E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Topical Collection "Novel Drug Candidates for Anticancer Therapy: Design, Preliminary Evaluations, and Further Developments"

A topical collection in Molecules (ISSN 1420-3049). This collection belongs to the section "Medicinal Chemistry".

Editors

Collection Editor
Dr. Jean Jacques Vanden Eynde

Formerly head of the Department of Organic Chemistry (FS), University of Mons-UMONS, 7000 Mons, Belgium
Website | E-Mail
Interests: heterocycles; microwave-induced synthesis; medicinal chemistry; green chemistry
Collection Editor
Dr. Annie Mayence

Formerly professor at the Haute Ecole Provinciale de Hainaut-Condorcet, 7330 Saint-Ghislain, Belgium
Website | E-Mail
Interests: medicinal chemistry, organic synthesis, parasitic diseases, orphan drugs
Former Guest Editor
Prof. Dr. Tien L. Huang *

Formerly professor at Division of Basic and Pharmaceutical sciences, College of Pharmacy, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
Website | E-Mail
Phone: 504-520-7603
Interests: medicinal chemistry; organic chemistry; anti-opportunistic agents; anti-parasitic agents; prodrugs
* One of the founding Collection Editors and Collection Editor up to 6 March 2015

Topical Collection Information

Dear Colleagues,

Developing novel cancer therapeutics is essential for treating cancer, a complex, multi-factorial disease that is dreaded worldwide. Although significant advances have been made in recent years in preventing and treating cancer, the mortality rate is still unacceptably high. Many of the current chemotherapeutics are limited by significant side effects, unpredictable efficacies or acquired resistances. Recent discoveries concerning the pathogenesis and biology of cancer have unraveled new, strategic cellular targets for drug intervention. This has allowed the rational development of novel cancer therapeutics. For this Special Issue, we invite the submission of manuscripts that focus on the design, synthesis, evaluation, and further development of investigational agents (including natural products) as potential cancer chemotherapeutics.

Dr. Jean Jacques Vanden Eynde
Dr. Annie Mayence
Dr. Tien L. Huang
Collection Editors

Manuscript Submission Information

Manuscripts for the topical collection can be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on this website. The topical collection considers regular research articles, short communications and review articles. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page.

Please visit the Instructions for Authors page before submitting a manuscript. The article processing charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs).


Keywords

  • anticancer activity
  • anticancer agents
  • antiproliferative effects
  • antitumor activity
  • apoptosis
  • cancer cells
  • chemotherapy
  • cytotoxicity
  • oncology
  • tumor cells

Published Papers (93 papers)

2018

Jump to: 2017, 2016, 2015, 2014

Open AccessArticle Identification by Molecular Docking of Homoisoflavones from Leopoldia comosa as Ligands of Estrogen Receptors
Molecules 2018, 23(4), 894; https://doi.org/10.3390/molecules23040894
Received: 21 March 2018 / Revised: 9 April 2018 / Accepted: 10 April 2018 / Published: 12 April 2018
PDF Full-text (25666 KB) | HTML Full-text | XML Full-text
Abstract
The physiological responses to estrogen hormones are mediated within specific tissues by at least two distinct receptors, ERα and ERβ. Several natural and synthetic molecules show activity by interacting with these proteins. In particular, a number of vegetal compounds known as phytoestrogens shows
[...] Read more.
The physiological responses to estrogen hormones are mediated within specific tissues by at least two distinct receptors, ERα and ERβ. Several natural and synthetic molecules show activity by interacting with these proteins. In particular, a number of vegetal compounds known as phytoestrogens shows estrogenic or anti-estrogenic activity. The majority of these compounds belongs to the isoflavones family and the most representative one, genistein, shows anti-proliferative effects on various hormone-sensitive cancer cells, including breast, ovarian and prostate cancer. In this work we describe the identification of structurally related homoisoflavones isolated from Leopoldia comosa (L.) Parl. (L. comosa), a perennial bulbous plant, potentially useful as hormonal substitutes or complements in cancer treatments. Two of these compounds have been selected as potential ligands of estrogen receptors (ERs) and the interaction with both isoforms of estrogen receptors have been investigated through molecular docking on their crystallographic structures. The results provide evidence of the binding of these compounds to the target receptors and their interactions with key residues of the active sites of the two proteins, and thus they could represent suitable leads for the development of novel tools for the dissection of ER signaling and the development of new pharmacological treatments in hormone-sensitive cancers. Full article
Figures

Graphical abstract

Open AccessReview Polymer-Mediated Delivery of siRNAs to Hepatocellular Carcinoma: Variables Affecting Specificity and Effectiveness
Molecules 2018, 23(4), 777; https://doi.org/10.3390/molecules23040777
Received: 26 February 2018 / Revised: 22 March 2018 / Accepted: 23 March 2018 / Published: 28 March 2018
PDF Full-text (32541 KB) | HTML Full-text | XML Full-text
Abstract
Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules
[...] Read more.
Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules with tumor specific effects and delivery carriers with tumor targeting ability. In this regard, nucleic acid-based drug (NABD) and particularly small interfering RNAs (siRNAs), are attractive molecules due to the possibility to be engineered to target specific tumor genes. On the other hand, polymeric-based delivery systems are emerging as versatile carriers to generate tumor-targeted delivery systems. Here we will focus on the most recent findings in the selection of siRNA/polymeric targeted delivery systems for hepatocellular carcinoma (HCC), a human tumor for which currently available therapeutic approaches are poorly effective. In addition, we will discuss the most attracting and, in our opinion, promising siRNA-polymer combinations for HCC in relation to the biological features of HCC tissue. Attention will be also put on the mathematical description of the mechanisms ruling siRNA-carrier delivery, this being an important aspect to improve effectiveness reducing the experimental work. Full article
Figures

