Generalized Stochastic Fokker-Planck Equations
Abstract
:1. Introduction
2. Overdamped Brownian Particles with Long-Range Interactions
2.1. The N-body Smoluchowski Equation
2.2. Long-Range Interactions
2.3. Complex Systems: Generalized Thermodynamics
2.4. The Free Energy F [ρ]
2.5. Variational Principle
2.6. Equilibrium States
3. Generalized Mean Field Fokker-Planck Equations
3.1. Simple Systems: The Mean Field Smoluchowski Equation
3.2. Complex Systems: The Generalized Mean Field Smoluchowski Equation
3.3. Gradient Flow
3.4. Generalized H-Theorem
3.5. Onsager’s Linear Thermodynamics
3.6. Particular Form: Normal Mobility and Generalized Diffusion
3.7. Particular Form: Normal Diffusion and Generalized Mobility
3.8. Generalized Smoluchowski Equation
3.9. Expression in Terms of the Enthalpy
4. Theory of Fluctuations
4.1. Simple Systems: The Stochastic Smoluchowski Equation
4.2. Complex Systems: The Generalized Stochastic Smoluchowski Equation
4.3. Particular Form: Normal Mobility and Generalized Diffusion
4.4. Particular Form: Normal Diffusion and Generalized Mobility
4.5. Equivalent Forms of the Generalized Stochastic Fokker-Planck Equation
5. A New Form of Generalized Entropy
- For γ = 1 and σ0 → +∞, we recover the Smoluchowski equation which is a FP equation with a normal diffusion and a normal mobility [4]. It is associated with the Boltzmann entropyThe steady state of the Smoluchowski equation is the Boltzmann distribution
- For γ ≠ 1 and σ0 → +∞, we get a GFP equation with an anomalous diffusion and a constant mobility [30,31]. It is associated with the Tsallis entropywhere the polytropic index γ plays the role of the usual Tsallis index q. The steady state of the Smoluchowski equation with an anomalous diffusion is the Tsallis distributionwith the notation [x]+ = x when x > 0 and [x]+ = 0 when x < 0.
- For γ = 1 and σ0 < +∞, we get the fermionic (K = +1) or bosonic (K = −1) Smoluchowski equation, which is a GFP equation with a normal diffusion and a variable mobility taking into account exclusion or inclusion constraints in position space [20,27–29,32,36,37,39,42,43,46,53]. It is associated with the Fermi-Dirac (K = +1) or Bose-Einstein (K = −1) entropy in position spaceThe steady state of the fermionic/bosonic Smoluchowski equation is the Fermi-Dirac/Bose-Einstein distributionFor K ≠ ±1, the distribution (118) describes intermediate statistics [24,46]. The generalized Smoluchowski equation (71) with the same entropy has an equation of state [46]:
- For γ = 2, Equation (107) reduces to [46]:In that case, the generalized entropy (108)–(109) has a simple explicit expression [46]:It can be viewed as the difference between a Fermi-Dirac/Bose-Einstein-type entropy and the Boltzmann entropy. The steady state of Equation (120) is given byThe generalized Smoluchowski equation (71) with the same entropy as Equation (120) has an equation of state
- For γ → 0 and T → +∞ in such a way that γT is finite, and noted T again, Equation (107) becomesIt corresponds to Equation (44) with h(ρ) = 1/ρ and g(ρ) = ρ(1 − Kρ/σ0). It is associated with the generalized entropyThe pressure P = T ln ρ is that of a logotrope [54]. The steady state of Equation (124) is given bywhere W (z) is the Lambert function defined implicitly by the equation WeW = z. The generalized Smoluchowski equation (71) with the same entropy as Equation (124) has an equation of stateFor σ0 → +∞, the generalized entropy (125) reduces to the log-entropy [54]:and the steady state of Equation (124) is given by the Lorentzian-type distribution
6. Generalized Stochastic Cahn-Hilliard Equations
6.1. Short-Range Interactions
6.2. Analogy with Cahn-Hilliard Equations
6.3. Expanded Form of the Generalized Stochastic Cahn-Hilliard Equation
6.4. Particular Form: Anomalous Diffusion and Normal Mobility
6.5. Particular Form: Normal Diffusion and Anomalous Mobility
6.6. Equivalent Forms of the Generalized Stochastic Cahn-Hilliard Equation
