Heat Modulation on Target Thermal Bath via Coherent Auxiliary Bath
Abstract
1. Introduction
2. Model
3. Modulation of Heat Current via Auxiliary Bath
3.1. Initial States of System and Baths
3.2. Thermal Modulation with Thermal Auxiliary Bath
3.3. Thermal Modulation with CAB
3.3.1. Effects of Relative Phase on THC
3.3.2. Effects of Coherence Magnitude on THC
3.3.3. Maximum and Minimum of THC and Modulation Width
3.3.4. Effect of Temperature on THC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brandner, K.; Seifert, U. Periodic thermodynamics of open quantum systems. Phys. Rev. E 2016, 93, 062134. [Google Scholar] [CrossRef]
- Brandão, F.; Horodecki, M.; Ng, N.; Oppenheim, J.; Wehner, S. The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. USA 2015, 112, 3275–3279. [Google Scholar] [CrossRef]
- Kosloff, R. Quantum Thermodynamics: A Dynamical Viewpoint. Entropy 2013, 15, 2100–2128. [Google Scholar] [CrossRef]
- Millen, J.; Xuereb, A. Perspective on quantum thermodynamics. New J. Phys. 2016, 18, 011002. [Google Scholar] [CrossRef]
- Winter, A.; Yang, D. Operational Resource Theory of Coherence. Phys. Rev. Lett. 2016, 116, 120404. [Google Scholar] [CrossRef] [PubMed]
- Streltsov, A.; Adesso, G.; Plenio, M.B. Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 2017, 89, 041003. [Google Scholar] [CrossRef]
- De Vicente, J.I.; Streltsov, A. Genuine quantum coherence. J. Phys. A Math. Theor. 2017, 50, 045301. [Google Scholar] [CrossRef]
- Lostaglio, M.; Korzekwa, K.; Jennings, D.; Rudolph, T. Quantum Coherence, Time-Translation Symmetry, and Thermodynamics. Phys. Rev. X 2015, 5, 021001. [Google Scholar] [CrossRef]
- Misra, A.; Singh, U.; Bhattacharya, S.; Pati, A.K. Energy cost of creating quantum coherence. Phys. Rev. A 2016, 93, 052335. [Google Scholar] [CrossRef]
- Manzano, G.; Plastina, F.; Zambrini, R. Optimal Work Extraction and Thermodynamics of Quantum Measurements and Correlations. Phys. Rev. Lett. 2018, 121, 120602. [Google Scholar] [CrossRef]
- Vedral, V.; Plenio, M.B.; Rippin, M.A.; Knight, P.L. Quantifying Entanglement. Phys. Rev. Lett. 1997, 78, 2275. [Google Scholar] [CrossRef]
- Bruß, D. Characterizing entanglement. J. Math. Phys. 2002, 43, 4237. [Google Scholar] [CrossRef]
- Roßnagel, J.; Abah, O.; Schmidt-Kaler, F.; Singer, K.; Lutz, E. Nanoscale Heat Engine Beyond the Carnot Limit. Phys. Rev. Lett. 2014, 112, 030602. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.; Kosloff, R. The local approach to quantum transport may violate the second law of thermodynamics. EPL 2014, 107, 20004. [Google Scholar] [CrossRef]
- Evans, D.J.; Cohen, E.G.D.; Morriss, G.P. Probability of Second Law Violations in Shearing Steady States. Phys. Rev. Lett. 1993, 71, 2401. [Google Scholar] [CrossRef]
- Ćwikliński, P.; Studziński, M.; Horodecki, M.; Oppenheim, J. Limitations on the Evolution of Quantum Coherences: Towards Fully Quantum Second Laws of Thermodynamics. Phys. Rev. Lett. 2015, 115, 210403. [Google Scholar] [CrossRef]
- Roßnagel, J.; Dawkins, S.T.; Tolazzi, K.N.; Abah, O.; Lutz, E.; Schmidt-Kaler, F.; Singer, K. A single-atom heat engine. Science 2016, 352, 325–329. [Google Scholar] [CrossRef]
- Quan, H.T.; Liu, Y.; Sun, C.P.; Nori, F. Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 2007, 76, 031105. [Google Scholar] [CrossRef]
- Haack, G.; Giazotto, F. Efficient and tunable Aharonov-Bohm quantum heat engine. Phys. Rev. B 2019, 100, 235442. [Google Scholar] [CrossRef]
- Du, J.; Shen, W.; Su, S.; Chen, J. Quantum thermal management devices based on strong coupling qubits. Phys. Rev. E 2019, 99, 062123. [Google Scholar] [CrossRef]
