# Robot Evaluation and Selection with Entropy-Based Combination Weighting and Cloud TODIM Approach

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Literature Review

## 3. Basic Concepts

#### 3.1. Cloud Model Theory

**Definition**

**1**

**.**Supposing a qualitative concept T defined on a universe of discourse U, let $x\left(x\in U\right)$ be a random instantiation of the concept T and $y\in [0,1]$ be the certainty degree of x belonging to T, which corresponds to a random number with a stable tendency. Then the distribution of x in the universe U is called a cloud, and the cloud drop is denoted as (x, y).

**Definition**

**2**

**.**The characteristics of a cloud y are depicted by expectation Ex, entropy En, and hyper entropy He. Here, Ex is the center value of the qualitative concept domain, En measures the randomness and fuzziness of the qualitative concept, and He reflects the dispersion of the cloud drops and the uncertain degree of the membership function. Based on the three numerical characteristics, a cloud can be described as $\tilde{y}=\left(Ex,En,He\right)$.

**Definition**

**3.**

- (1)
- ${\tilde{y}}_{1}+{\tilde{y}}_{2}=\left(E{x}_{1}+E{x}_{2},\sqrt{E{n}_{1}^{2}+E{n}_{2}^{2}},\sqrt{H{e}_{1}^{2}+H{e}_{2}^{2}}\right);$
- (2)
- ${\tilde{y}}_{1}\times {\tilde{y}}_{2}=\left(E{x}_{1}E{x}_{2},\sqrt{{\left(E{n}_{1}E{x}_{2}\right)}^{2}+{\left(E{n}_{2}E{x}_{1}\right)}^{2}},\sqrt{{\left(H{e}_{1}E{x}_{2}\right)}^{2}+{\left(H{e}_{2}E{x}_{1}\right)}^{2}}\right);$
- (3)
- $\lambda {\tilde{y}}_{1}^{}=\left(\lambda E{x}_{1},\sqrt{\lambda}E{n}_{1},\sqrt{\lambda}H{e}_{1}\right),\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\lambda >0;$
- (4)
- ${\tilde{y}}_{1}^{\lambda}=\left(E{x}_{1}^{\lambda},\sqrt{\lambda}{\left(E{x}_{1}\right)}^{\lambda -1}E{n}_{1},\sqrt{\lambda}{\left(E{x}_{1}\right)}^{\lambda -1}H{e}_{1}\right),\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\lambda >0$.

**Definition**

**4.**

**Definition**

**5.**

**Definition**

**6.**

**Definition**

**7**

**.**Let ${\tilde{y}}_{i}=\left(E{x}_{i},E{n}_{i},H{e}_{i}\right)\left(i=1,2,\dots ,n\right)$ be a collection of normal clouds in the universe U, and $\omega =\left({\omega}_{1},{\omega}_{2},\dots ,{\omega}_{n}\right)$ be an associated weight vector with ${\omega}_{j}\in \left[0,1\right],and\hspace{0.17em}{\displaystyle {\sum}_{j=1}^{n}{\omega}_{j}}=1$, then the cloud hybrid averaging (CHA) operator is defined as:

#### 3.2. Conversion between Linguistic Terms and Clouds

**Definition**

**8.**

- (1)
- Negation operator: Neg (s
_{i}) = s_{j}such that $j=g-i$; - (2)
- The set is ordered: s
_{i}> s_{j}, if i > j; - (3)
- Max operator: max (s
_{i}, s_{j}) = s_{i}, if ${s}_{i}\ge {s}_{j}$.

**Definition**

**9.**

_{min}, X

_{max}] is an effective domain, then g + 1 basic clouds can be generated corresponding to the linguistic values ${s}_{i}\left(i=0,1,\dots ,g\right)$, which are denoted as ${\tilde{y}}_{0}=\left(E{x}_{0},E{n}_{0},H{e}_{0}\right),$ ${\tilde{y}}_{1}=\left(E{x}_{1},E{n}_{1},H{e}_{1}\right),\dots ,$ ${\tilde{y}}_{g}=\left(E{x}_{g},E{n}_{g},H{e}_{g}\right)$, respectively.

_{min}, X

_{max}]. By applying a golden radio method, seven basic clouds can be produced and their numerical characteristics are shown below:

_{3}can be designated in advance by decision makers.

_{3}= 0.1, six basic clouds can be computed as below for the linguistic term set S [44]:

**Definition**

**10.**

_{i}values in [0, 1] denoting the possible membership degrees of the element ${s}_{i}\in S$ to the set LH.

**Definition**

**11**

**.**Let $S=\left\{{s}_{0},{s}_{1},\dots ,{s}_{g}\right\}$ be a linguistic term set and [X

_{min}, X

_{max}] is an effective domain, the corresponding cloud ${\tilde{y}}_{LH}=\left(E{x}_{LH},E{n}_{LH},H{e}_{LH}\right)$ of the LHFS $LH=\left\{{s}_{i},lh\left({s}_{i}\right)|{s}_{i}\in S\right\}$ can be computed by

## 4. The Proposed Robot Selection Approach

#### 4.1. Determine Robot Assessments

_{k}, where ${d}_{ij}^{k}$ denotes the judgement of alternative A

_{i}against C

_{j}assigned by ${\mathrm{DM}}_{k}$. Because decision makers from different working backgrounds have dissimilar experience and knowledge, they are given different weights ${\lambda}_{k}(k=1,2,\dots ,l$ with ${\sum}_{k=1}^{l}{\lambda}_{k}}=1$) in the robot selection process. Next, the cloud model is implemented to address the decision makers’ linguistic assessments of robots against each criterion.

