# Entangled States Are Harder to Transfer than Product States

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. n-QST Fidelity for Independent Amplitude-Damping Channels

## 3. n-QST Fidelity as a Function of Entanglement

#### 3.1. Two Qubits

#### 3.2. Three Qubits

#### 3.2.1. Three-Qubit Pure-State Entanglement

- Product states. All ${J}_{i}=0$, resulting into $A-B-C$ (class 1). All entanglement measures vanish.
- Biseparable states. All ${J}_{i}=0$ except (i) ${J}_{1}$ for $A-BC$, (ii) ${J}_{2}$ for $B-AC$, and (iii) ${J}_{3}$ for $C-AB$ (class 2a). Only the concurrence for one single pair of qubits is different from zero.
- W-states. ${C}_{\mathrm{GME}}>0$ and ${\tau}_{3}=0$
- ${J}_{4}=0$ and ${J}_{1}{J}_{2}+{J}_{1}{J}_{3}+{J}_{2}{J}_{3}=\sqrt{{J}_{1}{J}_{2}{J}_{3}}=\frac{{J}_{5}}{2}$ (class 3a).
- ${J}_{4}=0$ and $\sqrt{{J}_{1}{J}_{2}{J}_{3}}=\frac{{J}_{5}}{2}$ (class 4a).

- GHZ-states. ${C}_{\mathrm{GME}}>0$ and ${\tau}_{3}>0$, with 5 possible cases:
- All ${J}_{i}=0$ except ${J}_{4}$ (class 2b).
- ${J}_{1}={J}_{2}={J}_{5}=0$, or ${J}_{1}={J}_{3}={J}_{5}=0$ or ${J}_{2}={J}_{3}={J}_{5}=0$ (class 3b).
- ${J}_{2}={J}_{5}=0$ or ${J}_{3}={J}_{5}=0$ (class 4b).
- ${J}_{1}{J}_{4}+{J}_{1}{J}_{2}+{J}_{1}{J}_{3}=\sqrt{{J}_{1}{J}_{2}{J}_{3}}=\frac{{J}_{5}}{2}$ (class 4c).
- $\sqrt{{J}_{1}{J}_{2}{J}_{3}}=\frac{\left(\right)}{{J}_{5}}2$ and ${\left(\right)}^{{J}_{4}}2\left(\right)open="("\; close=")">{J}_{2}+{J}_{4}$ (class 4d),