- Xu, X.; Choo, K.; Balachandran, V.; Poletti, D. Transport and Energetic Properties of a Ring of Interacting Spins Coupled to Heat Baths. Entropy 2019, 21, 228. [Google Scholar] [CrossRef]
- Werlang, T.; Rigolin, G. Thermal and magnetic quantum discord in Heisenberg models. Phys. Rev. A 2010, 81, 044101. [Google Scholar] [CrossRef]
- Lidar, D.A.; Chuang, I.L.; Whaley, K.B. Decoherence Free Subspaces for Quantum Computation. Phys. Rev. Lett. 1997, 81, 2594–2597. [Google Scholar] [CrossRef]
- Fanchini, F.F.; Castelano, L.K.; Caldeira, A.O. Entanglement versus quantum discord in two coupled double quantum dots. New J. Phys. 2010, 12, 073009. [Google Scholar] [CrossRef]
- Mukherjee, S.; De, B.; Muralidharan, B. Three-terminal vibron-coupled hybrid quantum dot thermoelectric refrigeration. J. Appl. Phy. 2020, 128, 234303. [Google Scholar] [CrossRef]
- Daré, A.M. Comparative study of heat-driven and power-driven refrigerators with Coulomb-coupled quantum dots. Phys. Rev. B 2019, 100, 195427. [Google Scholar] [CrossRef]
- Mitchison, M.T.; Huber, M.; Prior, J.; Woods, M.P.; Plenio, M.B. Realising a quantum absorption refrigerator with an atom-cavity system. Quantum Sci. Technol. 2016, 1, 015001. [Google Scholar] [CrossRef]
- Quan, H.T.; Zhang, P.; Sun, C.P. Quantum heat engine with multilevel quantum systems. Phys. Rev. E 2005, 72, 056110. [Google Scholar] [CrossRef]
- Xu, J.S.; Li, C.F.; Zhang, C.J.; Xu, X.Y.; Zhang, Y.S.; Guo, G.C. Experimental investigation of the non-Markovian dynamics of classical and quantum correlations. Phys. Rev. A 2010, 82, 042328. [Google Scholar] [CrossRef]
- Ashrafi, S.M.; Malekfar, R.; Bahrampour, A.R.; Feist, J. Optomechanical heat transfer between molecules in a nanoplasmonic cavity. Phys. Rev. A 2019, 100, 013826. [Google Scholar] [CrossRef]
- Pereira, E. Heat, work, and energy currents in the boundary-driven XXZ spin chain. Phys. Rev. E 2018, 97, 022115. [Google Scholar] [CrossRef] [PubMed]
- Reis, L.H.; Silva, S.; Pereira, E. Beyond the Lindblad master equation: Heat, work, and energy currents in boundary-driven spin chains. Phys. Rev. E 2020, 101, 062107. [Google Scholar] [CrossRef]
- Esposito, M.; Ochoa, M.A.; Galperin, M. Nature of heat in strongly coupled open quantum systems. Phys. Rev. B 2015, 92, 235440. [Google Scholar] [CrossRef]
- Dorfman, K.E.; Xu, D.; Cao, J. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence. Phys. Rev. E 2018, 97, 042120. [Google Scholar] [CrossRef]
- Rodrigues, F.L.S.; Chiara, G.D.; Paternostro, M.; Landi, G.T. Thermodynamics of Weakly Coherent Collisional Models. Phys. Rev. Lett. 2019, 123, 140601. [Google Scholar] [CrossRef]
- Abdallah, P.B.; Biehs, S.A. Near-Field Thermal Transistor. Phys. Rev. Lett. 2014, 112, 044301. [Google Scholar] [CrossRef]
- Landi, G.T.; Novais, E.; de Oliveira, M.J.; Karevski, D. Flux rectification in the quantum XXZ chain. Phys. Rev. E 2014, 90, 042142. [Google Scholar] [CrossRef]
- Schuab, L.; Pereira, E.; Landi, G.T. Energy rectification in quantum graded spin chains: Analysis of the XXZ Model. Phys. Rev. E 2016, 94, 042122. [Google Scholar] [CrossRef]
- Joulain, K.; Drevillon, J.; Ezzahri, Y.; Ordonez-Miranda, J. Quantum Thermal Transistor. Phys. Rev. Lett. 2016, 116, 200601. [Google Scholar] [CrossRef]
- Mascarenhas, E.; Santos, M.F.; Auffèves, A.; Gerace, D. Quantum rectifier in a one-dimensional photonic channel. Phys. Rev. A 2016, 93, 043821. [Google Scholar] [CrossRef]
- Giazotto, F.; Martínez-Pérez, M.J. The Josephson heat interferometer. Nature 2012, 492, 401. [Google Scholar] [CrossRef] [PubMed]
