Cross-Group EEG Emotion Recognition Based on Phase Space Reconstruction Topology
Abstract
1. Introduction
- (1)
- After optimizing time delay and the embedding dimension, the high-dimensional phase trajectory is constructed. Local linear embedding (LLE) is introduced to reduce the trajectory dimension to 2-D. By maintaining the local relative positional relationship, the original high-dimensional structural information is effectively retained.
- (2)
- We extract 16 topological features based on consideration of three perspectives (area of the trajectory, degree of distortion of trajectory edge, and distance of the trajectory point from the coordinate center), which reflects the dynamic changes and complex structure of the EEG signals.
- (3)
- Quantitative analysis is conducted on the emotion-related topological features of normal-hearing people and hearing-impaired people. A cross-group 6-Class task is designed to explore the universality of the emotion recognition model and provide a direction for constructing a more compatible emotion analysis framework.
2. Related Work on Feature Extraction
2.1. Linear Features
2.2. Nonlinear Features
3. Preparation of the Experiment
4. Data Preprocessing and Feature Extraction
4.1. EEG Signals Preprocessing
4.2. The Construction of the DE Feature
4.3. Parameters Determination
4.3.1. Determination of Time Delay—Minimum Cross Prediction Error (MCPE)
4.3.2. Determination of Embedding Dimension—Grassberger–Procaccia (G–P) Method
4.4. Dimension Reduction of Trajectories
4.5. Construction of Topological Features
4.5.1. Area of the Trajectory
4.5.2. Degree of Distortion of Trajectory Edge
4.5.3. Distance of the Trajectory Point from the Coordinate Center
5. Results
6. Discussion
6.1. Analysis of Topological Feature Differences and Cross-Group Classification Performance
6.2. Cross-Group 6-Class Task
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Huang, H.; Huang, K. FCAnet: A Novel Feature Fusion Approach to EEG Emotion Recognition Based on Cross-Attention Networks. Neurocomputing 2025, 638, 130102. [Google Scholar] [CrossRef]
- Rasse, T.; Gyselinck, V.; Guegan, J. Encountering an Emotional Landmark on the Route for a Better Spatial Memory: What Matters, Valence or Arousal? J. Environ. Psychol. 2023, 91, 102145. [Google Scholar] [CrossRef]
- Mehrabian, A. Pleasure-Arousal-Dominance: A General Framework for Describing and Measuring Individual Differences in Temperament. Curr. Psychol. 1996, 14, 261–292. [Google Scholar] [CrossRef]
- Zeng, X.; Chen, Q.; Fu, X.; Zuo, J. Emotion Wheel Attention-Based Emotion Distribution Learning. IEEE Access 2021, 9, 153360–153370. [Google Scholar] [CrossRef]
- Kulkarni, D.; Vitthalrao Dixit, V. EEG-Based Emotion Classification Model: Combined Model with Improved Score Level Fusion. Biomed. Signal Process. Control 2024, 95, 106352. [Google Scholar] [CrossRef]
- He, Q.; Wang, Y.; Du, N.; Wang, S.; Jing, S. Real-PiCO: Partial Label Learning with Contrasting Label Disambiguation for EEG Emotion Recognition in Real-World Scenarios. Biomed. Signal Process. Control 2025, 105, 107635. [Google Scholar] [CrossRef]