**Step 1:**Establish the normalized linguistic decision matrix ${R}^{k}={\left({r}_{ij}^{k}\right)}_{m\times n}$

**Step 2:**Obtain the cloud decision matrix ${\tilde{Y}}_{k}$

**Step 3:**Construct the collective cloud decision matrix $\tilde{Y}$

_{i}on criterion C

_{j}, i.e., ${\tilde{y}}_{ij}^{}$, is calculated by

#### 4.2. Determine Criteria Weights

**Step 4:**Determine the subjective criteria weights

_{j}given by decision maker DM

_{k}to indicate its importance in the ranking of robots. The corresponding cloud weights ${\tilde{w}}_{j}^{k}\left(j=1,2,\dots ,n\right)$ are aggregated to find the collective cloud weights $\tilde{w}={\left({\tilde{w}}_{j}\right)}_{1\times n}$ by using the CHA operator. Then, the subjective weight of each evaluation criterion is computed by

**Step 5:**Compute the objective criteria weights

_{j}is the entropy of the projected results of the criterion C

_{j}, which can be obtained by

**Step 6:**Compute the combination criteria weights

#### 4.3. Define the Ranking of Robots

**Step 7:**Compute the relative weight of C

_{j}with respect to the reference criterion C

_{r}by

_{r}is the criterion associated with w

_{r}.

**Step 8:**Determine the domination degree of A

_{i}over A

_{p}under C

_{j}, i.e.,

**Step 9:**Obtain the overall domination degree of A

_{i}over A

_{p}by

**Step 10:**Acquire the global value of alternative A

_{i}over the other alternatives by using the following equation:

## 5. Case Study

#### 5.1. Application

_{1}, A

_{2}, A

_{3}, and A

_{4}are left for further assessment. Besides, seven evaluation criteria are considered for selecting the most appropriate robot: Inconsistency with infrastructure (C

_{1}), Man-machine interface (C

_{2}), Programming flexibility (C

_{3}), Vendor’s service contract (C

_{4}), Supporting channel partner’s performance (C

_{5}), Compliance (C

_{6}), and Stability (C

_{7}). All these criteria are benefit criteria except C

_{1}, which is a cost criterion.

_{1}, DM

_{2},…, DM

_{5}) is established for the evaluation and selection of the most suitable robot. The decision makers’ weights are set as 0.20, 0.30, 0.10, 0.25, and 0.15, respectively, due to their differentiated knowledge and backgrounds. According to the materials and data concerning the considered robots, a seven-point linguistic term set S is adopted by the experts to evaluate the given robots and the criteria importance weights, i.e.,

**Stage 1.**Evaluate the performance of robots

_{1}is cost type, the linguistic ratings of the alternatives about C

_{1}are normalized and listed in Table 3 and the normalized linguistic decision matrix ${R}^{k}={\left({r}_{ij}^{k}\right)}_{4\times 7}\left(k=1,2,\dots ,5\right)$ can be constructed accordingly.

_{3}= 0.1 in the computation.

**Stage 2.**Calculate the criteria weights

_{ij}and E

_{j}are derived by Equations (10) and (11), which are furnished in Table 6, and the objective criteria weights are determined via Equation (9) as: ${w}_{1}^{O}=0.435,{w}_{2}^{O}=0.147,{w}_{3}^{O}=0.082,{w}_{4}^{O}=0.083,{w}_{5}^{O}=0.078,{w}_{6}^{O}=0.065,{w}_{7}^{O}=0.109$.

**Stage 3.**Acquire the ranking orders of alternatives

_{r}can be calculated through Equation (13) as:

_{1}with the top global value is the best robot for the considered case study, and the ranking of the four robots is ${A}_{1}\succ {A}_{4}\succ {A}_{3}\succ {A}_{2}.$

#### 5.2. Sensitivity Analysis

#### 5.3. Comparison Analysis

_{1}. This shows the verification and validation of the proposed approach. However, compared with other robot selection methods, the presented cloud TODIM model has the following merits:

- The performance ratings of robots are evaluated in linguistic expressions and the hesitancy and inconsistency in the decision makers’ evaluations on robots can be well represented. This allows decision makers to define their opinions more realistically and make the robot selection easier to perform.
- Based on the cloud model, the new approach can not only reflect average level but also the vagueness and randomness of the evaluation criteria. Moreover, the aggregation of performance information utilizing the CHA operator can reflect the importance weights of experts and simultaneously minimize the effect of biased assessments on the ranking results.
- We consider both subjective and objective weights of criteria in ranking the alternative robots, and the combination criteria weights are computed directly without the need to determine the weight coefficient between subjective and objective weights in advance. This makes the ranking results more accurate and theoretically reasonable.
- By applying an extended TODIM method, the presented approach takes the behavioral characteristics of decision makers (e.g., reference dependence and loss aversion) into consideration in determining the ranking of robots. Therefore, the robot selection approach proposed in this paper is more realistic in practical applications.