- Ronzani, A.; Karimi, B.; Senior, J.; Chang, Y.; Peltonen, J.T.; Chen, C.; Pekola, J.P. Tunable photonic heat transport in a quantum heat valve. Nat. Phys. 2018, 14, 991–995. [Google Scholar] [CrossRef]
- Wijesekara, R.T.; Gunapala, S.D.; Stockman, M.I.; Premaratne, M. Optically controlled quantum thermal gate. Phys. Rev. B 2020, 101, 245402. [Google Scholar] [CrossRef]
- Scovil, H.E.D.; Schulz-DuBois, E.O. Three-Level Masers as Heat Engines. Phys. Rev. Lett. 1995, 2, 262–263. [Google Scholar] [CrossRef]
- Kosloff, R.; Levy, A. Quantum Heat Engines and Refrigerators: Continuous Devices. Annu. Rev. Phys. Chem. 2014, 65, 365–393. [Google Scholar] [CrossRef]
- Brunner, N.; Huber, M.; Linden, N.; Popescu, S.; Silva, R.; Skrzypczyk, P. Entanglement enhances cooling in microscopic quantum refrigerators. Phys. Rev. E 2014, 89, 032115. [Google Scholar] [CrossRef]
- Balachandran, V.; Benenti, G.; Pereira, E.; Casati, G.; Poletti, D. Perfect Diode in Quantum Spin Chains. Phys. Rev. Lett. 2018, 120, 200603. [Google Scholar] [CrossRef]
- Guo, B.; Liu, T.; Yu, C. Quantum thermal transistor based on qubit-qutrit coupling. Phys. Rev. E 2018, 98, 022118. [Google Scholar] [CrossRef]
- Majland, M.; Christensen, K.S.; Zinner, N.T. Quantum thermal transistor in superconducting circuits. Phys. Rev. B 2020, 101, 184510. [Google Scholar] [CrossRef]
- Yang, J.; Elouard, C.; Splettstoesser, J.; Sothmann, B.; Sánchez, R.; Jordan, A.N. Thermal transistor and thermometer based on Coulomb-coupled conductors. Phys. Rev. B 2019, 100, 045418. [Google Scholar] [CrossRef]
- Correa, L.A.; Mehboudi, M.; Adesso, G.; Sanpera, A. Individual quantum probes for optimal thermometry. Phys. Rev. Lett. 2015, 114, 220405. [Google Scholar] [CrossRef]
- Banerjee, S.; Singha, A. A realistic non-local electrical thermometer based on Coulomb coupled systems. J. Appl. Phys. 2021, 129, 114901. [Google Scholar] [CrossRef]
- Hofer, P.P.; Brask, J.B.; Perarnau-Llobet, M.; Brunner, N. Quantum Thermal Machine as a Thermometer. Phys. Rev. Lett. 2017, 119, 090603. [Google Scholar] [CrossRef]
- Lee, M.H.; Dunietz, B.D. Active control of thermal transport in molecular spin valves. Phys. Rev. B 2013, 88, 045421. [Google Scholar] [CrossRef]
- Huangfu, Y.; Qi, S.; Jing, J. A multifunctional quantum thermal device: With and without inner coupling. Phys. Lett. A 2021, 393, 127172. [Google Scholar] [CrossRef]
- Zhong, W.R.; Zheng, D.Q.; Hu, B. Thermal control in graphene nanoribbons: Thermal valve, thermal switch and thermal amplifier. Nanoscale 2012, 4, 5217. [Google Scholar] [CrossRef]
- Manzano, G.; Sánchez, R.; Silva, R.; Haack, G.; Brask, J.; Brunner, N. Hybrid thermal machines: Generalized thermodynamic resources for multitasking. Phys. Rev. Res. 2020, 2, 043302. [Google Scholar] [CrossRef]
- Wang, C.; Xu, D.; Liu, H.; Gao, X. Thermal rectification and heat amplification in a nonequilibrium V-type three-level system. Phys. Rev. E 2019, 99, 042102. [Google Scholar] [CrossRef]
- Guo, B.; Liu, T.; Yu, C. Multifunctional quantum thermal device utilizing three qubits. Phys. Rev. E 2019, 99, 032112. [Google Scholar] [CrossRef]
- Pereira, E.; Lemos, H.C.F. Symmetry of heat conductivity in inhomogeneous quantum chains. J. Phys. A Math. Theor. 2009, 42, 225006. [Google Scholar] [CrossRef]
- Werlang, T.; Marchiori, M.A.; Cornelio, M.F.; Valente, D. Optimal rectification in the ultrastrong coupling regime. Phys. Rev. E 2014, 89, 062109. [Google Scholar] [CrossRef]