- Zang, Z.; Yu, X.; Fu, B.; Liu, Y.; Ge, S.S. Contrastive Reinforced Transfer Learning for EEG-Based Emotion Recognition with Consideration of Individual Differences. Biomed. Signal Process. Control 2025, 106, 107622. [Google Scholar] [CrossRef]
- Gao, H.; Wang, X.; Chen, Z.; Wu, M.; Cai, Z.; Zhao, L.; Li, J.; Liu, C. Graph Convolutional Network With Connectivity Uncertainty for EEG-Based Emotion Recognition. IEEE J. Biomed. Health Inform. 2024, 28, 5917–5928. [Google Scholar] [CrossRef]
- Jin, F.; Peng, Y.; Qin, F.; Li, J.; Kong, W. Graph Adaptive Semi-Supervised Discriminative Subspace Learning for EEG Emotion Recognition. J. King Saud Univ. Comput. Inf. Sci. 2023, 35, 101648. [Google Scholar] [CrossRef]
- Wang, T.; Huang, X.; Xiao, Z.; Cai, W.; Tai, Y. EEG Emotion Recognition Based on Differential Entropy Feature Matrix through 2D-CNN-LSTM Network. EURASIP J. Adv. Signal Process. 2024, 2024, 49. [Google Scholar] [CrossRef]
- Sha, T.; Zhang, Y.; Peng, Y.; Kong, W. Semi-Supervised Regression with Adaptive Graph Learning for EEG-Based Emotion Recognition. Math. Biosci. Eng. 2023, 20, 11379–11402. [Google Scholar] [CrossRef]
- Qiu, L.; Zhong, L.; Li, J.; Feng, W.; Zhou, C.; Pan, J. SFT-SGAT: A Semi-Supervised Fine-Tuning Self-Supervised Graph Attention Network for Emotion Recognition and Consciousness Detection. Neural Netw. 2024, 180, 106643. [Google Scholar] [CrossRef] [PubMed]
- Alarcao, S.M.; Fonseca, M.J. Emotions Recognition Using EEG Signals: A Survey. IEEE Trans. Affect. Comput. 2019, 10, 374–393. [Google Scholar] [CrossRef]
- Zabihi, M.; Kiranyaz, S.; Rad, A.B.; Katsaggelos, A.K.; Gabbouj, M.; Ince, T. Analysis of High-Dimensional Phase Space via Poincaré Section for Patient-Specific Seizure Detection. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Wu, X.; Li, C.; He, Y.; Zhang, Z.; Li, H.; Li, A.; Wang, L. Topological EEG Nonlinear Dynamics Analysis for Emotion Recognition. IEEE Trans. Cogn. Dev. Syst. 2023, 15, 625–638. [Google Scholar] [CrossRef]
- Yao, L.; Lu, Y.; Wang, M.; Qian, Y.; Li, H. Exploring EEG Emotion Recognition through Complex Networks: Insights from the Visibility Graph of Ordinal Patterns. Appl. Sci. 2024, 14, 2636. [Google Scholar] [CrossRef]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.-S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef]
- Soleymani, M.; Lichtenauer, J.; Pun, T.; Pantic, M. A Multimodal Database for Affect Recognition and Implicit Tagging. IEEE Trans. Affect. Comput. 2012, 3, 42–55. [Google Scholar] [CrossRef]
- Zheng, W.-L.; Lu, B.-L. Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks. IEEE Trans. Auton. Ment. Dev. 2015, 7, 162–175. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.; Mao, Z.; Liu, J.; Gao, Q. EEG-Based Emotion Identification Using 1-D Deep Residual Shrinkage Network With Microstate Features. IEEE Sens. J. 2023, 23, 5165–5174. [Google Scholar] [CrossRef]
- Hou, F.; Liu, J.; Bai, Z.; Yang, Z.; Liu, J.; Gao, Q.; Song, Y. EEG-Based Emotion Recognition for Hearing Impaired and Normal Individuals with Residual Feature Pyramids Network Based on Time–Frequency–Spatial Features. IEEE Trans. Instrum. Meas. 2023, 72, 1–11. [Google Scholar] [CrossRef]