Figure 1

Open AccessReview Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review
Molecules 2018, 23(3), 649; https://doi.org/10.3390/molecules23030649
Received: 20 February 2018 / Revised: 6 March 2018 / Accepted: 9 March 2018 / Published: 13 March 2018
Cited by 1 | PDF Full-text (931 KB) | HTML Full-text | XML Full-text
Abstract
Ganoderma lucidum (Reishi) is a popular medicinal mushroom and has been used in oriental medicine because of its promoting effects on health and life expectancy. G. lucidum contains various compounds with a high grade of biological activty, which increase the immunity and show
[...] Read more.
Ganoderma lucidum (Reishi) is a popular medicinal mushroom and has been used in oriental medicine because of its promoting effects on health and life expectancy. G. lucidum contains various compounds with a high grade of biological activty, which increase the immunity and show antitumour, antimicrobial, anti-inflammatory, antioxidant and acetylcholinesterase inhibitory activity. Several of these substances belong to the triterpenoids and polysaccharides classes. Proteins, lipids, phenols, sterols, etc. are also present. In the present review, an extensive overview of the presence of antitumour, antimicrobial, antioxidant and antiacetylcholinesterase compounds in G. lucidum extracts will be given, along with an evaluation of their therapeutic effects. Full article
Figures

Graphical abstract

Open AccessArticle Half-Sandwich Ru(II) and Os(II) Bathophenanthroline Complexes Containing a Releasable Dichloroacetato Ligand
Molecules 2018, 23(2), 420; https://doi.org/10.3390/molecules23020420
Received: 15 January 2018 / Revised: 8 February 2018 / Accepted: 12 February 2018 / Published: 14 February 2018
Cited by 2 | PDF Full-text (2238 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We report on the preparation and thorough characterization of cytotoxic half-sandwich complexes [Ru(η6-pcym)(bphen)(dca)]PF6 (Ru-dca) and [Os(η6-pcym)(bphen)(dca)]PF6 (Os-dca) containing dichloroacetate(1–) (dca) as the releasable O-donor
[...] Read more.
We report on the preparation and thorough characterization of cytotoxic half-sandwich complexes [Ru(η6-pcym)(bphen)(dca)]PF6 (Ru-dca) and [Os(η6-pcym)(bphen)(dca)]PF6 (Os-dca) containing dichloroacetate(1–) (dca) as the releasable O-donor ligand bearing its own cytotoxicity; pcym = 1-methyl-4-(propan-2-yl)benzene (p-cymene), bphen = 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline). Complexes Ru-dca and Os-dca hydrolyzed in the water-containing media, which led to the dca ligand release (supported by 1H NMR and electrospray ionization mass spectra). Mass spectrometry studies revealed that complexes Ru-dca and Os-dca do not interact covalently with the model proteins cytochrome c and lysozyme. Both complexes exhibited slightly higher in vitro cytotoxicity (IC50 = 3.5 μM for Ru-dca, and 2.6 μM for Os-dca) against the A2780 human ovarian carcinoma cells than cisplatin (IC50 = 5.9 μM), while their toxicity on the healthy human hepatocytes was found to be IC50 = 19.1 μM for Ru-dca and IC50 = 19.7 μM for Os-dca. Despite comparable cytotoxicity of complexes Ru-dca and Os-dca, both the complexes modified the cell cycle, mitochondrial membrane potential, and mitochondrial cytochrome c release by a different way, as revealed by flow cytometry experiments. The obtained results point out the different mechanisms of action between the complexes. Full article
Figures

Graphical abstract

2017

Jump to: 2018, 2016, 2015, 2014

Open AccessArticle Design, Synthesis and Cytotoxic Evaluation of Novel Chalcone Derivatives Bearing Triazolo[4,3-a]-quinoxaline Moieties as Potent Anticancer Agents with Dual EGFR Kinase and Tubulin Polymerization Inhibitory Effects
Received: 6 December 2017 / Revised: 20 December 2017 / Accepted: 22 December 2017 / Published: 27 December 2017
Cited by 3 | PDF Full-text (1803 KB) | HTML Full-text | XML Full-text
Abstract
A series of hybrid of triazoloquinoxaline-chalcone derivatives 7ak were designed, synthesized, fully characterized, and evaluated for their cytotoxic activity against three target cell lines: human breast adenocarcinoma (MCF-7), human colon carcinoma (HCT-116), and human hepatocellular carcinoma (HEPG-2). The preliminary results showed
[...] Read more.
A series of hybrid of triazoloquinoxaline-chalcone derivatives 7ak were designed, synthesized, fully characterized, and evaluated for their cytotoxic activity against three target cell lines: human breast adenocarcinoma (MCF-7), human colon carcinoma (HCT-116), and human hepatocellular carcinoma (HEPG-2). The preliminary results showed that some of these chalcones like 7bc, and 7eg exhibited significant antiproliferative effects against most of the cell lines, with selective or non-selective behavior, indicated by IC50 values in the 1.65 to 34.28 µM range. In order to investigate the mechanistic aspects of these active compounds, EGFR TK and tubulin inhibitory activities were measured as further biological assays. The EGFR TK assay results revealed that the derivatives 7ac, 7e, and 7g could inhibit the EGFR TK in the submicromolar range (0.093 to 0.661 µM). Moreover, an antitubulin polymerization effect was noted for the active derivatives compared to the reference drug colchicine, with compounds 7e and 7g displaying 14.7 and 8.4 micromolar activity, respectively. Furthermore, a molecular docking study was carried out to explain the observed effects and the binding modes of these chalcones with the EGFR TK and tubulin targets. Full article
Figures

