Determination of an Extremal in Two-Dimensional Variational Problems Based on the RBF Collocation Method
Abstract
:1. Introduction
2. Properties of RBFs
2.1. SP Strategies
2.1.1. Constant SPs
- Hardy’s SP [10]in which N and represent the total number of centers and the distance from the ith center to the nearest neighbor, respectively.
 - Franke’s SP [39]in which N and D denote the total number of centers and the diameter of the smallest circle encompassing all the center locations, respectively.
 
2.1.2. Variable SPs
3. Numerical Solution of the Model
4. Numerical Experiments
5. Final Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schechter, R.S. The Variational Method in Engineering; McGraw-Hill: New York, NY, USA, 1967. [Google Scholar]
 - Chen, C.; Hsiao, C. A Walsh series direct method for solving variational problems. J. Frankl. Inst. 1975, 300, 265–280. [Google Scholar] [CrossRef]
 - Razzaghi, M.; Yousefi, S. Legendre wavelets direct method for variational problems. Math. Comput. Simul. 2000, 53, 185–192. [Google Scholar] [CrossRef]
 - Chang, R.; Wang, M. Shifted Legendre direct method for variational problems. J. Optim. Theory Appl. 1983, 39, 299–307. [Google Scholar] [CrossRef]
 - Hwang, C.; Shih, Y. Laguerre series direct method for variational problems. J. Optim. Theory Appl. 1983, 39, 143–149. [Google Scholar] [CrossRef]
 - Horng, I.R.; Chou, J.H. Shifted Chebyshev direct method for solving variational problems. Int. J. Syst. Sci. 1985, 16, 855–861. [Google Scholar] [CrossRef]
 - Saadatmandi, A.; Abdolahi-Niasar, T. An analytic study on the Euler-Lagrange equation arising in calculus of variations. Comput. Methods Differ. Equ. 2014, 2, 140–152. [Google Scholar]
 - Yousefi, S.A.; Dehghan, M. The use of He’s variational iteration method for solving variational problems. Int. J. Comput. Math. 2010, 87, 1299–1314. [Google Scholar] [CrossRef]
 - Golbabai, A.; Saeedi, A. An investigation of radial basis function approximation methods with application in dynamic investment model. Iran. J. Sci. Technol. 2015, 39, 221. [Google Scholar]
 - Hardy, R.L. Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 1971, 76, 1905–1915. [Google Scholar] [CrossRef]
 - Kansa, E.J. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates. Comput. Math. Appl. 1990, 19, 127–145. [Google Scholar] [CrossRef]
 - Kansa, E.J. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 1990, 19, 147–161. [Google Scholar] [CrossRef]
 - Nikan, O.; Golbabai, A.; Nikazad, T. Solitary wave solution of the nonlinear KdV-Benjamin-Bona-Mahony-Burgers model via two meshless methods. Eur. Phys. J. Plus 2019, 134, 1–14. [Google Scholar] [CrossRef]
 - Golbabai, A.; Safdari-Vaighani, A. Collocation methods based on radial basis functions for the coupled Klein–Gordon–Schrödinger equations. Electron. Trans. Numer. Anal. 2012, 39, 22–31. [Google Scholar]
 - Nikan, O.; Molavi-Arabshai, S.M.; Jafari, H. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discret. Contin. Dyn. Syst. S 2021, 14, 3685. [Google Scholar] [CrossRef]
 - Can, N.H.; Nikan, O.; Rasoulizadeh, M.N.; Jafari, H.; Gasimov, Y.S. Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel. Therm. Sci. 2020, 24, 49–58. [Google Scholar] [CrossRef]
 - Avazzadeh, Z.; Nikan, O.; Machado, J.A.T. Solitary wave solutions of the generalized Rosenau-KdV-RLW equation. Mathematics 2020, 8, 1601. [Google Scholar] [CrossRef]
 - Nikan, O.; Avazzadeh, Z.; Machado, J.T. A local stabilized approach for approximating the modified time-fractional diffusion problem arising in heat and mass transfer. J. Adv. Res. 2021, 32, 45–60. [Google Scholar] [CrossRef]
 - Rasoulizadeh, M.; Ebadi, M.; Avazzadeh, Z.; Nikan, O. An efficient local meshless method for the equal width equation in fluid mechanics. Eng. Anal. Bound. Elem. 2021, 131, 258–268. [Google Scholar] [CrossRef]
 - Nikan, O.; Avazzadeh, Z.; Machado, J.T. An efficient local meshless approach for solving nonlinear time-fractional fourth-order diffusion model. J. King Saud Univ. Sci. 2021, 33, 101243. [Google Scholar] [CrossRef]