## 6. Conclusions

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## References

- Rao, R.V.; Patel, B.K.; Parnichkun, M. Industrial robot selection using a novel decision making method considering objective and subjective preferences. Robot. Auton. Syst.
**2011**, 59, 367–375. [Google Scholar] [CrossRef] - Chatterjee, P.; Manikrao Athawale, V.; Chakraborty, S. Selection of industrial robots using compromise ranking and outranking methods. Robot. Comput. Integr. Manuf.
**2010**, 26, 483–489. [Google Scholar] [CrossRef] - Sen, D.K.; Datta, S.; Mahapatra, S.S. Extension of PROMETHEE for robot selection decision making: Simultaneous exploration of objective data and subjective (fuzzy) data. Benchmarking
**2016**, 23, 983–1014. [Google Scholar] [CrossRef] - Gitinavard, H.; Mousavi, S.M.; Vahdani, B. Soft computing-based new interval-valued hesitant fuzzy multi-criteria group assessment method with last aggregation to industrial decision problems. Soft Comput.
**2017**, 21, 3247–3265. [Google Scholar] [CrossRef] - Kahraman, C.; Cevik, S.; Ates, N.Y.; Gülbay, M. Fuzzy multi-criteria evaluation of industrial robotic systems. Comput. Ind. Eng.
**2007**, 52, 414–433. [Google Scholar] [CrossRef] - Keshavarz Ghorabaee, M. Developing an MCDM method for robot selection with interval type-2 fuzzy sets. Robot. Comput. Integr. Manuf.
**2016**, 37, 221–232. [Google Scholar] [CrossRef] - Sen, D.K.; Datta, S.; Patel, S.K.; Mahapatra, S.S. Multi-criteria decision making towards selection of industrial robot: Exploration of PROMETHEE II method. Benchmarking
**2015**, 22, 465–487. [Google Scholar] [CrossRef] - Xue, Y.X.; You, J.X.; Zhao, X.; Liu, H.C. An integrated linguistic MCDM approach for robot evaluation and selection with incomplete weight information. Int. J. Prod. Res.
**2016**, 54, 5452–5467. [Google Scholar] [CrossRef] - Li, D.Y.; Liu, C.Y.; Gan, W.Y. A new cognitive model: Cloud model. Int. J. Intell. Syst.
**2009**, 24, 357–375. [Google Scholar] [CrossRef] - Wang, J.Q.; Peng, J.J.; Zhang, H.Y.; Liu, T.; Chen, X.H. An uncertain linguistic multi-criteria group decision-making method based on a cloud model. Group Decis. Negot.
**2015**, 24, 171–192. [Google Scholar] [CrossRef] - Wu, S.-M.; You, X.-Y.; Liu, H.-C.; Wang, L.-E. Improving quality function deployment analysis with the cloud MULTIMOORA method. Int. Trans. Oper. Res.
**2018**. [Google Scholar] [CrossRef] - Wang, K.-Q.; Liu, H.-C.; Liu, L.; Huang, J. Green supplier evaluation and selection using cloud model theory and the QUALIFLEX method. Sustainability
**2017**, 9, 688. [Google Scholar] [CrossRef] - Liu, J.; Wen, G. Continuum topology optimization considering uncertainties in load locations based on the cloud model. Eng. Optim.
**2018**, 50, 1041–1060. [Google Scholar] [CrossRef] - Wu, Y.; Chen, K.; Zeng, B.; Yang, M.; Geng, S. Cloud-based decision framework for waste-to-energy plant site selection—A case study from China. Waste Manag.
**2016**, 48, 593–603. [Google Scholar] [CrossRef] [PubMed] - Wang, P.; Xu, X.; Cai, C.; Huang, S. A linguistic large group decision making method based on the cloud model. IEEE Trans. Fuzzy Syst.
**2018**. [Google Scholar] [CrossRef] - Liu, H.-C.; Wang, L.-E.; You, X.-Y.; Wu, S.-M. Failure mode and effect analysis with extended grey relational analysis method in cloud setting. Total Qual. Manag. Bus. Excel.
**2018**. [Google Scholar] [CrossRef] - Chang, T.C.; Wang, H. A multi criteria group decision-making model for teacher evaluation in higher education based on cloud model and decision tree. EURASIA J. Math. Sci. Technol. Educ.
**2016**, 12, 1243–1262. [Google Scholar] - Liu, H.C.; Ren, M.L.; Wu, J.; Lin, Q.L. An interval 2-tuple linguistic MCDM method for robot evaluation and selection. Int. J. Prod. Res.
**2014**, 52, 2867–2880. [Google Scholar] [CrossRef] - Parameshwaran, R.; Praveen Kumar, S.; Saravanakumar, K. An integrated fuzzy MCDM based approach for robot selection considering objective and subjective criteria. Appl. Soft Comput.
**2015**, 26, 31–41. [Google Scholar] [CrossRef] - Gomes, L.; Lima, M. TODIM: Basics and application to multicriteria ranking of projects with environmental impacts. Found. Comput. Decis. Sci.
**1991**, 16, 113–127. [Google Scholar] - Zhang, Y.; Xu, Z. Efficiency evaluation of sustainable water management using the HF-TODIM method. Int. Trans. Oper. Res.
**2016**. [Google Scholar] [CrossRef] - Wang, J.; Wang, J.Q.; Zhang, H.Y. A likelihood-based TODIM approach based on multi-hesitant fuzzy linguistic information for evaluation in logistics outsourcing. Comput. Ind. Eng.
**2016**, 99, 287–299. [Google Scholar] [CrossRef] - Sang, X.; Liu, X. An interval type-2 fuzzy sets-based TODIM method and its application to green supplier selection. J. Oper. Res. Soc.
**2016**, 67, 722–734. [Google Scholar] [CrossRef] - Ji, P.; Zhang, H.Y.; Wang, J.Q. A projection-based TODIM method under multi-valued neutrosophic environments and its application in personnel selection. Neural Comput. Appl.
**2018**, 29, 221–234. [Google Scholar] [CrossRef] - Li, P.; Chen, X.; Qu, X.; Xu, Q. The evaluation of mineral resources development efficiency based on hesitant fuzzy linguistic approach and modified TODIM. Math. Probl. Eng.
**2018**, 2018, 1808426. [Google Scholar] [CrossRef] - Jiang, Y.; Liang, X.; Liang, H. An I-TODIM method for multi-attribute decision making with interval numbers. Soft Comput.
**2017**, 21, 5489–5506. [Google Scholar] [CrossRef] - Hu, J.; Yang, Y.; Chen, X. A novel TODIM method-based three-way decision model for medical treatment selection. Int. J. Fuzzy Syst.
**2018**, 20, 1240–1255. [Google Scholar] [CrossRef] - Wang, L.; Labella, Á.; Rodríguez, R.M.; Wang, Y.M.; Martínez, L. Managing non-homogeneous information and experts’ psychological behavior in group emergency decision making. Symmetry
**2017**, 9, 234. [Google Scholar] [CrossRef] - Koulouriotis, D.E.; Ketipi, M.K. Robot evaluation and selection Part A: An integrated review and annotated taxonomy. Int. J. Adv. Manuf. Technol.