Graphical abstract

Open AccessArticle rLj-RGD3 Suppresses the Growth of HeyA8 Cells in Nude Mice
Molecules 2017, 22(12), 2234; https://doi.org/10.3390/molecules22122234
Received: 1 November 2017 / Revised: 1 December 2017 / Accepted: 12 December 2017 / Published: 15 December 2017
PDF Full-text (4317 KB) | HTML Full-text | XML Full-text
Abstract
In the previous study, rLj-RGD3, a recombinant toxin protein which contains three RGD motifs, was reported to not only inhibit the proliferation of an ovarian cancer cell line, HeyA8 cells, by inducing apoptosis, but also block their adhesion, migration and invasion processes. However,
[...] Read more.
In the previous study, rLj-RGD3, a recombinant toxin protein which contains three RGD motifs, was reported to not only inhibit the proliferation of an ovarian cancer cell line, HeyA8 cells, by inducing apoptosis, but also block their adhesion, migration and invasion processes. However, whether rLj-RGD3 could also suppress the tumor growth in HeyA8 xenografted mice has not been reported yet. In the present study, rLj-RGD3 was intraperitoneally injected in the nude mice bearing HeyA8 tumors. Compared with the control group (normal saline), rLj-RGD3 inhibited the tumor growth significantly in the HeyA8 xenografted mice in a dose-dependent manner without affecting their body weights. Based on the H&E, Hoechst 33258 and TUNEL staining assays, as well as western blot analysis, rLj-RGD3 reduced the weight and volume of the solid tumors, probably by disturbing the tissue structure, inducing apoptosis and suppressing the FAK/PI3K/AKT pathway. Most importantly, rLj-RGD3 was found to prolong the survival days of the ovarian tumor xenografted mice, which suggested rLj-RGD3 might act as an effective and safe drug to treat ovarian cancer patients. Full article
Figures

Graphical abstract

Open AccessArticle Synthesis and In Vitro Antiproliferative Activity of 11-Substituted Neocryptolepines with a Branched ω-Aminoalkylamino Chain
Molecules 2017, 22(11), 1954; https://doi.org/10.3390/molecules22111954
Received: 14 October 2017 / Revised: 3 November 2017 / Accepted: 10 November 2017 / Published: 12 November 2017
PDF Full-text (2342 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Neocryptolepine, which is a kind of tetracyclic indoloquinoline alkaloid, exhibits the inhibition of topoisomerase II and shows antiproliferative activity. The present study describes the synthesis and antiproliferative evaluation of several neocryptolepine analogues carrying a branched, functionalized dibasic side chain at C11. These 2-substituted
[...] Read more.
Neocryptolepine, which is a kind of tetracyclic indoloquinoline alkaloid, exhibits the inhibition of topoisomerase II and shows antiproliferative activity. The present study describes the synthesis and antiproliferative evaluation of several neocryptolepine analogues carrying a branched, functionalized dibasic side chain at C11. These 2-substituted 5-methyl-indolo[2,3-b]quinoline derivatives were prepared by nucleophilic aromatic substitution (SNAr) of 11-chloroneocryptolepines with appropriate 1,2- and 1,3-diamines. Some of the 11-(ω-aminoalkylamino) derivatives were further transformed into 11-ureido and thioureido analogues. Many of the prepared neocryptolepine derivatives showed submicromolar antiproliferative activity against the human leukemia MV4-11 cell line. Among them, 11-(3-amino-2-hydroxy)propylamino derivatives 2h and 2k were the most cytotoxic with a mean IC50 value of 0.042 μM and 0.057 μM against the MV4-11 cell line, 0.197 μM and 0.1988 μM against the A549 cell line, and 0.138 μM and 0.117 μM against the BALB/3T3 cell line, respectively. Full article
Figures