- Chen, T.; Wang, X.B. Thermal rectification in the nonequilibrium quantum-dots-system. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 72, 58–62. [Google Scholar] [CrossRef]
- Ordonez-Miranda, J.; Ezzahri, Y.; Joulain, K. Quantum thermal diode based on two interacting spinlike systems under different excitations. Phys. Rev. E 2017, 95, 022128. [Google Scholar] [CrossRef]
- Karimi, B.; Pekola, J.P.; Campisi, M.; Fazio, R. Coupled qubits as a quantum heat switch. Quantum Sci. Technol. 2017, 2, 044007. [Google Scholar] [CrossRef]
- Pereira, E. Perfect thermal rectification in a many-body quantum Ising model. Phys. Rev. E 2019, 99, 032116. [Google Scholar] [CrossRef]
- Naseem, M.T.; Misra, A.; Müstecaplioglu, Ö.E.; Kurizki, G. Minimal quantum heat manager boosted by bath spectral filtering. Phys. Rev. E 2020, 2, 033285. [Google Scholar]
- Tian, F.; Zou, J.; Li, L.; Li, H.; Shao, B. Effect of Inter-System Coupling on Heat Transport in a Microscopic Collision Model. Entropy 2021, 230, 471. [Google Scholar] [CrossRef]
- Skrzypczyk, P.; Short, A.J.; Popescu, S. Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 2014, 5, 5185. [Google Scholar] [CrossRef]
- Ivan, H.; Serra, R.M. Role of quantum coherence in the thermodynamics of energy transfer. Phys. Rev. E 2018, 97, 062105. [Google Scholar]
- Ghosh, A.; Latune, C.L.; Davidovich, L.; Kurizki, G. Catalysis of heat-to-work conversion in quantum machines. Proc. Natl. Acad. Sci. USA 2017, 114, 12156–12161. [Google Scholar] [CrossRef]
- Ghosh, A.; Gelbwaser-Klimovsky, D.; Niedenzu, W.; Lvovsky, A.I.; Mazets, I.; Scully, M.O.; Kurizki, G. Two-level masers as heat-to-work converters. Proc. Natl. Acad. Sci. USA 2018, 115, 9941–9944. [Google Scholar] [CrossRef]
- Li, L.; Zou, J.; Li, H.; Xu, B.M.; Wang, Y.M.; Shao, B. Effect of coherence of nonthermal reservoirs on heat transport in a microscopic collision model. Phys. Rev. E 2018, 97, 022111. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Jin, J. Information scrambling in a collision model. Phys. Rev. A 2020, 101, 042324. [Google Scholar] [CrossRef]
- Campbell, S.; Vacchini, B. Collision models in open system dynamics: A versatile tool for deeper insights? EPL 2021, 133, 60001. [Google Scholar] [CrossRef]
- Bernardes, N.K.; Carvalho, A.; Monken, C.H.; Santos, M.F. Environmental correlations and Markovian to non-Markovian transitions in collisional models. Phys. Rev. A 2014, 90, 032111. [Google Scholar] [CrossRef]
- Guarnieri, G.; Morrone, D.; Çakmak, B.; Plastina, F.; Campbell, S. Non-equilibrium steady-states of memoryless quantum collision models. Phys. Lett. A 2020, 384, 126576. [Google Scholar] [CrossRef]
- Stable, A.L.L.; Noa, C.E.F.; Oropesa, W.G.C.; Fiore, C.E. Thermodynamics of collisional models for Brownian particles: General properties and efficiency. Phys. Rev. Res. 2020, 2, 043016. [Google Scholar] [CrossRef]
- Strasberg, P.; Schaller, G.; Brandes, T.; Esposito, M. Quantum and Information Thermodynamics: A unifying Framework Based on Repeated Interactions. Phys. Rev. X 2017, 7, 021003. [Google Scholar] [CrossRef]
- Cattaneo, M.; Chiara, G.D.; Maniscalco, S.; Zambrini, R.; Giorgi, G.L. Collision models can efficiently simulate any multipartite markovian quantum dynamics. Phys. Rev. Lett. 2021, 126, 130403. [Google Scholar] [CrossRef]
- Seah, S.; Nimmrichter, S.; Scarani, V. Nonequilibrium dynamics with finite-time repeated interactions. Phys. Rev. E 2019, 99, 042103. [Google Scholar] [CrossRef]