 - Nikan, O.; Avazzadeh, Z.; Machado, J.T. Numerical study of the nonlinear anomalous reaction-subdiffusion process arising in the electroanalytical chemistry. J. Comput. Sci. 2021, 53, 101394. [Google Scholar] [CrossRef]
 - Nikan, O.; Avazzadeh, Z. An improved localized radial basis-pseudospectral method for solving fractional reaction–subdiffusion problem. Results Phys. 2021, 23, 104048. [Google Scholar] [CrossRef]
 - Rasoulizadeh, M.; Nikan, O.; Avazzadeh, Z. The impact of LRBF-FD on the solutions of the nonlinear regularized long wave equation. Math. Sci. 2021, 15, 365–376. [Google Scholar] [CrossRef]
 - Nikan, O.; Avazzadeh, Z.; Machado, J.T. Numerical approximation of the nonlinear time-fractional telegraph equation arising in neutron transport. Commun. Nonlinear Sci. Numer. Simul. 2021, 99, 105755. [Google Scholar] [CrossRef]
 - Nikan, O.; Avazzadeh, Z.; Machado, J.T. Numerical simulation of a degenerate parabolic problem occurring in the spatial diffusion of biological population. Chaos Solit. Fractals 2021, 151, 111220. [Google Scholar] [CrossRef]
 - Nikan, O.; Avazzadeh, Z. An efficient localized meshless technique for approximating nonlinear sinh-Gordon equation arising in surface theory. Eng. Anal. Bound. Elem. 2021, 130, 268–285. [Google Scholar] [CrossRef]
 - Nikan, O.; Avazzadeh, Z.; Rasoulizadeh, M. Soliton solutions of the nonlinear sine-Gordon model with Neumann boundary conditions arising in crystal dislocation theory. Nonlinear Dyn. 2021, 106, 783–813. [Google Scholar] [CrossRef]
 - Nikan, O.; Avazzadeh, Z. A localisation technique based on radial basis function partition of unity for solving Sobolev equation arising in fluid dynamics. Appl. Math. Comput. 2021, 401, 126063. [Google Scholar] [CrossRef]
 - Nikan, O.; Avazzadeh, Z.; Rasoulizadeh, M. Soliton wave solutions of nonlinear mathematical models in elastic rods and bistable surfaces. Eng. Anal. Bound. Elem. 2022, 143, 14–27. [Google Scholar] [CrossRef]
 - Nikan, O.; Avazzadeh, Z.; Machado, J.T. Numerical treatment of microscale heat transfer processes arising in thin films of metals. Int. Commun. Heat Mass Transf. 2022, 132, 105892. [Google Scholar] [CrossRef]
 - Nikan, O.; Avazzadeh, Z. Coupling of the Crank–Nicolson scheme and localized meshless technique for viscoelastic wave model in fluid flow. J. Comput. Appl. Math. 2021, 398, 113695. [Google Scholar] [CrossRef]
 - Nikan, O.; Avazzadeh, Z. A locally stabilized radial basis function partition of unity technique for the sine–Gordon system in nonlinear optics. Math. Comput. Simul. 2022, 199, 394–413. [Google Scholar] [CrossRef]
 - Nikan, O.; Avazzadeh, Z.; Machado, J.; Rasoulizadeh, M. An accurate localized meshfree collocation technique for the telegraph equation in propagation of electrical signals. Eng. Comput. 2022, 1–18. [Google Scholar] [CrossRef]
 - Nikan, O.; Avazzadeh, Z.; Machado, J.T. Numerical approach for modeling fractional heat conduction in porous medium with the generalized Cattaneo model. Appl. Math. Model. 2021, 100, 107–124. [Google Scholar] [CrossRef]
 - Nikan, O.; Avazzadeh, Z. Numerical simulation of fractional evolution model arising in viscoelastic mechanics. Appl. Numer. Math. 2021, 169, 303–320. [Google Scholar] [CrossRef]
 - Buhmann, M.D. Radial Basis Functions: Theory and Implementations; Cambridge University Press: Cambridge, UK, 2003; Volume 12. [Google Scholar]
 - Wendland, H. Scattered Data Approximation; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
 - Micchelli, C.A. Interpolation of scattered data: Distance matrices and conditionally positive definite functions. In Approximation Theory and Spline Functions; Springer: Berlin/Heidelberg, Germany, 1984; pp. 143–145. [Google Scholar]
 - Franke, R. A Critical Comparison of Some Methods for Interpolation of Scattered Data; Technical Report; Naval Postgraduate School: Monterey, CA, USA, 1979. [Google Scholar]
 - Golbabai, A.; Rabiei, H. A meshfree method based on radial basis functions for the eigenvalues of transient Stokes equations. Eng. Anal. Bound. Elem. 2012, 36, 1555–1559. [Google Scholar] [CrossRef]