Figure 1

Open AccessArticle Synthesis and Antitumor Activity of Novel Arylpiperazine Derivatives Containing the Saccharin Moiety
Molecules 2017, 22(11), 1857; https://doi.org/10.3390/molecules22111857
Received: 20 September 2017 / Revised: 17 October 2017 / Accepted: 25 October 2017 / Published: 29 October 2017
Cited by 1 | PDF Full-text (2305 KB) | HTML Full-text | XML Full-text
Abstract
Prostate cancer is a major public health problem worldwide. For the development of potential anti-prostate cancer agents, a series of novel arylpiperazine derivatives containing the saccharin moiety based on previous studies was designed, synthesized, and evaluated in prostate (PC-3, LNCaP, and DU145) cancer
[...] Read more.
Prostate cancer is a major public health problem worldwide. For the development of potential anti-prostate cancer agents, a series of novel arylpiperazine derivatives containing the saccharin moiety based on previous studies was designed, synthesized, and evaluated in prostate (PC-3, LNCaP, and DU145) cancer cell lines for their anticancer activities. The majority of the compounds exhibited excellent selective activity for the tested cancer cells. Compounds 4 and 12 exhibited strong cytotoxic activities against DU145 cells (half maximal inhibitory concentration (IC50) < 2 μM). The structure–activity relationship (SAR) of these arylpiperazine derivatives was also discussed based on the obtained experimental data. This work provides a potential lead compound for anticancer agent development focusing on prostate cancer therapy. Full article
Figures

Figure 1

Open AccessArticle Berberine Activates Aryl Hydrocarbon Receptor but Suppresses CYP1A1 Induction through miR-21-3p Stimulation in MCF-7 Breast Cancer Cells
Molecules 2017, 22(11), 1847; https://doi.org/10.3390/molecules22111847
Received: 4 October 2017 / Revised: 19 October 2017 / Accepted: 25 October 2017 / Published: 28 October 2017
Cited by 1 | PDF Full-text (1745 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Berberine and the methylenedioxy ring-opening derivatives palmatine and jatrorrhizine are active ingredients in immunomodulatory plants, such as goldenseal. This study aimed to illustrate the effects of protoberberines on aryl hydrocarbon receptor (AhR) activation and cytochrome P450 (CYP) 1 in the estrogen receptor (ER)α(+)
[...] Read more.
Berberine and the methylenedioxy ring-opening derivatives palmatine and jatrorrhizine are active ingredients in immunomodulatory plants, such as goldenseal. This study aimed to illustrate the effects of protoberberines on aryl hydrocarbon receptor (AhR) activation and cytochrome P450 (CYP) 1 in the estrogen receptor (ER)α(+) MCF-7 breast cancer cells. Among protoberberines at non-cytotoxic concentrations (≤10 μM), berberine had the most potent and statistically significant effects on AhR activation and CYP1A1/1A2/1B1 mRNA induction. The 24-h exposure to 10 μM berberine did not change CYP1A1 mRNA stability, protein level and function. Berberine significantly increased micro RNA (miR)-21-3p by 36% and the transfection of an inhibitor of miR-21-3p restored the induction of CYP1A1 protein with a 50% increase. These findings demonstrate that the ring opening of the methylenedioxyl moiety in berberine decreased AhR activation in MCF-7 cells. While CYP1A1 mRNA was elevated, berberine-induced miR-21-3p suppressed the increase of functional CYP1A1 protein expression. Full article
Figures

Graphical abstract

Open AccessArticle Studies on the Synthesis, Photophysical and Biological Evaluation of Some Unsymmetrical Meso-Tetrasubstituted Phenyl Porphyrins
Molecules 2017, 22(11), 1815; https://doi.org/10.3390/molecules22111815
Received: 6 September 2017 / Revised: 18 October 2017 / Accepted: 22 October 2017 / Published: 25 October 2017
Cited by 1 | PDF Full-text (4059 KB) | HTML Full-text | XML Full-text
Abstract
Abstract: We designed three unsymmetrical meso-tetrasubstituted phenyl porphyrins for further development as theranostic agents for cancer photodynamic therapy (PDT): 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (P2.2), Zn(II)-5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (Zn(II)2.2) and Cu(II)-5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (Cu(II)2.2). The porphyrinic compounds were synthesized and their structures were confirmed by elemental analysis, FT-IR, UV-Vis, EPR
[...] Read more.
Abstract: We designed three unsymmetrical meso-tetrasubstituted phenyl porphyrins for further development as theranostic agents for cancer photodynamic therapy (PDT): 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (P2.2), Zn(II)-5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (Zn(II)2.2) and Cu(II)-5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (Cu(II)2.2). The porphyrinic compounds were synthesized and their structures were confirmed by elemental analysis, FT-IR, UV-Vis, EPR and NMR. The compounds had a good solubility in polar/nonpolar media. P2.2 and, to a lesser extent, Zn(II)2.2 were fluorescent, albeit with low fluoresence quantum yields. P2.2 and Zn(II)2.2 exhibited PDT-acceptable values of singlet oxygen generation. A “dark” cytotoxicity study was performed using cells that are relevant for the tumor niche (HT-29 colon carcinoma cells and L929 fibroblasts) and for blood (peripheral mononuclear cells). Cellular uptake of fluorescent compounds, cell viability/proliferation and death were evaluated. P2.2 was highlighted as a promising theranostic agent for PDT in solid tumors considering that P2.2 generated PDT-acceptable singlet oxygen yields, accumulated into tumor cells and less in blood cells, exhibited good fluorescence within cells for imagistic detection, and had no significant cytotoxicity in vitro against tumor and normal cells. Complexing of P2.2 with Zn(II) or Cu(II) altered several of its PDT-relevant properties. These are consistent arguments for further developing P2.2 in animal models of solid tumors for in vivo PDT. Full article
Figures