**2014**, 71, 1371–1394. [Google Scholar] [CrossRef] - Kavita, D. Extension of VIKOR method in intuitionistic fuzzy environment for robot selection. Expert Syst. Appl.
**2011**, 38, 14163–14168. [Google Scholar] - Vahdani, B.; Mousavi, S.M.; Tavakkoli-Moghaddam, R.; Ghodratnama, A.; Mohammadi, M. Robot selection by a multiple criteria complex proportional assessment method under an interval-valued fuzzy environment. Int. J. Adv. Manuf. Technol.
**2014**, 73, 687–697. [Google Scholar] [CrossRef] - Durán, O.; Aguilo, J. Computer-aided machine-tool selection based on a Fuzzy-AHP approach. Expert Syst. Appl.
**2008**, 34, 1787–1794. [Google Scholar] [CrossRef] - Kumru, M.; Kumru, P.Y. A fuzzy ANP model for the selection of 3D coordinate-measuring machine. J. Intell. Manuf.
**2015**, 26, 999–1010. [Google Scholar] [CrossRef] - Rashid, T.; Beg, I.; Husnine, S.M. Robot selection by using generalized interval-valued fuzzy numbers with TOPSIS. Appl. Soft Comput.
**2014**, 21, 462–468. [Google Scholar] [CrossRef] - Chakraborty, S.; Zavadskas, E.K. Applications of WASPAS method in manufacturing decision making. Informatica
**2014**, 25, 1–20. [Google Scholar] [CrossRef] - Chakraborty, S.; Zavadskas, E.K.; Antucheviciene, J. Applications of WASPAS method as a multi-criteria decision-making tool. Econ. Comput. Econ. Cybern.
**2015**, 49, 5–22. [Google Scholar] - Saravi, K.J.; Alitappeh, R.J.; Pimenta, L.C.A.; Guimarães, F.G. Multi-objective approach for robot motion planning in search tasks. Appl. Intell.
**2016**, 45, 305–321. [Google Scholar] - Koulouriotis, D.E.; Ketipi, M.K. A fuzzy digraph method for robot evaluation and selection. Expert Syst. Appl.
**2011**, 38, 11901–11910. [Google Scholar] [CrossRef] - Gola, A.; Świć, A. Computer-aided machine tool selection for focused flexibility manufacturing systems using economical criteria. Actual Probl. Econ.
**2011**, 124, 383–389. [Google Scholar] - Kentli, A.; Kar, A.K. A satisfaction function and distance measure based multi-criteria robot selection procedure. Int. J. Prod. Res.
**2011**, 49, 5821–5832. [Google Scholar] [CrossRef] - Kumar, R.; Garg, R.K. Optimal selection of robots by using distance based approach method. Robot. Comput. Integr. Manuf.
**2010**, 26, 500–506. [Google Scholar] [CrossRef] - Bairagi, B.; Dey, B.; Sarkar, B.; Sanyal, S.K. A de Novo multi-approaches multi-criteria decision making technique with an application in performance evaluation of material handling device. Comput. Ind. Eng.
**2015**, 87, 267–282. [Google Scholar] [CrossRef] - Wang, J.Q.; Peng, L.; Zhang, H.Y.; Chen, X.H. Method of multi-criteria group decision-making based on cloud aggregation operators with linguistic information. Inf. Sci.
**2014**, 274, 177–191. [Google Scholar] [CrossRef] - Zhu, C.; Zhu, L.; Zhang, X. Linguistic hesitant fuzzy power aggregation operators and their applications in multiple attribute decision-making. Inf. Sci.
**2016**, 367–368, 809–826. [Google Scholar] [CrossRef] - Xu, Z.S. An overview of methods for determining OWA weights. Int. J. Intell. Syst.
**2005**, 20, 843–865. [Google Scholar] [CrossRef] - Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci.
**1975**, 8, 199–249. [Google Scholar] [CrossRef] - Liu, H.-C.; Li, Z.; Song, W.; Su, Q. Failure mode and effect analysis using cloud model theory and PROMETHEE method. IEEE Trans. Reliab.
**2017**, 66, 1058–1072. [Google Scholar] [CrossRef] - Meng, F.; Chen, X.; Zhang, Q. Multi-attribute decision analysis under a linguistic hesitant fuzzy environment. Inf. Sci.
**2014**, 267, 287–305. [Google Scholar] [CrossRef] - Zarbakhshnia, N.; Soleimani, H.; Ghaderi, H. Sustainable third-party reverse logistics provider evaluation and selection using fuzzy SWARA and developed fuzzy COPRAS in the presence of risk criteria. Appl. Soft Comput.
**2018**, 65, 307–319. [Google Scholar] [CrossRef] - Hashemkhani Zolfani, S.; Yazdani, M.; Zavadskas, E.K. An extended stepwise weight assessment ratio analysis (SWARA) method for improving criteria prioritization process. Soft Comput.
**2018**. [Google Scholar] [CrossRef] - Stanujkic, D.; Zavadskas, E.K.; Karabasevic, D.; Smarandache, F.; Turskis, Z. The use of the pivot pairwise relative criteria importance assessment method for determining the weights of criteria. Rom. J. Econ. Forecast.
**2017**, 20, 116–133. [Google Scholar] - Ginevičius, R. A new determining method for the criteria weights in multicriteria evaluation. Int. J. Inf. Technol. Decis. Mak.
**2011**, 10, 1067–1095. [Google Scholar] [CrossRef] - Rezaei, J. Best-worst multi-criteria decision-making method. Omega
**2015**, 53, 49–57. [Google Scholar] [CrossRef] - Shannon, C.E.; Weaver, W. A Mathematical Theory of Communication; The University of Illinois Press: Urbana, IL, USA, 1947. [Google Scholar]
- Čereška, A.; Zavadskas, E.K.; Cavallaro, F.; Podvezko, V.; Tetsman, I.; Grinbergiene, I. Sustainable assessment of aerosol pollution decrease applying multiple attribute decision-making methods. Sustainability
**2016**, 8, 586. [Google Scholar] [CrossRef] - Zavadskas, E.; Cavallaro, F.; Podvezko, V.; Ubarte, I.; Kaklauskas, A. MCDM assessment of a healthy and safe built environment according to sustainable development principles: A practical neighborhood approach in Vilnius. Sustainability
**2017**, 9, 702. [Google Scholar] [CrossRef] - Zavadskas, E.K.; Podvezko, V. Integrated determination of objective criteria weights in MCDM. Int. J. Inf. Technol. Decis. Mak.
**2016**, 15, 267–283. [Google Scholar] [CrossRef] - Gomes, L.; Lima, M. From modeling individual preferences to multicriteria ranking of discrete alternatives: A look at prospect theory and the additive difference model. Found. Comput. Decis. Sci.
**1992**, 17, 171–184. [Google Scholar]