 - Sarra, S.A.; Sturgill, D. A random variable shape parameter strategy for radial basis function approximation methods. Eng. Anal. Bound. Elem. 2009, 33, 1239–1245. [Google Scholar] [CrossRef]
 - Mirinejad, H.; Inanc, T. An RBF collocation method for solving optimal control problems. Robot. Auton. Syst. 2017, 87, 219–225. [Google Scholar] [CrossRef]
 - Rad, J.A.; Kazem, S.; Parand, K. Radial basis functions approach on optimal control problems: A numerical investigation. J. Vib. Control 2014, 20, 1394–1416. [Google Scholar] [CrossRef]
 - Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A. Spectral Methods: Fundamentals in Single Domains; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
 








| Name | |
|---|---|
| Inverse quadratic (IQ) | |
| Multiquadric (MQ) | |
| Gaussian (GA) | |
| Inverse multiquadric (IMQ) | 
| Uniform Nodes | Chebyshev Nodes | ||||
|---|---|---|---|---|---|
| 5.2139 × 10 | 1.6732 × 10 | 2.7502 × 10 | 9.2447 × 10 | ||
| 1.7494 × 10 | 5.6905 × 10 | 6.2467 × 10 | 2.3076 × 10 | ||
| 3.4685 × 10 | 8.1158 × 10 | 1.0786 × 10 | 3.3077 × 10 | ||
| 1.1058 × 10 | 2.1701 × 10 | 2.9463 × 10 | 5.7194 × 10 | ||
| 1.2334 × 10 | 3.2135 × 10 | 3.7442 × 10 | 7.4346 × 10 | ||
| 4.0420 × 10 | 5.7063 × 10 | 9.5542 × 10 | 2.2650 × 10 | ||
| x | y | Exact Solution | Approximate Solution | 
|---|---|---|---|
| 0.00 | 0.00 | 0.000000000000000 | 1.637090463191271 | 
| 0.25 | 0.000000000000000 | 4.547473508864641 | |
| 0.75 | 0.000000000000000 | 0.000000000000000 | |
| 1.00 | 0.000000000000000 | 5.456968210637569 | |
| 0.25 | 0.00 | 0.707106781186548 | 0.707106781194852 | 
| 0.25 | 0.500000000000000 | 0.501532990779197 | |
| 0.75 | −0.500000000000000 | −0.497730229812078 | |
| 1.00 | −0.707106781186548 | −0.707120813167421 | |
| 0.75 | 0.00 | 0.707106781186548 | 0.707106781186667 | 
| 0.25 | 0.500000000000000 | 0.501530239744170 | |
| 0.75 | −0.500000000000000 | −0.497733125168452 | |
| 1.00 | −0.707106781186548 | −0.707092753664256 | |
| 1.00 | 0.00 | 1.224646799147353 | 9.094947017729282 | 
| 0.25 | 8.659560562354929 | 0.000000000000000 | |
| 0.75 | −8.659560562354932 | 0.000000000000000 | |
| 1.00 | −1.224646799147353 | −3.637978807091713 | 
| Uniform Nodes | Chebyshev Nodes | ||||
|---|---|---|---|---|---|
| 2.7079 × 10 | 9.1132 × 10 | 5.8468 × 10 | 2.3114 × 10 | ||
| 9.6056 × 10 | 3.0467 × 10 | 2.1192 × 10 | 7.9968 × 10 | ||
| 2.6386 × 10 | 2.0016 × 10 | 3.7585 × 10 | 2.6196 × 10 | ||
| 8.7035 × 10 | 3.7800 × 10 | 1.4882 × 10 | 5.4219 × 10 | ||
| 5.5040 × 10 | 7.0839 × 10 | 4.1096 × 10 | 8.9954 × 10 | ||
| 1.4043 × 10 | 1.5971 × 10 | 1.1637 × 10 | 2.5894 × 10 | ||
| Uniform Nodes | Chebyshev Nodes | ||||
|---|---|---|---|---|---|
| 3.0765 × 10 | 3.0979 × 10 | 3.2145 × 10 | 3.1490 × 10 | ||
| 1.0002 × 10 | 9.5446 × 10 | 1.0244 × 10 | 9.8804 × 10 | ||
| 3.0461 × 10 | 3.0830 × 10 | 3.1653 × 10 | 3.1073 × 10 | ||
| 9.8675 × 10 | 9.4906 × 10 | 1.0027 × 10 | 9.7411 × 10 | ||
| 3.0142 × 10 | 3.0895 × 10 | 3.0630 × 10 | 3.0885 × 10 | ||
| 9.7024 × 10 | 9.4884 × 10 | 9.7018 × 10 | 9.6816 × 10 | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.  | 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golbabai, A.; Safaei, N.; Molavi-Arabshahi, M. Determination of an Extremal in Two-Dimensional Variational Problems Based on the RBF Collocation Method. Entropy 2022, 24, 1345. https://doi.org/10.3390/e24101345
Golbabai A, Safaei N, Molavi-Arabshahi M. Determination of an Extremal in Two-Dimensional Variational Problems Based on the RBF Collocation Method. Entropy. 2022; 24(10):1345. https://doi.org/10.3390/e24101345
Chicago/Turabian StyleGolbabai, Ahmad, Nima Safaei, and Mahboubeh Molavi-Arabshahi. 2022. "Determination of an Extremal in Two-Dimensional Variational Problems Based on the RBF Collocation Method" Entropy 24, no. 10: 1345. https://doi.org/10.3390/e24101345
APA StyleGolbabai, A., Safaei, N., & Molavi-Arabshahi, M. (2022). Determination of an Extremal in Two-Dimensional Variational Problems Based on the RBF Collocation Method. Entropy, 24(10), 1345. https://doi.org/10.3390/e24101345
        