Graphical abstract

Open AccessArticle Pratol, an O-Methylated Flavone, Induces Melanogenesis in B16F10 Melanoma Cells via p-p38 and p-JNK Upregulation
Molecules 2017, 22(10), 1704; https://doi.org/10.3390/molecules22101704
Received: 9 August 2017 / Revised: 6 October 2017 / Accepted: 8 October 2017 / Published: 11 October 2017
Cited by 2 | PDF Full-text (2651 KB) | HTML Full-text | XML Full-text
Abstract
Tyrosinase is the rate-limiting enzyme critical for melanin synthesis. It controls pigmentation in the skin. Activation of tyrosinase is currently the most common approach in the development of tanning and haircare products. Pratol is a 7-hydroxy-4-methoxyflavone found in Trifolium pratense. In this
[...] Read more.
Tyrosinase is the rate-limiting enzyme critical for melanin synthesis. It controls pigmentation in the skin. Activation of tyrosinase is currently the most common approach in the development of tanning and haircare products. Pratol is a 7-hydroxy-4-methoxyflavone found in Trifolium pratense. In this study, we investigated the effects of pratol on melanogenesis. We also studied the mechanism of action of pratol in B16F10 mouse melanoma cells. The cells were treated with various concentrations (6.25, 12.5, 25, and 50 μM) of pratol to observe its effects. The results showed that pratol significantly increased melanin content and tyrosinase activity in the cells without being cytotoxic. In addition, pratol strongly increased the expression of tyrosinase and tyrosinase-related protein-1 and 2 by enhancing the expression of microphthalmia-associated transcription factor. Furthermore, pratol stimulated melanogenesis via the phosphorylation of p38, c-Jun N-terminal kinases (JNK), and extracellular signal–regulated kinase (ERK). The findings from an assay searching for the inhibitor revealed that SB203580 (a specific p38 inhibitor) or SP600125 (a p-JNK inhibitor) attenuated pratol-induced cellular tyrosinase activity whereas PD98059 (an ERK inhibitor) did not. Additionally, pratol interfered with the phosphorylation of p-AKT. We also found that pratol-induced melanogenesis was reversed by H89, which is a specific protein kinase A inhibitor. The results suggest that, owing to its multi-functional properties, pratol may be a potential tanning agent or a therapeutic agent for hair depigmentation in the cosmetic industry. Full article
Figures

Figure 1

Open AccessArticle Inhibitory Effects of Total Triterpenoid Saponins Isolated from the Seeds of the Tea Plant (Camellia sinensis) on Human Ovarian Cancer Cells
Molecules 2017, 22(10), 1649; https://doi.org/10.3390/molecules22101649
Received: 23 August 2017 / Revised: 17 September 2017 / Accepted: 28 September 2017 / Published: 30 September 2017
Cited by 2 | PDF Full-text (5304 KB) | HTML Full-text | XML Full-text
Abstract
Ovarian cancer is regarded as one of the most severe malignancies for women in the world. Death rates have remained steady over the past five decades, due to the undeniable inefficiency of the current treatment in preventing its recurrence and death. The development
[...] Read more.
Ovarian cancer is regarded as one of the most severe malignancies for women in the world. Death rates have remained steady over the past five decades, due to the undeniable inefficiency of the current treatment in preventing its recurrence and death. The development of new effective alternative agents for ovarian cancer treatment is becoming increasingly critical. Tea saponins (TS) are triterpenoidsaponins composed of sapogenins, glycosides, and organic acids, which possess a variety of pharmacological activities, and have shown promise in the anti-cancer field. Through cell CellTiter 96® Aqueous One Solution Cell Proliferation assay (MTS) assay, colony formation, Hoechst 33342 staining assay, caspase-3/7 activities, flow cytometry for apoptosis analysis, and Western blot, we observed that TS isolated from the seeds of tea plants, Camellia sinensis, exhibited strong anti-proliferation inhibitory effects on OVCAR-3 and A2780/CP70 ovarian cancer cell lines. Our results indicate that TS may selectivity inhibit human ovarian cancer cells by mediating apoptosis through the extrinsic pathway, and initiating anti-angiogenesis via decreased VEGF protein levels in a HIF-1α-dependent pathway. Our data suggests that, in the future, TS could be incorporated into a potential therapeutic agent against human ovarian cancer. Full article
Figures

Figure 1

Open AccessArticle Anticarcinogenic Effect of Spices Due to Phenolic and Flavonoid Compounds—In Vitro Evaluation on Prostate Cells
Molecules 2017, 22(10), 1626; https://doi.org/10.3390/molecules22101626
Received: 2 September 2017 / Accepted: 24 September 2017 / Published: 28 September 2017
Cited by 1 | PDF Full-text (2938 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
This study shows the effects of spices, and their phenolic and flavonoid compounds, on prostate cell lines (PNT1A, 22RV1 and PC3). The results of an MTT assay on extracts from eight spices revealed the strongest inhibitory effects were from black pepper and caraway
[...] Read more.
This study shows the effects of spices, and their phenolic and flavonoid compounds, on prostate cell lines (PNT1A, 22RV1 and PC3). The results of an MTT assay on extracts from eight spices revealed the strongest inhibitory effects were from black pepper and caraway seed extracts. The strongest inhibitory effect on prostatic cells was observed after the application of extracts of spices in concentration of 12.5 mg·mL−1. An LC/MS analysis identified that the most abundant phenolic and flavonoid compounds in black pepper are 3,4-dihydroxybenzaldehyde and naringenin chalcone, while the most abundant phenolic and flavonoid compounds in caraway seeds are neochlorogenic acid and apigenin. Using an MTT assay for the phenolic and flavonoid compounds from spices, we identified the IC50 value of ~1 mmol·L−1 PNT1A. The scratch test demonstrated that the most potent inhibitory effect on PNT1A, 22RV1 and PC3 cells is from the naringenin chalcone contained in black pepper. From the spectrum of compounds assessed, the naringenin chalcone contained in black pepper was identified as the most potent inhibitor of the growth of prostate cells. Full article
Figures