Robots | Experts | Criteria | ||||||
---|---|---|---|---|---|---|---|---|

C_{1} | C_{2} | C_{3} | C_{4} | C_{5} | C_{6} | C_{7} | ||

A_{1} | DM_{1} | s_{0} | {(s_{6}, 0.6, 0.9)} | s_{3} | s_{4} | s_{4} | s_{6} | s_{6} |

DM_{2} | {(s_{0}, 0.7)} | s_{6} | s_{4} | s_{4} | s_{5} | s_{5} | s_{5} | |

DM_{3} | s_{1} | s_{5} | s_{3} | s_{4} | s_{4} | {(s_{5}, s_{6})} | s_{6} | |

DM_{4} | s_{1} | s_{6} | s_{3} | s_{5} | s_{4} | s_{5} | s_{6} | |

DM_{5} | s_{1} | s_{5} | {(s_{3}, 0.8), (s_{4}, 0.9)} | s_{5} | {(s_{5}, 0.6, 0.8)} | s_{6} | {(s_{5}, 0.7), (s_{6}, 0.6, 0.9)} | |

A_{2} | DM_{1} | s_{6} | s_{1} | s_{2} | s_{3} | s_{5} | s_{4} | {(s_{3}, 0.7, 0.9)} |

DM_{2} | s_{6} | s_{2} | s_{1} | s_{2} | s_{5} | s_{3} | s_{2} | |

DM_{3} | {(s_{5}, s_{6})} | {(s_{1}, 0.6, 0.8)} | s_{1} | {(s_{3}, 0.6)} | s_{4} | s_{3} | s_{3} | |

DM_{4} | {(s_{5}, 0.5, 0.8)} | s_{2} | {(s_{2}, 0.8)} | s_{2} | s_{4} | s_{5} | s_{3} | |

DM_{5} | s_{5} | s_{2} | s_{2} | s_{3} | s_{5} | s_{4} | s_{2} | |

A_{3} | DM_{1} | s_{2} | s_{3} | s_{5} | s_{5} | s_{3} | {(s_{4}, 0.5, 0.7)} | s_{3} |

DM_{2} | s_{1} | s_{2} | s_{4} | s_{4} | s_{2} | s_{3} | s_{2} | |

DM_{3} | s_{2} | {(s_{3}, 0.8)} | {(s_{5}, 0.7)} | s_{5} | s_{3} | s_{4} | s_{2} | |

DM_{4} | s_{2} | s_{3} | s_{5} | s_{5} | s_{2} | s_{3} | s_{3} | |

DM_{5} | {(s_{0}, 0.6, 0.8), (s_{1}, 0.7)} | {(s_{4}, 0.3, 0.5, 0.8)} | s_{4} | s_{4} | {(s_{3}, 0.7), (s_{4}, 0.6)} | s_{4} | s_{3} | |