6.7. Simple Systems: Normal Diffusion and Normal Mobility
7. Analogy with An Effective Generalized Thermodynamics
7.1. General Results
7.2. Simple Systems
7.3. Simple Systems at T = 0
8. Application to Systems of Physical Interest
8.1. Self-Gravitating Brownian Particles
8.2. Colloid Particles at a Fluid Interface
8.3. Superconductor of Type-II
8.4. Dynamical Theory of Nucleation
8.5. Chemotaxis of Bacterial Populations
8.6. Application to 2D Turbulence
9. Conclusion
A. Application of the Landau-Lifshitz Theory of Fluctuations
B. Stochastic Ginzburg-Landau and Cahn-Hilliard Equations
C. Long and Short-Range Interactions
Conflicts of Interest
References
- Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys 1905, 17, 549–560. [Google Scholar]
- Einstein, A. Zur Theorie der Brownschen Bewegung. Ann. Phys 1906, 19, 371–381. [Google Scholar]
- Langevin, P. Sur la théorie du mouvement brownien. Comptes rendus 1908, 146, 530–533. [Google Scholar]
- von Smoluchowski, M. Über Brownsche Molekularbewegung unter Einwirkung äusserer Kräfte und deren Zusammenhang mit der verallgemeinerten Diffusionsgleichung. Ann. Phys 1915, 48, 1103–1112. [Google Scholar]
- Fokker, A.D. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Phys 1914, 43, 810–820. [Google Scholar]
- Planck, M. Über einen satz der statistischen dynamik und seine erweiterung in der quanten-theorie. Sitzber. Preuss. Akad. Wiss. 1917, 324–341. [Google Scholar]
- Risken, H. The Fokker-Planck Equation: Methods of Solutions and Applications, 2nd ed; Series in Synergetics; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Klein, O. Zur statistischen Theorie der Suspensionen und Lösungen. Arkiv for Matematik, Astronomi, och Fysik 1921, 16, 1–51. [Google Scholar]
- Kramers, H.A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica A 1940, 7, 284–304. [Google Scholar]
- Campa, A.; Dauxois, T.; Fanelli, D.; Ruffo, S. Physics of Long-Range Interacting Systems; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Chavanis, P.H. Kinetic theory of spatially homogeneous systems with long-range interactions: I. General results. Eur. Phys. J. Plus 2012, 127, 19–41. [Google Scholar]
- Chavanis, P.H. Kinetic theory of spatially homogeneous systems with long-range interactions: II. Historic and basic equations. Eur. Phys. J. Plus 2013, 128, 126–153. [Google Scholar]
- Dauxois, T.; Ruffo, S.; Arimondo, E.; Wilkens, M. (Eds.) Dynamics and Thermodynamics of Systems with Long Range Interactions; Lecture Notes in Physics; Volume 602, Springer: Berlin/Heidelberg, Germany, 2002.
- Chavanis, P.H. Initial value problem for the linearized mean field Kramers equation with long-range interactions. Eur. Phys. J. Plus 2013, 128, 106–136. [Google Scholar]
- Chavanis, P.H. Hamiltonian and Brownian systems with long-range interactions: V. Stochastic kinetic equations and theory of fluctuations. Physica A 2008, 387, 5716–5740. [Google Scholar]
- Sire, C.; Chavanis, P.H. Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions. Phys. Rev. E 2002, 66, 046133. [Google Scholar]
- Chavanis, P.H.; The, Brownian. mean field model. Eur. Phys. J. B 2014, 87, 120–152. [Google Scholar]
- Chavanis, P.H. A. stochastic Keller-Segel model of chemotaxis. Commun. Nonlinear Sci. Numer. Simulat. 2010, 15, 60–70. [Google Scholar]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Nordheim, L.W. On the Kinetic Method in the New Statistics and Its Application in the Electron Theory of Conductivity. Proc. R. Soc. London Ser. A 1928, 119, 689–698. [Google Scholar]
- Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys 1928, 52, 555–600. [Google Scholar]
- Uehling, E.A.; Uhlenbeck, G.E. Transport Phenomena in Einstein-Bose and Fermi-Dirac Gases. I. Phys. Rev 1933, 43, 552. [Google Scholar]
- Lima, J.A.S.; Silva, R.; Plastino, A.R. Nonextensive Thermostatistics and the H Theorem. Phys. Rev. Lett. 2001, 86, 2938. [Google Scholar]
- Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Physica A 2001, 296, 405–425. [Google Scholar]
- Chavanis, P.H. Generalized thermodynamics and kinetic equations: Boltzmann, Landau, Kramers and Smoluchowski. Physica A 2004, 332, 89–122. [Google Scholar]
- Kompaneets, A.S. The Establishment of Thermal Equilibrium between Quanta and Electrons. Sov. Phys. JETP 1957, 4, 730–737. [Google Scholar]
- Robert, R.; Sommeria, J. Relaxation towards a statistical equilibrium state in two-dimensional perfect fluid dynamics. Phys. Rev. Lett. 1992, 69, 2776. [Google Scholar]
- Kaniadakis, G.; Quarati, P. Kinetic equation for classical particles obeying an exclusion principle. Phys. Rev. E 1993, 48, 4263. [Google Scholar]
- Kaniadakis, G.; Quarati, P. Classical model of bosons and fermions. Phys. Rev. E 1994, 49, 5103. [Google Scholar]
- Plastino, A.R.; Plastino, A. Non-extensive statistical mechanics and generalized Fokker-Planck equation. Physica A 1995, 222, 347–354. [Google Scholar]
- Tsallis, C.; Bukman, D.J. Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis. Phys. Rev. E 1996, 54, R2197. [Google Scholar]
- Chavanis, P.H.; Sommeria, J.; Robert, R. Statistical Mechanics of Two-dimensional Vortices and Collisionless Stellar Systems. Astrophys. J 1996, 471, 385–399. [Google Scholar]
- Stariolo, D. Aging in models of nonlinear diffusion. Phys. Rev. E 1997, 55, 4806. [Google Scholar]
- Borland, L. Microscopic dynamics of the nonlinear Fokker-Planck equation: A phenomenological model. Phys. Rev. E 1998, 57, 6634. [Google Scholar]
- Martinez, S.; Plastino, A.R.; Plastino, A. Nonlinear Fokker-Planck equations and generalized entropies. Physica A 1998, 259, 183–192. [Google Scholar]
- Frank, T.D.; Daffertshofer, A. Nonlinear Fokker-Planck equations whose stationary solutions make entropy-like functionals stationary. Physica A 1999, 272, 497–508. [Google Scholar]
- Hillen, T.; Painter, K. Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 2001, 26, 280–301. [Google Scholar]
- Frank, T.D.; Generalized, Fokker-Planck. equations derived from generalized linear nonequilibrium thermodynamics. Physica A 2002, 310, 397–412. [Google Scholar]
- Chavanis, P.H. Generalized thermodynamics and Fokker-Planck equations: Applications to stellar dynamics and two-dimensional turbulence. Phys. Rev. E 2003, 68, 036108. [Google Scholar]
- Curado, E.; Nobre, F. Derivation of nonlinear Fokker-Planck equations by means of approximations to the master equation. Phys. Rev. E 2003, 67, 021107. [Google Scholar]
- Nobre, F.; Curado, E.; Rowlands, G. A procedure for obtaining general nonlinear Fokker-Planck equations. Physica A 2004, 334, 109–118. [Google Scholar]
- Chavanis, P.H. Phase separation of bacterial colonies in a limit of high degradation. Eur. Phys. J. B 2006, 54, 525–549. [Google Scholar]
- Sopik, J.; Sire, C.; Chavanis, P.H. Dynamics of the Bose-Einstein condensation: Analogy with the collapse dynamics of a classical self-gravitating Brownian gas. Phys. Rev. E 2006, 74, 011112. [Google Scholar]
- Ribeiro, S.; Nobre, F.; Curado, E. Classes of N-Dimensional Nonlinear Fokker-Planck Equations Associated to Tsallis Entropy. Entropy 2011, 13, 1928–1944. [Google Scholar]
- Frank, T.D. Nonlinear Fokker-Planck Equations: Fundamentals and Applications; Springer-Verlag: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Chavanis, P.H. Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations. Eur. Phys. J. B 2008, 62, 179–208. [Google Scholar]
- Chavanis, P.H.; Delfini, L. Random transitions described by the stochastic Smoluchowski-Poisson system and by the stochastic Keller-Segel model. Phys. Rev. E 2014, 89, 032139. [Google Scholar]
- Campa, A.; Dauxois, T.; Ruffo, S. Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 2009, 480, 57–159. [Google Scholar]
- Chavanis, P.H. Emergence of non-Boltzmannian entropies: The role of microscopic constraints, 2015; in preparation.