Graphical abstract

Open AccessArticle Identification of Novel Bisbenzimidazole Derivatives as Anticancer Vacuolar (H+)-ATPase Inhibitors
Molecules 2017, 22(9), 1559; https://doi.org/10.3390/molecules22091559
Received: 14 July 2017 / Revised: 31 August 2017 / Accepted: 13 September 2017 / Published: 16 September 2017
PDF Full-text (5312 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The vacuolar (H+)-ATPases (V-ATPases) are a family of ATP-driven proton pumps and they have been associated with cancer invasion, metastasis, and drug resistance. Despite the clear involvement of V-ATPases in cancer, the therapeutic use of V-ATPase-targeting small molecules has not reached
[...] Read more.
The vacuolar (H+)-ATPases (V-ATPases) are a family of ATP-driven proton pumps and they have been associated with cancer invasion, metastasis, and drug resistance. Despite the clear involvement of V-ATPases in cancer, the therapeutic use of V-ATPase-targeting small molecules has not reached human clinical trials to date. Thus, V-ATPases are emerging as important targets for the identification of potential novel therapeutic agents. We identified a bisbenzimidazole derivative (V) as an initial hit from a similarity search using four known V-ATPase inhibitors (IIV). Based on the initial hit (V), we designed and synthesized a focused set of novel bisbenzimidazole analogs (2ae). All newly prepared compounds have been screened for selected human breast cancer (MDA-MB-468, MDA-MB-231, and MCF7) and ovarian cancer (A2780, Cis-A2780, and PA-1) cell lines, along with the normal breast epithelial cell line, MCF10A. The bisbenzimidazole derivative (2e) is active against all cell lines tested. Remarkably, it demonstrated high cytotoxicity against the triple-negative breast cancer (TNBC) cell line, MDA-MB-468 (IC50 = 0.04 ± 0.02 μM). Additionally, it has been shown to inhibit the V-ATPase pump that is mainly responsible for acidification. To the best of our knowledge the bisbenzimidazole pharmacophore has been identified as the first V-ATPase inhibitor in its class. These results strongly suggest that the compound 2e could be further developed as a potential anticancer V-ATPase inhibitor for breast cancer treatment. Full article
Figures

Figure 1

Open AccessArticle Design and Antiproliferative Evaluation of Novel Sulfanilamide Derivatives as Potential Tubulin Polymerization Inhibitors
Molecules 2017, 22(9), 1470; https://doi.org/10.3390/molecules22091470
Received: 21 July 2017 / Revised: 21 August 2017 / Accepted: 31 August 2017 / Published: 5 September 2017
PDF Full-text (1823 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of sulfanilamide-1,2,3-triazole hybrids were designed by a molecular hybridization strategy and evaluated for antiproliferative activity against three selected cancer cell lines (MGC-803, MCF-7 and PC-3). The detailed structure-activity relationships for these sulfanilamide-1,2,3-triazole hybrids were investigated. All these sulfanilamide-1,2,3-triazole hybrids exhibited moderate
[...] Read more.
A series of sulfanilamide-1,2,3-triazole hybrids were designed by a molecular hybridization strategy and evaluated for antiproliferative activity against three selected cancer cell lines (MGC-803, MCF-7 and PC-3). The detailed structure-activity relationships for these sulfanilamide-1,2,3-triazole hybrids were investigated. All these sulfanilamide-1,2,3-triazole hybrids exhibited moderate to potent activity against all cell lines. In particular 4-methyl-N-((1-(3-phenoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)benzenesulfonamide (11f) showed the most potent inhibitory effect against PC-3 cells, with an IC50 value of 4.08 μM. Furthermore, the tubulin polymerization inhibitory activity in vitro of compound 11f was 2.41 μM. These sulfanilamide hybrids might serve as bioactive fragments for developing more potent antiproliferative agents. Full article
Figures

Graphical abstract

Open AccessReview Sigma Receptor (σR) Ligands with Antiproliferative and Anticancer Activity
Molecules 2017, 22(9), 1408; https://doi.org/10.3390/molecules22091408
Received: 7 August 2017 / Revised: 22 August 2017 / Accepted: 23 August 2017 / Published: 25 August 2017
Cited by 2 | PDF Full-text (2210 KB) | HTML Full-text | XML Full-text
Abstract
Sigma receptor (σR) ligands have proven to be useful as cancer diagnostics and anticancer therapeutics and their ligands have been developed as molecular probes in oncology. Moreover, various σR ligands generate cancer cell death in vitro and in vivo. These σR ligands have
[...] Read more.
Sigma receptor (σR) ligands have proven to be useful as cancer diagnostics and anticancer therapeutics and their ligands have been developed as molecular probes in oncology. Moreover, various σR ligands generate cancer cell death in vitro and in vivo. These σR ligands have exhibited promising results against numerous human and rodent cancers and are investigated under preclinical and clinical study trials, indicating a new category of drugs in cancer therapy. Full article
Figures