- García-Pérez, G.; Rossi, M.A.C.; Maniscalco, S. IBM Q experience as a versatile experimental testbed for simulating open quantum systems. NPJ Quantum Inf. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Seah, S.; Nimmrichter, S.; Scarani, V. Refrigeration beyond weak internal coupling. Phys. Rev. E 2018, 98, 012131. [Google Scholar] [CrossRef]
- Pachos, J.K.; Plenio, M.B. Three-Spin Interactions in Optical Lattices and Criticality in Cluster Hamiltonians. Phys. Rev. Lett. 2004, 93, 056402. [Google Scholar] [CrossRef]
- Bermudez, A.; Porras, D.; Martin-Delgado, M.A. Competing many-body interactions in systems of trapped ions. Phys. Rev. A 2009, 79, 060303. [Google Scholar] [CrossRef]
- Reiss, T.O.; Khaneja, N.; Glaser, S.J. Broadband geodesic pulses for three spin systems: Time-optimal realization of effective trilinear coupling terms and indirect SWAP gates. J. Magn. Reson. 2003, 165, 95–101. [Google Scholar] [CrossRef][Green Version]
- Linden, N.; Popescu, S.; Skrzypczyk, P. How Small Can Thermal Machines Be? The Smallest Possible Refrigerator. Phys. Rev. Lett. 2010, 105, 130401. [Google Scholar] [CrossRef]
- Skrzypczyk, P.; Brunner, N.; Linden, N.; Popescu, S. The smallest refrigerators can reach maximal efficiency. J. Phys. A Math. Theor. 2011, 44, 492002. [Google Scholar] [CrossRef]
- Wax, N. Selected Papers on Noise and Stochastic Processes; Dover: New York, NY, USA, 1954. [Google Scholar]
- Karevski, D.; Platini, T. Quantum Nonequilibrium Steady States Induced by Repeated Interactions. Phys. Rev. Lett. 2009, 102, 207207. [Google Scholar] [CrossRef]
- Scarani, V.; Ziman, M.; Štelmachovič, P.; Gisin, N.; Bužek, V. Thermalizing Quantum Machines: Dissipation and Entanglement. Phys. Rev. Lett. 2002, 88, 097905. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, S.; McCloskey, R.; Ciccarello, F.; Paternostro, M.; Palma, G. M. Landauer’s Principle in Multipartite Open Quantum System Dynamics. Phys. Rev. Lett. 2015, 115, 120403. [Google Scholar] [CrossRef] [PubMed]
- Gardas, B.; Deffner, S. Thermodynamic universality of quantum Carnot engines. Phys. Rev. E 2015, 92, 042126. [Google Scholar] [CrossRef] [PubMed]
- Misra, A.; Singh, U.; Bera, M.N.; Rajagopal, A.K. Quantum Renyi relative entropies affirm universality of thermodynamics. Phys. Rev. E 2015, 92, 042161. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.Q.; Dong, H.; Sun, C.P. Single-particle machine for quantum thermalization. Phys. Rev. A 2010, 81, 052121. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubairy, M.S.; Agarwal, G.S.; Walther, H. Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence. Science 2003, 299, 862–864. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zou, J.; Yu, W.L.; Xu, B.M.; Li, J.G.; Shao, B. Quantum coherence rather than quantum correlations reflect the effects of a reservoir on a system’s work capability. Phys. Rev. E 2014, 89, 052132. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.-L.; Li, T.; Li, H.; Zhang, Y.; Zou, J.; Wang, Y.-D. Heat Modulation on Target Thermal Bath via Coherent Auxiliary Bath. Entropy 2021, 23, 1183. https://doi.org/10.3390/e23091183
Yu W-L, Li T, Li H, Zhang Y, Zou J, Wang Y-D. Heat Modulation on Target Thermal Bath via Coherent Auxiliary Bath. Entropy. 2021; 23(9):1183. https://doi.org/10.3390/e23091183
Chicago/Turabian StyleYu, Wen-Li, Tao Li, Hai Li, Yun Zhang, Jian Zou, and Ying-Dan Wang. 2021. "Heat Modulation on Target Thermal Bath via Coherent Auxiliary Bath" Entropy 23, no. 9: 1183. https://doi.org/10.3390/e23091183
APA StyleYu, W.-L., Li, T., Li, H., Zhang, Y., Zou, J., & Wang, Y.-D. (2021). Heat Modulation on Target Thermal Bath via Coherent Auxiliary Bath. Entropy, 23(9), 1183. https://doi.org/10.3390/e23091183