A_{4} | DM_{1} | s_{1} | s_{4} | s_{4} | s_{3} | s_{6} | s_{5} | s_{5} |

DM_{2} | s_{0} | s_{5} | s_{5} | s_{2} | s_{6} | s_{5} | s_{6} | |

DM_{3} | s_{1} | s_{4} | {(s_{4}, s_{5})} | {(s_{2}, 0.4), (s_{3}, 0.7), (s_{4}, 0.4)} | s_{6} | s_{4} | {(s_{6}, 0.6)} | |

DM_{4} | s_{1} | s_{4} | s_{4} | s_{1} | s_{5} | s_{4} | s_{5} | |

DM_{5} | {(s_{0}, 0.7, 0.8)} | s_{5} | s_{5} | s_{2} | s_{5} | s_{5} | s_{5} |

Experts | Criteria | ||||||
---|---|---|---|---|---|---|---|

C_{1} | C_{2} | C_{3} | C_{4} | C_{5} | C_{6} | C_{7} | |

DM_{1} | s_{5} | s_{3} | s_{5} | s_{4} | s_{5} | s_{4} | s_{5} |

DM_{2} | s_{6} | s_{3} | s_{4} | s_{6} | s_{4} | s_{5} | s_{4} |

DM_{3} | s_{5} | s_{4} | s_{4} | s_{4} | s_{4} | s_{5} | s_{5} |

DM_{4} | s_{6} | s_{4} | s_{3} | s_{6} | s_{4} | s_{5} | s_{4} |

DM_{5} | s_{6} | s_{3} | s_{3} | s_{6} | s_{5} | s_{4} | s_{4} |

Experts | Alternatives | |||
---|---|---|---|---|

A_{1} | A_{2} | A_{3} | A_{4} | |

DM_{1} | S_{6} | s_{0} | s_{4} | s_{5} |

DM_{2} | {(s_{6}, 0.7)} | s_{0} | s_{5} | s_{6} |

DM_{3} | s_{5} | {(s_{0}, s_{1})} | s_{4} | s_{5} |

DM_{4} | s_{5} | {(s_{1}, 0.5, 0.8)} | s_{4} | s_{5} |

DM_{5} | s_{5} | s_{1} | {(s_{5}, 0.7), (s_{6}, 0.6, 0.8)} | {(s_{6} 0.7, 0.8)} |

Alternatives | Experts | Criteria | ||||||
---|---|---|---|---|---|---|---|---|

C_{1} | C_{2} | C_{3} | C_{4} | C_{5} | C_{6} | C_{7} | ||

A_{1} | DM_{1} | (10, 0.833, 0.424) | (7.5, 0.833, 0.424) | (5, 0.197, 0.1) | (5.96, 0.318, 0.162) | (5.96, 0.318, 0.162) | (10, 0.833, 0.424) | (10, 0.833, 0.424) |

DM_{2} | (7, 0.833, 0.424) | (10, 0.833, 0.424) | (5.96, 0.318, 0.162) | (5.96, 0.318, 0.162) | (7.5, 0.515, 0.262) | (7.5, 0.515, 0.262) | (7.5, 0.515, 0.262) | |

DM_{3} | (7.5, 0.515, 0.262) | (7.5, 0.515, 0.262) | (5, 0.197, 0.1) | (5.96, 0.318, 0.162) | (5.96, 0.318, 0.162) | (8.75, 0.693, 0.352) | (10, 0.833, 0.424) | |

DM_{4} | (7.5, 0.515, 0.262) | (10, 0.833, 0.424) | (5, 0.197, 0.1) | (7.5, 0.515, 0.262) | (5.96, 0.318, 0.162) | (7.5, 0.515, 0.262) | (10, 0.833, 0.424) | |

DM_{5} | (7.5, 0.515, 0.262) | (7.5, 0.515, 0.262) | (4.68, 0.265, 0.135) | (7.5, 0.515, 0.262) | (5.25, 0.515, 0.262) | (10, 0.833, 0.424) | (6.38, 0.693, 0.352) | |

A_{2} | DM_{1} | (0, 0.833, 0.424) | (2.5, 0.515, 0.262) | (4.05, 0.318, 0.162) | (5, 0.197, 0.1) | (7.5, 0.515, 0.262) | (5.96, 0.318, 0.162) | (4, 0.197, 0.1) |

DM_{2} | (0, 0.833, 0.424) | (4.05, 0.318, 0.162) | (2.5, 0.515, 0.262) | (4.05, 0.318, 0.162) | (7.5, 0.515, 0.262) | (5, 0.197, 0.1) | (4.05, 0.318, 0.162) | |

DM_{3} | (1.25, 0.693, 0.352) | (1.75, 0.515, 0.262) | (2.5, 0.515, 0.262) | (3, 0.197, 0.1) | (5.96, 0.318, 0.162) | (5, 0.197, 0.1) | (5, 0.197, 0.1) | |

DM_{4} | (1.63, 0.515, 0.262) | (4.05, 0.318, 0.162) | (3.24, 0.318, 0.162) | (4.05, 0.318, 0.162) | (5.96, 0.318, 0.162) | (7.5, 0.515, 0.262) | (5, 0.197, 0.1) | |