#### 3.2.2. Fidelity of 3-QST

- class 1 (product state)$$\begin{array}{cc}\hfill \phantom{\rule{1.em}{0ex}}& {\left(\right)}_{{F}_{\mathrm{c}1}}{U}^{\otimes 3}={\left(\right)}^{{F}_{1}}3\hfill \end{array}$$$$\begin{array}{cc}\hfill \phantom{\rule{1.em}{0ex}}& \left(\right)open="\langle "\; close="\rangle ">{F}_{\mathrm{c}1}={\left(\right)}^{{F}_{1}}3\hfill & \phantom{\rule{4pt}{0ex}}\end{array}$$
- class 2a (biseparable states)$$\begin{array}{c}\hfill {\left(\right)}_{{F}_{\mathrm{c}2\mathrm{a}}}{U}^{\otimes 3}\\ ={\left(\right)}^{{F}_{1}}3-2\left(\right)open="\langle "\; close="\rangle ">{F}_{1}\hfill & \left(\right)open="("\; close=")">\left(\right)open="\langle "\; close="\rangle ">{F}_{1}\end{array}\left(\right)open="("\; close=")">1-\left(\right)open="\langle "\; close="\rangle ">{F}_{1}$$$$\begin{array}{c}\hfill \left(\right)open="\langle "\; close="\rangle ">{F}_{\mathrm{c}2\mathrm{a}}\\ ={\left(\right)}^{{F}_{1}}3-\frac{{R}_{3}}{3}\hfill \end{array}$$
- class 2b (GHZ-states)$$\begin{array}{c}\hfill {\left(\right)}_{{F}_{\mathrm{c}2\mathrm{b}}}{U}^{\otimes 3}\\ ={\left(\right)}^{{F}_{1}}3-3\left(\right)open="\langle "\; close="\rangle ">{F}_{1}\hfill & \left(\right)open="("\; close=")">\left(\right)open="\langle "\; close="\rangle ">{F}_{1}\end{array}\left(\right)open="("\; close=")">1-\left(\right)open="\langle "\; close="\rangle ">{F}_{1}$$$$\begin{array}{c}\hfill \left(\right)open="\langle "\; close="\rangle ">{F}_{\mathrm{c}2\mathrm{b}}\\ ={\left(\right)}^{{F}_{1}}3-{R}_{3}\hfill \end{array}$$
- class 3a (${J}_{4}=0$ and ${J}_{1}{J}_{2}+{J}_{1}{J}_{3}+{J}_{2}{J}_{3}=\sqrt{{J}_{1}{J}_{2}{J}_{3}}=\frac{{J}_{5}}{2}$)$$\begin{array}{c}\hfill {\left(\right)}_{{F}_{\mathrm{c}3\mathrm{a}}}{U}^{\otimes 3}\\ =& {\left(\right)}^{{F}_{1}}3-2\left(\right)open="\langle "\; close="\rangle ">{F}_{1}\hfill & \left(\right)open="("\; close=")">\left(\right)open="\langle "\; close="\rangle ">{F}_{1}\end{array}\left(\right)open="("\; close=")">1-\left(\right)open="\langle "\; close="\rangle ">{F}_{1}$$
- Class 3b (${J}_{1}={J}_{2}={J}_{5}=0$ or ${J}_{1}={J}_{3}={J}_{5}=0$ or ${J}_{2}={J}_{3}={J}_{5}=0$)$$\begin{array}{c}\hfill {\left(\right)}_{{F}_{\mathrm{c}3\mathrm{b}}}{U}^{\otimes 3}\\ =& {\left(\right)}^{{F}_{1}}3-\left(\right)open="\langle "\; close="\rangle ">{F}_{1}\hfill & \left(\right)open="("\; close=")">\left(\right)open="\langle "\; close="\rangle ">{F}_{1}\end{array}\left(\right)open="("\; close=")">1-\left(\right)open="\langle "\; close="\rangle ">{F}_{1}$$
- Class 4a ${J}_{4}=0$ and $\sqrt{{J}_{1}{J}_{2}{J}_{3}}=\frac{{J}_{5}}{2}$$$\begin{array}{c}\hfill {\left(\right)}_{{F}_{\mathrm{c}4\mathrm{a}}}{U}^{\otimes 3}\\ =& {\left(\right)}^{{F}_{1}}3-2\left(\right)open="\langle "\; close="\rangle ">{F}_{1}\hfill & \left(\right)open="("\; close=")">\left(\right)open="\langle "\; close="\rangle ">{F}_{1}\end{array}\left(\right)open="("\; close=")">1-\left(\right)open="\langle "\; close="\rangle ">{F}_{1}$$
- Class 4b (${J}_{2}={J}_{5}=0$ or ${J}_{3}={J}_{5}=0$)$$\begin{array}{c}\hfill {\left(\right)}_{{F}_{\mathrm{c}4\mathrm{b}}}{U}^{\otimes 3}\\ =& {\left(\right)}^{{F}_{1}}3-\left(\right)open="\langle "\; close="\rangle ">{F}_{1}\hfill & \left(\right)open="("\; close=")">\left(\right)open="\langle "\; close="\rangle ">{F}_{1}\end{array}\left(\right)open="("\; close=")">1-\left(\right)open="\langle "\; close="\rangle ">{F}_{1}$$
- Class 4c (${J}_{1}{J}_{4}+{J}_{1}{J}_{2}+{J}_{1}{J}_{3}+{J}_{2}{J}_{3}=\sqrt{{J}_{1}{J}_{2}{J}_{3}}=\frac{{J}_{5}}{2}$)$$\begin{array}{c}\hfill {\left(\right)}_{{F}_{\mathrm{c}4\mathrm{c}}}{U}^{\otimes 3}\\ =& {\left(\right)}^{{F}_{1}}3-\left(\right)open="\langle "\; close="\rangle ">{F}_{1}\hfill & \left(\right)open="("\; close=")">\left(\right)open="\langle "\; close="\rangle ">{F}_{1}\end{array}\left(\right)open="("\; close=")">1-\left(\right)open="\langle "\; close="\rangle ">{F}_{1}$$
- Class 4d ($\sqrt{{J}_{1}{J}_{2}{J}_{3}}=\frac{\left(\right)}{{J}_{5}}2$ and ${\left(\right)}^{{J}_{4}}2\left(\right)open="("\; close=")">{J}_{2}+{J}_{4}$)$$\begin{array}{c}\hfill {\left(\right)}_{{F}_{\mathrm{c}4\mathrm{c}}}{U}^{\otimes 3}\\ =& {\left(\right)}^{{F}_{1}}3-\left(\right)open="\langle "\; close="\rangle ">{F}_{1}\hfill & \left(\right)open="("\; close=")">\left(\right)open="\langle "\; close="\rangle ">{F}_{1}\end{array}\left(\right)open="("\; close=")">1-\left(\right)open="\langle "\; close="\rangle ">{F}_{1}$$

