Increased Neural Efficiency in Visual Word Recognition: Evidence from Alterations in Event-Related Potentials and Multiscale Entropy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stimuli
2.3. LDT Procedure
2.4. EEG Procedure and Preprocessing
2.5. Behavioural Analyses
2.6. Electrophysiological Analyses
2.6.1. Event-Related Potentials (ERPs)
2.6.2. Multiscale Entropy (MSE)
2.6.3. Partial Least Squares (PLS) Analysis
2.7. Code Availability
3. Results
3.1. Behavioural Results
3.1.1. Response Time
3.1.2. Accuracy
3.2. Event-Related Potentials
3.2.1. Across Session ERPs
3.2.2. Within Session ERPs: Session 1
3.2.3. Within Session ERPs: Session 2
3.2.4. Within Session ERPs: Session 3
3.3. Brain Signal Complexity
3.3.1. Across Session MSE
3.3.2. Within Session MSE: Session 1
3.3.3. Within Session MSE: Session 2
3.3.4. Within Session MSE: Session 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laszlo, S.; Federmeier, K.D. Never seem to find the time: Evaluating the physiological time course of visual word recognition with regression analysis of single-item event-related potentials. Lang. Cogn. Neurosci. 2014, 29, 642–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keuleers, E.; Lacey, P.; Rastle, K.; Brysbaert, M. The British Lexicon Project: Lexical decision data for 28,730 monosyllabic and disyllabic English words. Behav. Res. Methods 2012, 44, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Keuleers, E.; Diependaele, K.; Brysbaert, M. Practice effects in large-scale visual word recognition studies: A lexical decision study on 14,000 Dutch mono- and disyllabic words and nonwords. Front. Psychol. 2010, 1, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansma, J.M.; Ramsey, N.F.; Slagter, H.A.; Kahn, R.S. Functional anatomical correlates of controlled and automatic processing. J. Cogn. Neurosci. 2001, 13, 730–743. [Google Scholar] [CrossRef]
- Jonides, J.; Naveh-Benjamin, M.; Palmer, J. Assessing automaticity. Acta Psychol. 1985, 60, 157–171. [Google Scholar] [CrossRef] [Green Version]
- Chein, J.M.; Schneider, W. Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Cogn. Brain Res. 2005, 25, 607–623. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.R. Acquisition of cognitive skill. Psychol. Rev. 1982, 89, 369–406. [Google Scholar] [CrossRef]
- Schneider, W.; Chein, J.M. Controlled & automatic processing: Behavior, theory, and biological mechanisms. Cogn. Sci. 2003, 27, 525–559. [Google Scholar] [CrossRef]
- Schneider, W.; Shiffrin, R.M. Controlled and automatic human information processing: I. Detection, search, and attention. Psychol. Rev. 1977, 84, 1–66. [Google Scholar] [CrossRef]
- Megías, A.; Navas, J.F.; Petrova, D.; Cándido, A.; Maldonado, A.; Garcia-Retamero, R.; Catena, A. Neural mechanisms underlying urgent and evaluative behaviors: An fMRI study on the interaction of automatic and controlled processes. Hum. Brain Mapp. 2015, 36, 2853–2864. [Google Scholar] [CrossRef]
- Patel, R.; Spreng, R.N.; Turner, G.R. Functional brain changes following cognitive and motor skills training: A quantitative meta-analysis. Neurorehabil. Neural Repair 2013, 27, 187–199. [Google Scholar] [CrossRef]
- Jeon, H.-A.; Friederici, A.D. What does “being an expert” mean to the brain? Functional specificity and connectivity in expertise. Cereb. Cortex 2016, 27, 5603–5615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, J.E.; McDowell, J.E. Reduced cognitive control demands after practice of saccade tasks in a trial type probability manipulation. J. Cogn. Neurosci. 2017, 29, 368–381. [Google Scholar] [CrossRef] [PubMed]
- Fatsis, S. Word freaks: Heartbreak, Triumph, Genius, and Obsession in the World of Competitive SCRABBLE Players; Penguin Books: New York, NY, USA, 2002. [Google Scholar]