Figure 1

Open AccessArticle Anticancer Activity of Ramalin, a Secondary Metabolite from the Antarctic Lichen Ramalina terebrata, against Colorectal Cancer Cells
Molecules 2017, 22(8), 1361; https://doi.org/10.3390/molecules22081361
Received: 3 August 2017 / Revised: 11 August 2017 / Accepted: 15 August 2017 / Published: 17 August 2017
Cited by 1 | PDF Full-text (6744 KB) | HTML Full-text | XML Full-text
Abstract
Colorectal cancer is a leading cause of death worldwide and occurs through the highly complex coordination of multiple cellular pathways, resulting in carcinogenesis. Recent studies have increasingly revealed that constituents of lichen extracts exhibit potent pharmaceutical activities, including anticancer activity against various cancer
[...] Read more.
Colorectal cancer is a leading cause of death worldwide and occurs through the highly complex coordination of multiple cellular pathways, resulting in carcinogenesis. Recent studies have increasingly revealed that constituents of lichen extracts exhibit potent pharmaceutical activities, including anticancer activity against various cancer cells, making them promising candidates for new anticancer therapeutic drugs. The main objective of this study was to evaluate the anticancer capacities of ramalin, a secondary metabolite from the Antarctic lichen Ramalina terebrata, in the human colorectal cancer cell line HCT116. In this study, ramalin displayed concentration-dependent anticancer activity against HCT116 cells, significantly suppressing proliferation and inducing apoptosis. Furthermore, ramalin induced cell cycle arrest in the gap 2/mitosis (G2/M) phase through the modulation of hallmark genes involved in the G2/M phase transition, such as tumour protein p53 (TP53), cyclin-dependent kinase inhibitor 1A (CDKN1A), cyclin-dependent kinase 1 (CDK1) and cyclin B1 (CCNB1). At both the transcriptional and translational level, ramalin caused a gradual increase in the expression of TP53 and its downstream gene CDKN1A, while decreasing the expression of CDK1 and CCNB1 in a concentration-dependent manner. In addition, ramalin significantly inhibited the migration and invasion of colorectal cancer cells in a concentration-dependent manner. Taken together, these data suggest that ramalin may be a therapeutic candidate for the targeted therapy of colorectal cancer. Full article
Figures

Figure 1

Open AccessArticle Novel Methylselenoesters as Antiproliferative Agents
Molecules 2017, 22(8), 1288; https://doi.org/10.3390/molecules22081288
Received: 29 June 2017 / Revised: 26 July 2017 / Accepted: 28 July 2017 / Published: 2 August 2017
Cited by 2 | PDF Full-text (7521 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Selenium (Se) compounds are potential therapeutic agents in cancer. Importantly, the biological effects of Se compounds are exerted by their metabolites, with methylselenol (CH3SeH) being one of the key executors. In this study, we developed a new series of methylselenoesters with
[...] Read more.
Selenium (Se) compounds are potential therapeutic agents in cancer. Importantly, the biological effects of Se compounds are exerted by their metabolites, with methylselenol (CH3SeH) being one of the key executors. In this study, we developed a new series of methylselenoesters with different scaffolds aiming to modulate the release of CH3SeH. The fifteen compounds follow Lipinski’s Rule of Five and with exception of compounds 1 and 14, present better drug-likeness values than the positive control methylseleninic acid. The compounds were evaluated to determine their radical scavenging activity. Compound 11 reduced both DPPH and ABTS radicals. The cytotoxicity of the compounds was evaluated in a panel of five cancer cell lines (prostate, colon and lung carcinoma, mammary adenocarcinoma and chronic myelogenous leukemia) and two non-malignant (lung and mammary epithelial) cell lines. Ten compounds had GI50 values below 10 μM at 72 h in four cancer cell lines. Compounds 5 and 15 were chosen for further characterization of their mechanism of action in the mammary adenocarcinoma cell line due to their similarity with methylseleninic acid. Both compounds induced G2/M arrest whereas cell death was partially executed by caspases. The reduction and metabolism were also investigated, and both compounds were shown to be substrates for redox active enzyme thioredoxin reductase. Full article
Figures