#### 3.3. Four Qubits

## 4. Discussion

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

GHZ | Greenberger–Horne–Zeilinger |

GME | Genuine multipartite entanglement |

QST | Quantum-state transfer |

n-QST | n-qubit quantum-state transfer |

## References

- Hillery, M.; Bužek, V.; Berthiaume, A. Quantum secret sharing. Phys. Rev. A
**1999**, 59, 1829–1834. [Google Scholar] [CrossRef] [Green Version] - Cuomo, D.; Caleffi, M.; Cacciapuoti, A.S. Towards a distributed quantum computing ecosystem. IET Quantum Commun.
**2020**, 1, 3–8. [Google Scholar] [CrossRef] - Bose, S. Quantum Communication through an Unmodulated Spin Chain. Phys. Rev. Lett.
**2003**, 91, 207901. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Aspelmeyer, M.; Böhm, H.R.; Gyatso, T.; Jennewein, T.; Kaltenbaek, R.; Lindenthal, M.; Molina-Terriza, G.; Poppe, A.; Resch, K.; Taraba, M.; et al. Long-distance free-space distribution of quantum entanglement. Science
**2003**, 301, 621–623. [Google Scholar] [CrossRef] [Green Version] - Di Franco, C.; Paternostro, M.; Kim, M. Nested entangled states for distributed quantum channels. Phys. Rev. A
**2008**, 77, 020303(R). [Google Scholar] [CrossRef] [Green Version] - Banchi, L.; Bayat, A.; Verrucchi, P.; Bose, S. Nonperturbative Entangling Gates between Distant Qubits Using Uniform Cold Atom Chains. Phys. Rev. Lett.
**2011**, 106, 140501. [Google Scholar] [CrossRef] - Apollaro, T.J.G.; Lorenzo, S.; Plastina, F. Transport of quantum correlations across a spin chain. Int. J. Mod. Phys. B
**2013**, 27, 1345035. [Google Scholar] [CrossRef] - Almeida, G.M.A.; de Moura, F.A.B.F.; Apollaro, T.J.G.; Lyra, M.L. Disorder-assisted distribution of entanglement in XY spin chains. Phys. Rev. A
**2017**, 96, 032315. [Google Scholar] [CrossRef] [Green Version] - Streltsov, A.; Kampermann, H.; Bruß, D. Entanglement Distribution and Quantum Discord. In Lectures on General Quantum Correlations and Their Applications; Fanchini, F.F., Soares Pinto, D.d.O., Adesso, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 217–230. [Google Scholar] [CrossRef] [Green Version]
- Wengerowsky, S.; Joshi, S.K.; Steinlechner, F.; Zichi, J.R.; Liu, B.; Scheidl, T.; Dobrovolskiy, S.M.; van der Molen, R.; Los, J.W.; Zwiller, V.; et al. Passively stable distribution of polarisation entanglement over 192 km of deployed optical fibre. Npj Quantum Inf.
**2020**, 6, 5. [Google Scholar] [CrossRef] - Vieira, R.; Rigolin, G. Almost perfect transmission of multipartite entanglement through disordered and noisy spin chains. Phys. Lett. A
**2020**, 384, 126536. [Google Scholar] [CrossRef] - Apollaro, T.J.G.; Almeida, G.M.A.; Lorenzo, S.; Ferraro, A.; Paganelli, S. Spin chains for two-qubit teleportation. Phys. Rev. A
**2019**, 100, 052308. [Google Scholar] [CrossRef] [Green Version] - Apollaro, T.J.; Sanavio, C.; Chetcuti, W.J.; Lorenzo, S. Multipartite entanglement transfer in spin chains. Phys. Lett. A
**2020**, 384, 126306. [Google Scholar] [CrossRef] [Green Version] - Wang, M.; Xiang, Y.; Kang, H.; Han, D.; Liu, Y.; He, Q.; Gong, Q.; Su, X.; Peng, K. Deterministic Distribution of Multipartite Entanglement and Steering in a Quantum Network by Separable States. Phys. Rev. Lett.
**2020**, 125, 6388–6396. [Google Scholar] [CrossRef] [PubMed] - Mannalath, V.; Pathak, A. Multiparty Entanglement Routing in Quantum Networks. arXiv
**2022**, arXiv:2211.06690. [Google Scholar] [CrossRef] - Eltschka, C.; Siewert, J. Quantifying entanglement resources. J. Phys. Math. Theor.