- Jenke, R.; Peer, A.; Buss, M. Feature Extraction and Selection for Emotion Recognition from EEG. IEEE Trans. Affect. Comput. 2014, 5, 327–339. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, G. Emotion Recognition by Deeply Learned Multi-Channel Textual and EEG Features. Future Gener. Comput. Syst. 2021, 119, 1–6. [Google Scholar] [CrossRef]
- Vecchiato, G.; Toppi, J.; Astolfi, L.; De Vico Fallani, F.; Cincotti, F.; Mattia, D.; Bez, F.; Babiloni, F. Spectral EEG Frontal Asymmetries Correlate with the Experienced Pleasantness of TV Commercial Advertisements. Med. Biol. Eng. Comput. 2011, 49, 579–583. [Google Scholar] [CrossRef]
- Zhou, Q.; Shi, C.; Du, Q.; Ke, L. A Multi-Task Hybrid Emotion Recognition Network Based on EEG Signals. Biomed. Signal Process. Control 2023, 86, 105136. [Google Scholar] [CrossRef]
- Özerdem, M.S.; Polat, H. Emotion Recognition Based on EEG Features in Movie Clips with Channel Selection. Brain Inf. 2017, 4, 241–252. [Google Scholar] [CrossRef]
- Naser, D.S.; Saha, G. Influence of Music Liking on EEG Based Emotion Recognition. Biomed. Signal Process. Control 2021, 64, 102251. [Google Scholar] [CrossRef]
- Yao, L.; Wang, M.; Lu, Y.; Li, H.; Zhang, X. EEG-Based Emotion Recognition by Exploiting Fused Network Entropy Measures of Complex Networks across Subjects. Entropy 2021, 23, 984. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, W.-L.; Li, Z.; Lu, B.-L. Investigating EEG-Based Functional Connectivity Patterns for Multimodal Emotion Recognition. J. Neural Eng. 2022, 19, 016012. [Google Scholar] [CrossRef]
- Tuncer, T.; Dogan, S.; Subasi, A. A New Fractal Pattern Feature Generation Function Based Emotion Recognition Method Using EEG. Chaos Solitons Fractals 2021, 144, 110671. [Google Scholar] [CrossRef]
- Yang, H.; Huang, S.; Guo, S.; Sun, G. Multi-Classifier Fusion Based on MI–SFFS for Cross-Subject Emotion Recognition. Entropy 2022, 24, 705. [Google Scholar] [CrossRef]
- Han, L.; Zhang, X.; Yin, J. EEG Emotion Recognition Based on the TimesNet Fusion Model. Appl. Soft Comput. 2024, 159, 111635. [Google Scholar] [CrossRef]
- Wu, Q.; Zhu, M.; Xu, W.; Wang, J.; Mao, Z.; Gao, Q.; Song, Y. MGMS: A Modality-General and Modality-Specific Learning Model Using EEG and Facial Expression for Hearing-Impaired Emotion Recognition. IEEE Trans. Instrum. Meas. 2024, 73, 1–11. [Google Scholar] [CrossRef]
- Candra, H.; Yuwono, M.; Chai, R.; Handojoseno, A.; Elamvazuthi, I.; Nguyen, H.T.; Su, S. Investigation of Window Size in Classification of EEG-Emotion Signal with Wavelet Entropy and Support Vector Machine. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 7250–7253. [Google Scholar]
- Roweis, S.T.; Saul, L.K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef]
- Grinsztajn, L.; Oyallon, E.; Varoquaux, G. Why Do Tree-Based Models Still Outperform Deep Learning on Typical Tabular Data? In Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, LA, USA, 28 November–9 December 2022. [Google Scholar]
- Kouti, M.; Ansari-Asl, K.; Namjoo, E. Emotion Discrimination Using Source Connectivity Analysis Based on Dynamic ROI Identification. Biomed. Signal Process. Control 2022, 72, 103332. [Google Scholar] [CrossRef]