DM_{5} | (2.5, 0.515, 0.262) | (4.05, 0.318, 0.162) | (4.05, 0.318, 0.162) | (5, 0.197, 0.1) | (7.5, 0.515, 0.262) | (5.96, 0.318, 0.162) | (4.05, 0.318, 0.162) | |

A_{3} | DM_{1} | (5.96, 0.318, 0.162) | (5, 0.197, 0.1) | (7.5, 0.515, 0.262) | (7.5, 0.515, 0.262) | (5, 0.197, 0.1) | (3.58, 0.318, 0.162) | (5, 0.197, 0.1) |

DM_{2} | (7.5, 0.515, 0.262) | (4.05, 0.318, 0.162) | (5.96, 0.318, 0.162) | (5.96, 0.318, 0.162) | (4.05, 0.318, 0.162) | (5, 0.197, 0.1) | (4.05, 0.318, 0.162) | |

DM_{3} | (5.96, 0.318, 0.162) | (4, 0.197, 0.1) | (5.25, 0.515, 0.262) | (7.5, 0.515, 0.262) | (5, 0.197, 0.1) | (5.96, 0.318, 0.162) | (4.05, 0.318, 0.162) | |

DM_{4} | (5.96, 0.318, 0.162) | (5, 0.197, 0.1) | (7.5, 0.515, 0.262) | (7.5, 0.515, 0.262) | (4.05, 0.318, 0.162) | (5, 0.197, 0.1) | (5, 0.197, 0.1) | |

DM_{5} | (6.13, 0.693, 0.352) | (3.18, 0.318, 0.162) | (5.96, 0.318, 0.162) | (5.96, 0.318, 0.162) | (3.54, 0.265, 0.135) | (5.96, 0.318, 0.162) | (5, 0.197, 0.1) | |

A_{4} | DM_{1} | (7.5, 0.515, 0.262) | (5.96, 0.318, 0.162) | (5.96, 0.318, 0.162) | (5, 0.197, 0.1) | (10, 0.833, 0.424) | (7.5, 0.515, 0.262) | (7.5, 0.515, 0.262) |

DM_{2} | (10, 0.833, 0.424) | (7.5, 0.515, 0.262) | (7.5, 0.515, 0.262) | (4.05, 0.318, 0.162) | (10, 0.833, 0.424) | (7.5, 0.515, 0.262) | (10, 0.833, 0.424) | |

DM_{3} | (7.5, 0.515, 0.262) | (5.96, 0.318, 0.162) | (6.73, 0.428, 0.218) | (2.5, 0.283, 0.144) | (10, 0.833, 0.424) | (5.96, 0.318, 0.162) | (6, 0.833, 0.424) | |

DM_{4} | (7.5, 0.515, 0.262) | (5.96, 0.318, 0.162) | (5.96, 0.318, 0.162) | (2.5, 0.515, 0.262) | (7.5, 0.515, 0.262) | (5.96, 0.318, 0.162) | (7.5, 0.515, 0.262) | |

DM_{5} | (7.5, 0.833, 0.424) | (7.5, 0.515, 0.262) | (7.5, 0.515, 0.262) | (4.05, 0.318, 0.162) | (7.5, 0.515, 0.262) | (7.5, 0.515, 0.262) | (7.5, 0.515, 0.262) |

**Table 5.**Collective cloud decision matrix $\tilde{Y}$ and Collective cloud weight vector $\tilde{w}$.

Alternatives | Criteria | ||||||
---|---|---|---|---|---|---|---|

C_{1} | C_{2} | C_{3} | C_{4} | C_{5} | C_{6} | C_{7} | |

A_{1} | (8.13, 0.665, 0.339) | (8.66, 0.771, 0.392) | (5.1, 0.234, 0.119) | (6.63, 0.395, 0.201) | (6.09, 0.397, 0.202) | (8.73, 0.678, 0.345) | (8.81, 0.724, 0.368) |

A_{2} | (0.86, 0.661, 0.337) | (3.49, 0.384, 0.195) | (3.41, 0.441, 0.225) | (4.45, 0.260, 0.132) | (6.96, 0.445, 0.227) | (5.97, 0.319, 0.162) | (4.35, 0.271, 0.138) |

A_{3} | (6.25, 0.442, 0.225) | (4.44, 0.271, 0.138) | (6.79, 0.431, 0.220) | (6.91, 0.431, 0.220) | (4.30, 0.271, 0.138) | (4.78, 0.253, 0.129) | (4.77, 0.256, 0.130) |

A_{4} | (7.92, 0.643, 0.327) | (6.49, 0.397, 0.202) | (6.51, 0.411, 0.209) | (3.67, 0.386, 0.197) | (8.78, 0.683, 0.348) | (7.68, 0.445, 0.226) | (7.84, 0.601, 0.306) |

$\tilde{w}$ | (7.92, 0.643, 0.327) | (6.49, 0.397, 0.202) | (6.51, 0.411, 0.209) | (3.67, 0.386, 0.197) | (8.78, 0.683, 0.348) | (7.68, 0.445, 0.226) | (7.84, 0.601, 0.306) |

P_{ij} | C_{1} | C_{2} | C_{3} | C_{4} | C_{5} | C_{6} | C_{7} |
---|---|---|---|---|---|---|---|