**2014**, 47, 424005. [Google Scholar] [CrossRef] [Green Version] - Bina, M.; Mandarino, A.; Olivares, S.; Paris, M.G.A. Drawbacks of the use of fidelity to assess quantum resources. Phys. Rev. A
**2014**, 89, 012305. [Google Scholar] [CrossRef] [Green Version] - Mandarino, A.; Bina, M.; Olivares, S.; Paris, M.G. About the use of fidelity in continuous variable systems. Int. J. Quantum Inf.
**2014**, 12, 1461015. [Google Scholar] [CrossRef] [Green Version] - Gühne, O.; Toth, G. Entanglement detection. Phys. Rep.
**2008**, 474, 1–75. [Google Scholar] [CrossRef] [Green Version] - Lorenzo, S.; Plastina, F.; Consiglio, M.; Apollaro, T.J.G. Quantum Map Approach to Entanglement Transfer and Generation in Spin Chains. In Entanglement in Spin Chains: From Theory to Quantum Technology Applications; Bayat, A., Bose, S., Johannesson, H., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 321–340. [Google Scholar] [CrossRef]
- Apollaro, T.J.G.; Lorenzo, S.; Plastina, F.; Consiglio, M.; Życzkowski, K. Quantum transfer of interacting qubits. New J. Phys.
**2022**, 24, 083025. [Google Scholar] [CrossRef] - Wootters, W.K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett.
**1998**, 80, 2245–2248. [Google Scholar] [CrossRef] [Green Version] - Jozsa, R. Fidelity for Mixed Quantum States. J. Mod. Opt.
**1994**, 41, 2315–2323. [Google Scholar] [CrossRef] - Bellomo, B.; Lo Franco, R.; Compagno, G. Non-Markovian Effects on the Dynamics of Entanglement. Phys. Rev. Lett.
**2007**, 99, 160502. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bose, S. Quantum communication through spin chain dynamics: An introductory overview. Contemp. Phys.
**2007**, 48, 13–30. [Google Scholar] [CrossRef] [Green Version] - Pan, J.W.; Bouwmeester, D.; Weinfurter, H.; Zeilinger, A. Experimental Entanglement Swapping: Entangling Photons That Never Interacted. Phys. Rev. Lett.
**1998**, 80, 3891–3894. [Google Scholar] [CrossRef] - Apollaro, T.J.G.; Lorenzo, S.; Sindona, A.; Paganelli, S.; Giorgi, G.L.; Plastina, F. Many-qubit quantum state transfer via spin chains. Phys. Scr.
**2015**, T165, 014036. [Google Scholar] [CrossRef] [Green Version] - Acín, A.; Andrianov, A.; Costa, L.; Jané, E.; Latorre, J.I.; Tarrach, R. Generalized Schmidt Decomposition and Classification of Three-Quantum-Bit States. Phys. Rev. Lett.
**2000**, 85, 1560–1563. [Google Scholar] [CrossRef] [Green Version] - Enríquez, M.; Delgado, F.; Życzkowski, K. Entanglement of Three-Qubit Random Pure States. Entropy
**2018**, 20, 745. [Google Scholar] [CrossRef] [Green Version] - Dür, W.; Vidal, G.; Cirac, J.I. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A
**2000**, 62, 062314. [Google Scholar] [CrossRef] - Coffman, V.; Kundu, J.; Wootters, W.K. Distributed Entanglement. Phys. Rev. A
**1999**, 61, 052306. [Google Scholar] [CrossRef] [Green Version] - Ma, Z.H.; Chen, Z.H.; Chen, J.L.; Spengler, C.; Gabriel, A.; Huber, M. Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A
**2011**, 83, 062325. [Google Scholar] [CrossRef] [Green Version] - Verstraete, F.; Dehaene, J.; De Moor, B.; Verschelde, H. Four qubits can be entangled in nine different ways. Phys. Rev. A
**2002**, 65, 052112. [Google Scholar] [CrossRef] [Green Version] - Osterloh, A.; Siewert, J. The invariant-comb approach and its relation to the balancedness of multipartite entangled states. New J. Phys.
**2010**, 12, 075025. [Google Scholar] [CrossRef]