- Xu, L.; Chavez-Echeagaray, M.E.; Berisha, V. Unsupervised EEG Channel Selection Based on Nonnegative Matrix Factorization. Biomed. Signal Process. Control 2022, 76, 103700. [Google Scholar] [CrossRef]
- Yan, J.; Du, C.; Li, N.; Zhou, X.; Liu, Y.; Wei, J.; Yang, Y. Spatio-Temporal Graph Bert Network for EEG Emotion Recognition. Biomed. Signal Process. Control 2025, 104, 107576. [Google Scholar] [CrossRef]
- Sun, H.; Wang, H.; Wang, R.; Gao, Y. Emotion Recognition Based on EEG Source Signals and Dynamic Brain Function Network. J. Neurosci. Methods 2025, 415, 110358. [Google Scholar] [CrossRef]
No. | Titles | Labels | Start Time Point | Duration (s) |
---|---|---|---|---|
1 | Lost in Thailand | Happy | 0:06:13 | 238 |
2 | Coming Soon | Fear | 0:01:57 | 192 |
3 | World Heritage in China-02 | Neutral | 0:00:50 | 226 |
4 | Aftershock | Sad | 0:20:10 | 205 |
5 | Back to 1942 | Sad | 0:49:58 | 242 |
6 | Coming Soon | Fear | 1:09:13 | 189 |
7 | World Heritage in China-02 | Neutral | 0:10:40 | 221 |
8 | Lost in Thailand | Happy | 1:05:10 | 204 |
9 | Flirting Scholar | Happy | 1:18:57 | 266 |
10 | World Heritage in China-13 | Neutral | 0:02:59 | 184 |
11 | Back to 1942 | Sad | 2:01:21 | 239 |
12 | Dead Silence | Fear | 0:54:50 | 211 |
13 | Dead Silence | Fear | 1:15:47 | 182 |
14 | World Heritage in China-13 | Neutral | 0:10:41 | 240 |
15 | A Chinese Odyssey Part 1-Pandora’s Box | Happy | 0:11:32 | 241 |
16 | Back to 1942 | Sad | 2:16:37 | 240 |
17 | After shock | Sad | 1:48:53 | 205 |
18 | The Conjuring | Fear | 1:17:42 | 200 |
19 | World Heritage in China-21 | Neutral | 0:05:36 | 240 |
20 | A Chinese Odyssey Part 1-Pandora’s Box | Happy | 0:35:00 | 242 |
Classifier | Parameter Setting |
---|---|
LDA | solver = ‘svd’, n_components = 1 |
GNB | - |
KNN | n_neighbors = 5 |
SVM | kernel = linear, C = 10, gamma = 200 |
RF | n_estimators = 200, max_depth = 10, min_samples_split = 3, min_samples_leaf = 1 |
XGBoost 2.1.1. | n_estimators = 100, max_depth = 10, learning_rate = 0.1 |
CNN | epoch = 50, learning rate = 0.001, optimizer: Adam, batch_size = 32 |
Classifier | SEED | HIED | |||
---|---|---|---|---|---|
2-Class (Happy/Sad) | 3-Class (Happy/Neutral/Sad) | 2-Class (Happy/Sad) | 3-Class (Happy/Neutral/Sad) | 4-Class (Happy/Neutral/Sad/Afraid) | |
LDA | 67.50 | 46.67 | 85.00 | 80.33 | 53.17 |
GNB | 65.50 | 47.78 | 77.00 | 63.00 | 46.50 |
KNN | 75.83 | 64.44 | 86.67 | 84.00 | 64.08 |
SVM | 80.17 | 72.11 | 91.67 | 86.56 | 68.25 |
RF | 89.17 | 80.33 | 93.67 | 86.89 | 69.31 |
XGBoost | 92.00 | 83.88 | 93.00 | 87.88 | 72.92 |
CNN | 85.00 | 74.44 | 93.66 | 87.11 | 70.65 |
Subject | SEED | HIED | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2-Class Without Selection | 2-Class with Selection | 3-Class Without Selection | 3-Class with Selection | 2-Class Without Selection | 2-Class with Selection | 3-Class Without Selection | 3-Class with Selection | 4-Class Without Selection | 4-Class with Selection | |
1 | 90 | 92.5 | 81.67 | 86.67 | 95 | 100 | 86.67 | 91.67 | 77.5 | 81.25 |
2 | 90 | 97.5 | 73.33 | 83.33 | 95 | 95 | 86.67 | 90 | 71.25 | 72.5 |