- Tuffiash, M.; Roring, R.W.; Ericsson, K.A. Expert performance in SCRABBLE: Implications for the study of the structure and acquisition of complex skills. J. Exp. Psychol. Appl. 2007, 13, 124–134. [Google Scholar] [CrossRef]
- Protzner, A.B.; Hargreaves, I.S.; Campbell, J.A.; Myers-Stewart, K.; van Hees, S.; Goodyear, B.G.; Sargious, P.; Pexman, P.M. This is your brain on Scrabble: Neural correlates of visual word recognition in competitive Scrabble players as measured during task and resting-state. Cortex 2016, 75, 204–219. [Google Scholar] [CrossRef] [Green Version]
- Van Hees, S.; Seyffarth, S.; Pexman, P.M.; Cortese, F.; Protzner, A.B. An ERP investigation of vertical reading fluency in Scrabble® experts. Brain Res. 2017, 1667, 1–10. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.R.; Kovacevic, N.; Itier, R.J. Increased brain signal variability accompanies lower behavioral variability in development. PLoS Comput. Biol. 2008, 4, e1000106. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; McIntosh, A.R.; Kovacevic, N.; Karachalios, M.; Protzner, A.B. Age-related multiscale changes in brain signal variability in pre-task versus post-task resting-state EEG. J. Cogn. Neurosci. 2016, 28, 971–984. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.E.; van Mier, H.; Fiez, J.A.; Raichle, M.E. The effects of practice on the functional anatomy of task performance. Proc. Natl. Acad. Sci. USA 1998, 95, 853–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, J.-Y.; Gallanter, E.; Müller-Oehring, E.M.; Schulte, T. Phases of procedural learning and memory: Characterisation with perceptual-motor sequence tasks. J. Cogn. Psychol. 2019, 31, 543–558. [Google Scholar] [CrossRef]
- Gehringer, J.E.; Arpin, D.J.; Heinrichs-Graham, E.; Wilson, T.W.; Kurz, M.J. Neurophysiological changes in the visuomotor network after practicing a motor task. J. Neurophysiol. 2018, 120, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Bentin, S.; Mouchetant-Rostaing, Y.; Giard, M.H.; Echallier, J.F.; Pernier, J. ERP manifestations of processing printed words at different psycholinguistic levels: Time course and scalp distribution. J. Cogn. Neurosci. 1999, 11, 235–260. [Google Scholar] [CrossRef]
- Maurer, U.; Brandeis, D.; McCandliss, B.D. Fast, visual specialization for reading in English revealed by the topography of the N170 response. Behav. Brain Funct. 2005, 1, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, G.; Bernard, C.; Largy, P.; Lalonde, R.; Rebai, M. Chronometry of visual word recognition during passive and lexical decision tasks: An ERP investigation. Int. J. Neurosci. 2004, 114, 1401–1432. [Google Scholar] [CrossRef] [PubMed]
- Emmorey, K.; Midgley, K.J.; Kohen, C.B.; Sehyr, Z.S.; Holcomb, P.J. The N170 ERP component differs in laterality, distribution, and association with continuous reading measures for deaf and hearing readers. Neuropsychologia 2017, 106, 298–309. [Google Scholar] [CrossRef]
- Crowley, K.E.; Colrain, I.M. A review of the evidence for P2 being an independent component process: Age, sleep and modality. Clin. Neurophysiol. 2004, 115, 732–744. [Google Scholar] [CrossRef]
- Lee, H.; Lee, Y.; Tae, J.; Kwon, Y. Advantage of the go/no-go task over the yes/no lexical decision task: ERP indexes of parameters in the diffusion model. PLoS ONE 2019, 14, e0218451. [Google Scholar] [CrossRef] [Green Version]
- Kutas, M.; Federmeier, K.D. Thirty Years and Counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annu. Rev. Psychol. 2011, 62, 621–647. [Google Scholar] [CrossRef] [Green Version]
- Barber, H.A.; Otten, L.J.; Kousta, S.-T.; Vigliocco, G. Concreteness in word processing: ERP and behavioral effects in a lexical decision task. Brain Lang. 2013, 125, 47–53. [Google Scholar] [CrossRef]