**Figure 1.**A quantum router. A dispatch center, encircled in red, creates an n-qubit entangled state (red spheres) with the aim to send each party to a different receiver (green spheres) along independent quantum channels (blue spheres).

**Figure 3.**(

**Left**) Reduction factor for the average fidelity in the presence of entanglement as in Equation (25). (

**Right**) Average fidelity for the three-qubit classes. The dotted, vertical line is at ${\u2329F\u232a}_{1}=\frac{1}{2}\left(\right)open="("\; close=")">1+\frac{1}{\sqrt{3}}$.

**Figure 4.**(

**Left**) Reduction factor for the average fidelity in the presence of entanglement as in Equation (43). (

**Right**) Average fidelity for the entangled classes as reported in Equation (42). The blue and red dotted, vertical lines are, respectively, at ${\u2329F\u232a}_{1}=0.82$ and ${\u2329F\u232a}_{1}=0.85$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Apollaro, T.J.G.; Lorenzo, S.; Plastina, F.; Consiglio, M.; Życzkowski, K.
Entangled States Are Harder to Transfer than Product States. *Entropy* **2023**, *25*, 46.
https://doi.org/10.3390/e25010046

**AMA Style**

Apollaro TJG, Lorenzo S, Plastina F, Consiglio M, Życzkowski K.
Entangled States Are Harder to Transfer than Product States. *Entropy*. 2023; 25(1):46.
https://doi.org/10.3390/e25010046

**Chicago/Turabian Style**

Apollaro, Tony J. G., Salvatore Lorenzo, Francesco Plastina, Mirko Consiglio, and Karol Życzkowski.
2023. "Entangled States Are Harder to Transfer than Product States" *Entropy* 25, no. 1: 46.
https://doi.org/10.3390/e25010046