3 | 90 | 90 | 81.67 | 91.67 | 87.5 | 92.5 | 88.33 | 91.67 | 76.25 | 78.75 |
4 | 82.5 | 95 | 83.33 | 88.33 | 97.5 | 100 | 91.67 | 93.33 | 76.25 | 82.5 |
5 | 92.5 | 85 | 86.67 | 81.67 | 92.5 | 97.5 | 90 | 96.67 | 67.5 | 78.75 |
6 | 87.5 | 90 | 86.67 | 91.67 | 87.5 | 92.5 | 83.33 | 90 | 77.5 | 83.75 |
7 | 87.5 | 100 | 88.33 | 96.67 | 92.5 | 95 | 98.33 | 90 | 68.75 | 77.5 |
8 | 97.5 | 97.5 | 80 | 83.33 | 90 | 92.5 | 81.67 | 88.33 | 71.25 | 78.75 |
9 | 100 | 95 | 81.67 | 88.33 | 92.5 | 95 | 88.33 | 91.67 | 72.5 | 72.5 |
10 | 90 | 97.5 | 88.33 | 96.67 | 97.5 | 100 | 90 | 88.33 | 78.75 | 81.25 |
11 | 97.5 | 100 | 91.67 | 96.67 | 90 | 95 | 83.33 | 83.33 | 67.5 | 68.75 |
12 | 92.5 | 92.5 | 86.67 | 90 | 97.5 | 97.5 | 85 | 96.67 | 72.5 | 77.5 |
13 | 95 | 100 | 73.33 | 86.67 | 92.5 | 97.5 | 85 | 93.33 | 72.5 | 73.75 |
14 | 90 | 95 | 83.33 | 93.33 | 90 | 100 | 88.33 | 93.33 | 72.5 | 76.25 |
15 | 97.5 | 100 | 91.67 | 100 | 97.5 | 92.5 | 91.67 | 85 | 71.25 | 73.75 |
Average | 92 | 95.17 | 83.89 | 90.33 | 93 | 96.17 | 87.89 | 90.89 | 72.91 | 77.17 |
Time (s) | 0.2 | 0.04 | 1.58 | 0.21 | 0.33 | 0.06 | 2.84 | 0.26 | 4.61 | 0.45 |
Feature | Sad | Neutral | Happy |
---|---|---|---|
SACC | 1.82 (0.12) | 1.74 (0.14) | 1.95 (0.14) |
SACT | 0.28 (0.06) | 0.25 (0.05) | 0.34 (0.07) |
STTC | 0.09 (0.03) | 0.07 (0.02) | 0.12 (0.03) |
SAC | 51,858.37 (3542.62) | 49,995 (3674.12) | 54,838.94 (4003.06) |
SDCP | 35.18 (2.06) | 33.84 (2.04) | 37.05 (2.09) |
Feature | Sad | Neutral | Happy | Afraid |
---|---|---|---|---|
SACC | 2.56 (0.26) | 2.5 (0.26) | 2.61 (0.25) | 2.55 (0.27) |
SACT | 0.63 (0.10) | 0.61 (0.10) | 0.66 (0.09) | 0.62 (0.09) |
STTC | 0.26 (0.05) | 0.24 (0.05) | 0.27 (0.05) | 0.25 (0.05) |
SAC | 69,351.45 (4432.61) | 68,223.98 (4624.55) | 70,901.06 (4348.68) | 69,233.29 (4042.20) |
SDCP | 44.598 (2.69) | 43.96 (2.77) | 45.48 (2.51) | 44.88 (2.52) |
References | Feature | Classifier | Accuracy |
---|---|---|---|
Zheng and Lu [19] | DE, PSD, DASM, RASM, DCAU | SVM | 86.65% |
Kouti et al. [37] | iCoh connection feature | SVM | 83.84% |
Xu et al. [38] | HOC, FD, band power, DE | SVM | 81.90% |
Yan et al. [39] | DE, PSD, DASM, RASM, DCAU | Spatio-temporal Graph Bert network | 83.20% |
Sun et al. [40] | RMS + DE | RF | 88.93% |
Ours | Topological Features | XGBoost | 90.30% |
Ours | Topological Features + DE | XGBoost | 92.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Zhu, M.; Li, D.; Song, Y. Cross-Group EEG Emotion Recognition Based on Phase Space Reconstruction Topology. Entropy 2025, 27, 1084. https://doi.org/10.3390/e27101084
Zhu X, Zhu M, Li D, Song Y. Cross-Group EEG Emotion Recognition Based on Phase Space Reconstruction Topology. Entropy. 2025; 27(10):1084. https://doi.org/10.3390/e27101084
Chicago/Turabian StyleZhu, Xuanpeng, Mu Zhu, Dong Li, and Yu Song. 2025. "Cross-Group EEG Emotion Recognition Based on Phase Space Reconstruction Topology" Entropy 27, no. 10: 1084. https://doi.org/10.3390/e27101084
APA StyleZhu, X., Zhu, M., Li, D., & Song, Y. (2025). Cross-Group EEG Emotion Recognition Based on Phase Space Reconstruction Topology. Entropy, 27(10), 1084. https://doi.org/10.3390/e27101084