- Kounios, J.; Holcomb, P.J. Concreteness effects in semantic processing: ERP evidence supporting dual-coding theory. J. Exp. Psychol. Learn. Mem. Cogn. 1994, 20, 804–823. [Google Scholar] [CrossRef] [PubMed]
- Haro, J.; Demestre, J.; Boada, R.; Ferré, P. ERP and behavioral effects of semantic ambiguity in a lexical decision task. J. Neurolinguist. 2017, 44, 190–202. [Google Scholar] [CrossRef]
- Bentin, S. Event-related potentials, semantic processes, and expectancy factors in word recognition. Brain Lang. 1987, 31, 308–327. [Google Scholar] [CrossRef]
- Bentin, S.; McCarthy, G.; Wood, C.C. Event-related potentials, lexical decision and semantic priming. Electroencephalogr. Clin. Neurophysiol. 1985, 60, 343–355. [Google Scholar] [CrossRef]
- McCarthy, G.; Nobre, A.C. Modulation of semantic processing by spatial selective attention. Electroencephalogr. Clin. Neurophysiol. Potentials Sect. 1993, 88, 210–219. [Google Scholar] [CrossRef]
- Peeters, D. Processing Consequences of Onomatopoeic Iconicity in Spoken Language Comprehension. In Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016), Philadelphia, PA, USA, 11–13 August 2016; Papafragou, A., Grodner, D., Mirman, D., Trueswell, J., Eds.; Cognitive Science Society: Austin, TX, USA, 2016; pp. 1632–1647. [Google Scholar]
- Ito, T.A.; Cacioppo, J.T. Electrophysiological evidence of implicit and explicit categorization processes. J. Exp. Soc. Psychol. 2000, 36, 660–676. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Wang, Z. Concreteness of positive word contributions to affective priming: An ERP study. Int. J. Psychophysiol. 2014, 93, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Herring, D.R.; Taylor, J.H.; White, K.R.; Crites, S.L. Electrophysiological responses to evaluative priming: The LPP is sensitive to incongruity. Emotion 2011, 11, 794–806. [Google Scholar] [CrossRef]
- Hinojosa, J.A.; Carretié, L.; Méndez-Bértolo, C.; Míguez, A.; Pozo, M.A. Arousal contributions to affective priming: Electrophysiological correlates. Emotion 2009, 9, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Holcomb, P.J.; Kounios, J.; Anderson, J.E.; West, W.C. Dual-coding, context-availability, and concreteness effects in sentence comprehension: An electrophysiological investigation. J. Exp. Psychol. Learn. Mem. Cogn. 1999, 25, 721–742. [Google Scholar] [CrossRef]
- West, W.C.; Holcomb, P.J. Imaginal, semantic, and surface-level processing of concrete and abstract words: An electrophysiological investigation. J. Cogn. Neurosci. 2000, 12, 1024–1037. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102-1–068102-4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906-1–021906-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deco, G.; Jirsa, V.K.; McIntosh, A.R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 2011, 12, 43–56. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.R.; Kovacevic, N.; Lippe, S.; Garrett, D.; Grady, C.; Jirsa, V. The development of a noisy brain. Arch. Ital. Biol. 2010, 148, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Burles, F.; Lu, J.; Slone, E.; Cortese, F.; Iaria, G.; Protzner, A. Revisiting mental rotation with stereoscopic disparity: A new spin for a classic paradigm. Brain Cogn. 2019, 136, 103600. [Google Scholar] [CrossRef]
- Heisz, J.J.; Shedden, J.M.; McIntosh, A.R. Relating brain signal variability to knowledge representation. NeuroImage 2012, 63, 1384–1392. [Google Scholar] [CrossRef]
- Grill-Spector, K.; Henson, R.; Martin, A. Repetition and the brain: Neural models of stimulus-specific effects. Trends Cogn. Sci. 2006, 10, 14–23. [Google Scholar] [CrossRef]