A_{1} | 0.350 | 0.375 | 0.234 | 0.305 | 0.233 | 0.323 | 0.342 |

A_{2} | 0.037 | 0.151 | 0.155 | 0.205 | 0.266 | 0.220 | 0.169 |

A_{3} | 0.271 | 0.192 | 0.313 | 0.320 | 0.164 | 0.175 | 0.186 |

A_{4} | 0.341 | 0.282 | 0.297 | 0.170 | 0.337 | 0.283 | 0.303 |

E_{j} | 0.874 | 0.957 | 0.976 | 0.976 | 0.977 | 0.981 | 0.968 |

C_{1} | C_{2} | C_{3} | C_{4} | C_{5} | C_{6} | C_{7} | |
---|---|---|---|---|---|---|---|

${\phi}_{j}\left({A}_{1},{A}_{2}\right)$ | 1.038 | 0.378 | 0.581 | 0.375 | −0.184 | 0.575 | 0.590 |

${\phi}_{j}\left({A}_{1},{A}_{3}\right)$ | 0.741 | 0.632 | −0.501 | −0.240 | 0.331 | 0.559 | 0.644 |

${\phi}_{j}\left({A}_{1},{A}_{4}\right)$ | 0.227 | 0.664 | −0.486 | 0.417 | −0.504 | 0.524 | 0.365 |

${\phi}_{j}\left({A}_{2},{A}_{3}\right)$ | −1.100 | −0.491 | −0.434 | −0.426 | 0.371 | 0.248 | −0.242 |

${\phi}_{j}\left({A}_{2},{A}_{4}\right)$ | −1.045 | −0.421 | −0.446 | 0.494 | −0.496 | −0.365 | −0.540 |

${\phi}_{j}\left({A}_{3},{A}_{4}\right)$ | −0.711 | −0.360 | 0.139 | 0.364 | −0.524 | −0.415 | −0.600 |

${\phi}_{j}\left({A}_{2},{A}_{1}\right)$ | −1.038 | −0.378 | −0.581 | −0.375 | 0.184 | −0.575 | −0.590 |

${\phi}_{j}\left({A}_{3},{A}_{1}\right)$ | −0.741 | −0.632 | 0.501 | 0.240 | −0.331 | −0.559 | −0.644 |

${\phi}_{j}\left({A}_{4},{A}_{1}\right)$ | −0.227 | −0.664 | 0.486 | −0.417 | 0.504 | −0.524 | −0.365 |

${\phi}_{j}\left({A}_{3},{A}_{2}\right)$ | 1.100 | 0.491 | 0.434 | 0.426 | −0.371 | −0.248 | 0.242 |

${\phi}_{j}\left({A}_{4},{A}_{2}\right)$ | 1.045 | 0.421 | 0.446 | −0.494 | 0.496 | 0.365 | 0.540 |

${\phi}_{j}\left({A}_{4},{A}_{3}\right)$ | 0.711 | 0.360 | −0.139 | −0.364 | 0.524 | 0.415 | 0.600 |

$\phi \left({A}_{1},{A}_{2}\right)$ | $\phi \left({A}_{1},{A}_{3}\right)$ | $\phi \left({A}_{1},{A}_{4}\right)$ | $\delta \left({A}_{1}\right)$ | $\xi \left({A}_{i}\right)$ |

3.353 | 2.166 | 1.207 | 6.727 | 1.000 |

$\phi \left({A}_{2},{A}_{1}\right)$ | $\phi \left({A}_{2},{A}_{3}\right)$ | $\phi \left({A}_{2},{A}_{4}\right)$ | $\delta \left({A}_{2}\right)$ | $\xi \left({A}_{2}\right)$ |

−3.353 | −2.073 | −2.820 | −8.246 | 0.000 |

$\phi \left({A}_{3},{A}_{1}\right)$ | $\phi \left({A}_{3},{A}_{2}\right)$ | $\phi \left({A}_{3},{A}_{4}\right)$ | $\delta \left({A}_{3}\right)$ | $\xi \left({A}_{3}\right)$ |

−2.166 | 2.073 | −2.107 | −2.200 | 0.404 |

$\phi \left({A}_{4},{A}_{1}\right)$ | $\phi \left({A}_{4},{A}_{2}\right)$ | $\phi \left({A}_{4},{A}_{3}\right)$ | $\delta \left({A}_{4}\right)$ | $\xi \left({A}_{4}\right)$ |

−1.207 | 2.820 | 2.107 | 3.720 | 0.799 |

Alternatives | Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|---|

A_{1} | 1.000 | 1.000 | 1.000 | 1.000 |

A_{2} | 0.000 | 0.000 | 0.000 | 0.000 |

A_{3} | 0.407 | 0.413 | 0.402 | 0.417 |

A_{4} | 0.832 | 0.837 | 0.824 | 0.825 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, J.-J.; Miao, Z.-H.; Cui, F.-B.; Liu, H.-C. Robot Evaluation and Selection with Entropy-Based Combination Weighting and Cloud TODIM Approach. *Entropy* **2018**, *20*, 349.
https://doi.org/10.3390/e20050349

**AMA Style**

Wang J-J, Miao Z-H, Cui F-B, Liu H-C. Robot Evaluation and Selection with Entropy-Based Combination Weighting and Cloud TODIM Approach. *Entropy*. 2018; 20(5):349.
https://doi.org/10.3390/e20050349

**Chicago/Turabian Style**

Wang, Jing-Jing, Zhong-Hua Miao, Feng-Bao Cui, and Hu-Chen Liu. 2018. "Robot Evaluation and Selection with Entropy-Based Combination Weighting and Cloud TODIM Approach" *Entropy* 20, no. 5: 349.
https://doi.org/10.3390/e20050349