- Chavanis, P.H. On the lifetime of metastable states in self-gravitating systems. Astron. Astrophys 2005, 432, 117–138. [Google Scholar]
- Landau, L; Lifshitz, E. Fluid Mechanics; Pergamon: London, UK, 1959. [Google Scholar]
- Dean, D.S. Langevin equation for the density of a system of interacting Langevin processes. J. Phys. A 1996, 29, L613. [Google Scholar]
- Chavanis, P.H. Gravitational phase transitions with an exclusion constraint in position space. Eur. Phys. J. B 2014, 87, 1–26. [Google Scholar]
- Chavanis, P.H.; Sire, C. Logotropic distributions. Physica A 2007, 375, 140–158. [Google Scholar]
- Bray, A. Theory of phase-ordering kinetics. Adv. Phys 1994, 43, 357–459. [Google Scholar]
- Dalfovo, F; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys 1999, 71, 463. [Google Scholar]
- Chavanis, P.H. Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions. I. Analytical results. Phys. Rev. D 2011, 84, 043531. [Google Scholar]
- Chavanis, P.H.; Sire, C. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models. Phys. Rev. E 2006, 73, 066103. [Google Scholar]
- Chavanis, P.H.; Sire, C. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. II. Inertial models. Phys. Rev. E 2006, 73, 066104. [Google Scholar]
- Sire, C.; Chavanis, P.H. Postcollapse dynamics of self-gravitating Brownian particles and bacterial populations. Phys. Rev. E 2004, 69, 066109. [Google Scholar]
- Chavanis, P.H.; Sire, C. Estimate of blow-up and relaxation time for self-gravitating Brownian particles and bacterial populations. Phys. Rev. E 2004, 70, 026115. [Google Scholar]
- Chavanis, P.H.; Sire, C. Exact analytical solution of the collapse of self-gravitating Brownian particles and bacterial populations at zero temperature. Phys. Rev. E 2011, 83, 031131. [Google Scholar]
- Chavanis, P.H.; Sire, C. Jeans type analysis of chemotactic collapse. Physica A 2008, 387, 4033–4052. [Google Scholar]
- Chavanis, P.H.; Delfini, L. Phase transitions in self-gravitating systems and bacterial populations with a screened attractive potential. Phys. Rev. E 2010, 81, 051103. [Google Scholar]
- Chavanis, P.H.; Sire, C. Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions. Phys. Rev. E 2004, 69, 016116. [Google Scholar]
- Debye, P.; Hückel, E. Zur Theorie der Elektrolyte II. Das Grenzgesetz für die elektrische Leitfähigkeit. Phys. Z 1923, 24, 305–325. [Google Scholar]
- Nernst, W. Zur Kinetik der in Lösung befindlichen Körper. Erste Abhandlung. Theorie der diffusion. Z. Phys. Chem 1888, 2, 613–637. [Google Scholar]
- Nernst, W. Die elektromotorische Wirksamkeit der Jonen. Z. Phys. Chem. 1889, 4, 129–181. [Google Scholar]
- Planck, M. Ueber die Erregung von Electricität und Wärme in Electrolyten. Ann. Phys. 1890, 39, 161–186. [Google Scholar]
- Chavanis, P.H.; Two-dimensional, Brownian. vortices. Physica A 2008, 28, 6917–6942. [Google Scholar]
- Chavanis, P.H. Statistical mechanics of two-dimensional point vortices: Relaxation equations and strong mixing limit. Eur. Phys. J. B 2014, 87, 81–104. [Google Scholar]
- Onsager, L. Statistical Hydrodynamics. Nuovo Cimento Suppl. 1949, 6, 279–287. [Google Scholar]
- Domínguez, A.; Oettel, M.; Dietrich, S. Dynamics of colloidal particles with capillary interactions. Phys. Rev. E 2010, 82, 011402. [Google Scholar]
- Zapperi, S.; Moreira, A.A.; Andrade, J.S. Flux Front Penetration in Disordered Superconductors. Phys. Rev. Lett. 2001, 86, 3622. [Google Scholar]