- Grill-Spector, K.; Malach, R. fMR-adaptation: A tool for studying the functional properties of human cortical neurons. Acta Psychol. 2001, 107, 293–321. [Google Scholar] [CrossRef]
- Miller, E.; Desimone, R. Parallel neuronal mechanisms for short-term memory. Science 1994, 263, 520–522. [Google Scholar] [CrossRef] [Green Version]
- Desimone, R. Neural mechanisms for visual memory and their role in attention. Proc. Natl. Acad. Sci. USA 1996, 93, 13494–13499. [Google Scholar] [CrossRef] [Green Version]
- Wiggs, C.L.; Martin, A. Properties and mechanisms of perceptual priming. Curr. Opin. Neurobiol. 1998, 8, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Henson, R.N.A.; Rugg, M.D. Neural response suppression, haemodynamic repetition effects, and behavioural priming. Neuropsychologia 2003, 41, 263–270. [Google Scholar] [CrossRef]
- Keuleers, E.; Brysbaert, M. Wuggy: A multilingual pseudoword generator. Behav. Res. Methods 2010, 42, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Coltheart, M.; Davelaar, E.; Jonasson, J.; Besner, D. Access to the internal lexicon. In Attention & Performance IV; Dornic, S., Ed.; Erlbaum: Hillsdale, NJ, USA, 1977; pp. 535–555. [Google Scholar]
- Yarkoni, T.; Balota, D.; Yap, M. Moving beyond Coltheart’s N: A new measure of orthographic similarity. Psychon. Bull. Rev. 2008, 15, 971–979. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 1978, 85, 59–108. [Google Scholar] [CrossRef]
- Ratcliff, R.; Gomez, P.; McKoon, G. A diffusion model account of the lexical decision task. Psychol. Rev. 2004, 111, 159–182. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Calderon, J.; Luck, S.J. ERPLAB: An open-source toolbox for the analysis of event-related potentials. Front. Hum. Neurosci. 2014, 8, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, A.; Williams, L.J.; McIntosh, A.R.; Abdi, H. Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review. NeuroImage 2011, 56, 455–475. [Google Scholar] [CrossRef]
- McIntosh, A.R.; Bookstein, F.L.; Haxby, J.V.; Grady, C.L. Spatial pattern analysis of functional brain images using partial least squares. NeuroImage 1996, 3, 143–157. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, A.R.; Lobaugh, N.J. Partial least squares analysis of neuroimaging data: Applications and advances. NeuroImage 2004, 23, S250–S263. [Google Scholar] [CrossRef]
- Lawrence, M.A. ez: Easy Analysis and Visualization of Factorial Experiments (Version 4.4-0; R Package). 2016. Available online: https://cran.r-project.org/web/packages/ez/ez.pdf (accessed on 6 March 2020).
- Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests (Version 0.4.0; R Package). 2020. Available online: https://cran.r-project.org/web/packages/rstatix/rstatix.pdf (accessed on 6 March 2020).
- Proverbio, A.M.; Adorni, R. C1 and P1 visual responses to words are enhanced by attention to orthographic vs. lexical properties. Neurosci. Lett. 2009, 463, 228–233. [Google Scholar] [CrossRef]
- Hargreaves, I.S.; Pexman, P.M.; Zdrazilova, L.; Sargious, P. How a hobby can shape cognition: Visual word recognition in competitive Scrabble players. Mem. Cognit. 2012, 40, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barber, H.; Vergara, M.; Carreiras, M. Syllable-frequency effects in visual word recognition: Evidence from ERPs. NeuroReport 2004, 15, 545–548. [Google Scholar] [CrossRef]
- Carreiras, M.; Vergara, M.; Barber, H. Early event-related potential effects of syllabic processing during visual word recognition. J. Cogn. Neurosci. 2005, 17, 1803–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chetail, F.; Colin, C.; Content, A. Electrophysiological markers of syllable frequency during written word recognition in French. Neuropsychologia 2012, 50, 3429–3439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutas, M.; Hillyard, S.A. Reading senseless sentences: Brain potentials reflect semantic incongruity. Science 1980, 207, 203–205. [Google Scholar] [CrossRef]
