, 1971. [Google Scholar]
- Gray, R.M. Source Coding Theory; Kluwer Academic Publishers: Norwell, MA, USA, 1990. [Google Scholar]
- Covet, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Linder, T.; Zamir, R. On the asymptotic tightness of the Shannon lower bound. IEEE Trans. Inf. Theory 1994, 40, 2026–2031. [Google Scholar] [CrossRef]
- Koch, T. The Shannon lower bound is asymptotically tight. IEEE Trans. Inf. Theory 2016, 62, 6155–6161. [Google Scholar] [CrossRef]
- Kostina, V. Data compression with low distortion and finite blocklength. In Proceedings of the 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 29 September–2 October 2015; pp. 1127–1134. [Google Scholar]
- Kostina, V. When is Shannon’s lower bound tight at finite blocklength? In Proceedings of the 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 27–30 September 2016; pp. 982–989. [Google Scholar]
- Gastpar, M.; Sula, E. Shannon bounds for quadratic rate-distortion problems. IEEE J. Sel. Areas Inf. Theory 2024, 5, 597–608. [Google Scholar] [CrossRef]
- Campbell, L.L. Kraft inequality for decoding with respect to a fidelity criterion. IEEE Trans. Inf. Theory 1973, 19, 68–73. [Google Scholar] [CrossRef]
- Merhav, N. A comment on “A rate of convergence result for a universal D-semifaithful code”. IEEE Trans. Inf. Theory 1995, 41, 1200–1202. [Google Scholar] [CrossRef]
- Rissanen, J. Tight lower bounds for optimum code length. IEEE Trans. Inf. Theory 1982, 28, 348–349. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, E.-h.; Wei, V.K. The redundancy of source coding with a fidelity criterion. I. known statistics. IEEE Trans. Inf. Theory 1997, 43, 71–91. [Google Scholar] [CrossRef]
- Ziv, J.; Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 1978, 24, 530–536. [Google Scholar] [CrossRef]
- de Bruijn, N.G. Asymptotic Methods in Analysis, 2nd ed.; Dover Publications: New York, NY, USA, 1981. [Google Scholar]
- Merhav, N.; Weinberger, N. A toolbox for refined information-theoretic analyses with applications. Found. Trends Commun. Inf. Theory 2025, 22, 1–184. [Google Scholar] [CrossRef]
- Neuschel, T. Apéry polynomials and the multivariate saddle point method. Contr. Approx. 2014, 40, 487–507. [Google Scholar]
- Collatz, L. Einschlieβungssatz für die charakteristischen Zahlen von Matrizen. Math. Z. 1942, 48, 221–226. [Google Scholar]
- Wielandt, H. Unzerlegbare, nicht negative Matrizen. Math. Z. 1950, 52, 642–648. [Google Scholar] [CrossRef]
- Donsker, M.D.; Varadhan, S.R.S. Asymptotic evaluation of certain Markov process expectations for large time, IV. Commun. Pure Appl. Math. 1983, 36, 183–212. [Google Scholar] [CrossRef]
- Merhav, N.; Shamai, S. Volume-based lower bounds to the capacity of the Gaussian channel under pointwise additive input constraints. arXiv 2025, arXiv:2510.04095. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: New York, NY, USA, 1985. [Google Scholar]
- Merhav, N. Universal Slepian-Wolf coding for individual sequences. IEEE Trans. Inf. Theory 2025, 71, 783–796. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Merhav, N. Refinements and Generalizations of the Shannon Lower Bound via Extensions of the Kraft Inequality. Entropy 2026, 28, 76. https://doi.org/10.3390/e28010076
Merhav N. Refinements and Generalizations of the Shannon Lower Bound via Extensions of the Kraft Inequality. Entropy. 2026; 28(1):76. https://doi.org/10.3390/e28010076
Chicago/Turabian StyleMerhav, Neri. 2026. "Refinements and Generalizations of the Shannon Lower Bound via Extensions of the Kraft Inequality" Entropy 28, no. 1: 76. https://doi.org/10.3390/e28010076
APA StyleMerhav, N. (2026). Refinements and Generalizations of the Shannon Lower Bound via Extensions of the Kraft Inequality. Entropy, 28(1), 76. https://doi.org/10.3390/e28010076