- Andrade, J.S.; da Silva, G.F.T.; Moreira, A.A.; Nobre, F.D.; Curado, E.M.F. Thermostatistics of Overdamped Motion of Interacting Particles. Phys. Rev. Lett. 2010, 105, 260601. [Google Scholar]
- Lutsko, J.F. A dynamical theory of nucleation for colloids and macromolecules. J. Chem. Phys. 2012, 136, 034509. [Google Scholar]
- Keller, E.F.; Segel, L.A. Model for Chemotaxis. J. Theor. Biol. 1971, 30, 225–234. [Google Scholar]
- Newman, T.J.; Grima, R. Many-body theory of chemotactic cell-cell interactions. Phys. Rev. E 2004, 70, 051916. [Google Scholar]
- Chavanis, P.H.; Sire, C. Kinetic and hydrodynamic models of chemotactic aggregation. Physica A 2007, 384, 199–222. [Google Scholar]
- Binney, J; Tremaine, S. Galactic Dynamics; Princeton University Press: Princeton, NJ, USA, 1987. [Google Scholar]
- Bouchet, F.; Venaille, A. Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 2012, 515, 227–295. [Google Scholar]
- Miller, J. Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett. 1990, 65, 2137. [Google Scholar]
- Robert, R.; Sommeria, J. Statistical equililbrium states for two-dimensional flows. J. Fluid Mech. 1991, 229, 291–310. [Google Scholar]
- Ellis, R.; Haven, K.; Turkington, B. Nonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows. Nonlinearity 2002, 15, 239–255. [Google Scholar]
- Chavanis, P.H. Statistical mechanics of geophysical turbulence: application to jovian flows and Jupiter’s great red spot. Physica D 2005, 200, 257–272. [Google Scholar]
- Chavanis, P.H. Coarse-grained distributions and superstatistics. Physica A 2006, 359, 177–212. [Google Scholar]
- Chavanis, P.H. Statistical mechanics of 2D turbulence with a prior vorticity distribution. Physica D 2008, 237, 1998–2002. [Google Scholar]
- Chavanis, P.H.; Naso, A.; Dubrulle, B. Relaxation equations for two-dimensional turbulent flows with a prior vorticity distribution. Eur. Phys. J. B 2010, 77, 167–186. [Google Scholar]
- Chavanis, P.H. Dynamical and thermodynamical stability of two-dimensional flows: Variational principles and relaxation equations. Eur. Phys. J. B 2009, 70, 73–105. [Google Scholar]
- Bouchet, F.; Laurie, J.; Zaboronski, O. Langevin Dynamics, Large Deviations and Instantons for the Quasi-Geostrophic Model and Two-Dimensional Euler Equations. J. Stat. Phys. 2014, 156, 1066–1092. [Google Scholar]
- Bouchet, F.; Simonnet, E. Random Changes of Flow Topology in Two-Dimensional and Geophysical Turbulence. Phys. Rev. Lett. 2009, 102, 094504. [Google Scholar]
- Marconi, U.M.B.; Tarazona, P. Dynamic density functional theory of fluids. J. Chem. Phys. 1999, 110, 8032–8044. [Google Scholar]
- Chavanis, P.H. Brownian particles with long- and short-range interactions. Physica A 2011, 390, 1546–1574. [Google Scholar]
- Chavanis, P.H.; Laurençot, P.; Lemou, M. Chapman-Enskog derivation of the generalized Smoluchowski equation. Physica A 2004, 341, 145–164. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavanis, P.-H. Generalized Stochastic Fokker-Planck Equations. Entropy 2015, 17, 3205-3252. https://doi.org/10.3390/e17053205
Chavanis P-H. Generalized Stochastic Fokker-Planck Equations. Entropy. 2015; 17(5):3205-3252. https://doi.org/10.3390/e17053205
Chicago/Turabian StyleChavanis, Pierre-Henri. 2015. "Generalized Stochastic Fokker-Planck Equations" Entropy 17, no. 5: 3205-3252. https://doi.org/10.3390/e17053205
APA StyleChavanis, P.-H. (2015). Generalized Stochastic Fokker-Planck Equations. Entropy, 17(5), 3205-3252. https://doi.org/10.3390/e17053205