- Hargreaves, I.S.; Pexman, P.M. Does richness lose its luster? Effects of extensive practice on semantic richness in visual word recognition. Front. Hum. Neurosci. 2012, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Johansson, M.; Mecklinger, A. The late posterior negativity in ERP studies of episodic memory: Action monitoring and retrieval of attribute conjunctions. Biol. Psychol. 2003, 64, 91–117. [Google Scholar] [CrossRef]
- Mecklinger, A.; Rosburg, T.; Johansson, M. Reconstructing the past: The late posterior negativity (LPN) in episodic memory studies. Neurosci. Biobehav. Rev. 2016, 68, 621–638. [Google Scholar] [CrossRef]
- Sommer, K.; Vita, S.; De Pascalis, V. The late posterior negativity in episodic memory: A correlate of stimulus retrieval? Biol. Psychol. 2018, 133, 44–53. [Google Scholar] [CrossRef]
- Mišić, B.; Mills, T.; Taylor, M.J.; McIntosh, A.R. Brain noise is task dependent and region specific. J. Neurophysiol. 2010, 104, 2667–2676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Protzner, A.B.; Valiante, T.A.; Kovacevic, N.; McCormick, C.; McAndrews, M.P. Hippocampal signal complexity in mesial temporal lobe epilepsy: A noisy brain is a healthy brain. Arch. Ital. Biol. 2010, 148, 289–297. [Google Scholar] [PubMed]
- Deco, G.; Jirsa, V.K.; McIntosh, A.R. Resting brains never rest: Computational insights into potential cognitive architectures. Trends Neurosci. 2013, 36, 268–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrett, D.D.; Kovacevic, N.; McIntosh, A.R.; Grady, C.L. The modulation of bold variability between cognitive states varies by age and processing speed. Cereb. Cortex 2013, 23, 684–693. [Google Scholar] [CrossRef] [Green Version]
- Garrett, D.D.; Kovacevic, N.; McIntosh, A.R.; Grady, C.L. Blood oxygen level-dependent signal variability is more than just noise. J. Neurosci. 2010, 30, 4914–4921. [Google Scholar] [CrossRef] [Green Version]
- Garrett, D.D.; Kovacevic, N.; McIntosh, A.R.; Grady, C.L. The importance of being variable. J. Neurosci. 2011, 31, 4496–4503. [Google Scholar] [CrossRef] [Green Version]
- Luck, S.J. An Introduction to the Event-Related Potential Technique, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
Response Time (ms) | Accuracy (Proportion Correct) | |||
---|---|---|---|---|
M | SD | M | SD | |
Words | ||||
Session 1 | 811.16 | 123.41 | 0.87 | 0.04 |
Session 2 | 763.96 | 120.24 | 0.86 | 0.04 |
Session 3 | 727.24 | 103.49 | 0.86 | 0.04 |
Nonwords | ||||
Session 1 | 924.97 | 185.92 | 0.92 | 0.07 |
Session 2 | 824.87 | 136.99 | 0.94 | 0.03 |
Session 3 | 778.75 | 115.08 | 0.93 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cnudde, K.; van Hees, S.; Brown, S.; van der Wijk, G.; Pexman, P.M.; Protzner, A.B. Increased Neural Efficiency in Visual Word Recognition: Evidence from Alterations in Event-Related Potentials and Multiscale Entropy. Entropy 2021, 23, 304. https://doi.org/10.3390/e23030304
Cnudde K, van Hees S, Brown S, van der Wijk G, Pexman PM, Protzner AB. Increased Neural Efficiency in Visual Word Recognition: Evidence from Alterations in Event-Related Potentials and Multiscale Entropy. Entropy. 2021; 23(3):304. https://doi.org/10.3390/e23030304
Chicago/Turabian StyleCnudde, Kelsey, Sophia van Hees, Sage Brown, Gwen van der Wijk, Penny M. Pexman, and Andrea B. Protzner. 2021. "Increased Neural Efficiency in Visual Word Recognition: Evidence from Alterations in Event-Related Potentials and Multiscale Entropy" Entropy 23, no. 3: 304. https://doi.org/10.3390/e23030304