Graphical abstract

Open AccessReview Research Progress in the Modification of Quercetin Leading to Anticancer Agents
Molecules 2017, 22(8), 1270; https://doi.org/10.3390/molecules22081270
Received: 26 June 2017 / Revised: 24 July 2017 / Accepted: 25 July 2017 / Published: 29 July 2017
Cited by 7 | PDF Full-text (5215 KB) | HTML Full-text | XML Full-text
Abstract
The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone) is widely distributed in plants, foods, and beverages. This polyphenol compound exhibits varied biological actions such as antioxidant, radical-scavenging, anti-inflammatory, antibacterial, antiviral, gastroprotective, immune-modulator, and finds also application in the treatment of obesity, cardiovascular diseases and diabetes. Besides, quercetin
[...] Read more.
The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone) is widely distributed in plants, foods, and beverages. This polyphenol compound exhibits varied biological actions such as antioxidant, radical-scavenging, anti-inflammatory, antibacterial, antiviral, gastroprotective, immune-modulator, and finds also application in the treatment of obesity, cardiovascular diseases and diabetes. Besides, quercetin can prevent neurological disorders and exerts protection against mitochondrial damages. Various in vitro studies have assessed the anticancer effects of quercetin, although there are no conclusive data regarding its mode of action. However, low bioavailability, poor aqueous solubility as well as rapid body clearance, fast metabolism and enzymatic degradation hamper the use of quercetin as therapeutic agent, so intense research efforts have been focused on the modification of the quercetin scaffold to obtain analogs with potentially improved properties for clinical applications. This review gives an overview of the developments in the synthesis and anticancer-related activities of quercetin derivatives reported from 2012 to 2016. Full article
Figures

Graphical abstract

Open AccessArticle Newly Synthesized Doxorubicin Complexes with Selected Metals—Synthesis, Structure and Anti-Breast Cancer Activity
Molecules 2017, 22(7), 1106; https://doi.org/10.3390/molecules22071106
Received: 17 May 2017 / Revised: 30 June 2017 / Accepted: 1 July 2017 / Published: 4 July 2017
Cited by 3 | PDF Full-text (4703 KB) | HTML Full-text | XML Full-text
Abstract
Doxorubicin (DOX) is very effective chemotherapeutic agent, however it has several major drawbacks. Therefore the motivation for developing novel drug complexes as anticancer agents with different mechanism of action has arisen. The aim of the present study was to evaluate the influence of
[...] Read more.
Doxorubicin (DOX) is very effective chemotherapeutic agent, however it has several major drawbacks. Therefore the motivation for developing novel drug complexes as anticancer agents with different mechanism of action has arisen. The aim of the present study was to evaluate the influence of newly synthesized DOX complexes with selected metals (Mg, Mn, Co, Ni, Fe, Cu, Zn) on apoptosis, cell cycle, viability, proliferation and cytotoxicity in the breast cancer cell line MCF-7. Complexation of DOX with metals has likewise been the subject of our research. The current work showed that the tested bivalent metals at a given pH condition formed metal:DOX complexes in a ratio of 2:1, while iron complexes with DOX in a ratio of 3:1. The studies also showed that selected metal-DOX complexes (Mg-DOX, Mn-DOX, Ni-DOX) at 0.5 µM concentration significantly decreased cell viability and proliferation, however they increased caspase 7 activity. Results also indicated that studied metal-DOX complexes showed high cytotoxicity in MCF-7 cells. Therefore they were chosen for cell cycle check-points and apoptosis/necrosis analysis studied by flow cytometry. Obtained results suggest that doxorubicin complexed by specified metals can be considered as a potential anti-breast cancer agent, which is characterized by a higher efficacy than a parent drug. Full article
Figures

Graphical abstract

Open AccessArticle Determination of Structural Requirements of N-Substituted Tetrahydro-β-Carboline Imidazolium Salt Derivatives Using in Silico Approaches for Designing MEK-1 Inhibitors
Molecules 2017, 22(6), 1020; https://doi.org/10.3390/molecules22061020
Received: 9 May 2017 / Revised: 8 June 2017 / Accepted: 12 June 2017 / Published: 19 June 2017
Cited by 1 | PDF Full-text (3608 KB) | HTML Full-text | XML Full-text
Abstract
Novel N-substituted tetrahydro-β-carboline imidazolium salt derivatives proved to have potent antitumor activity in past research. The Topomer CoMFA and CoMSIA function in Sybyl-X 2.0 software was applied for the identification of important features of N-substituted tetrahydro-β-carboline-imidazolium salt derivative moieties. In the
[...] Read more.
Novel N-substituted tetrahydro-β-carboline imidazolium salt derivatives proved to have potent antitumor activity in past research. The Topomer CoMFA and CoMSIA function in Sybyl-X 2.0 software was applied for the identification of important features of N-substituted tetrahydro-β-carboline-imidazolium salt derivative moieties. In the case of Topomer CoMFA, all the compounds were split into two fragments which were used to generate a 3D invariant representation, the statistical results of the Topomer CoMFA model: q2 value of 0.700; r2 value of 0.954; with 5 optimum components. The database alignment was utilized for building the CoMSIA model, and the CoMSIA model had q2 and r2 values of 0.615 and 0.897, with 4 optimum components. Target fishing of the PharmMapper platform was utilised for finding potential targets, the human mitogen-activated protein kinase 1 (MEK-1) was found to be the primary potential target for the three compounds with the fit scores of 6.288, 5.741, and 6.721. The molecular docking technique of MOE 2015 was carried out to identify the interactions of amino acids surrounding the ligand, and correlating QASR contour maps were used to identify structural requirements of N-substituted tetrahydro-β-carboline imidazolium salt moieties. Molecular dynamics and simulation studies proved that the target protein was stable for 0.8–5 ns. The pivotal moieties of N-substituted tetrahydro-β-carboline imidazolium salt derivatives and its potential targets were verified by the QASR study, PharmMapper, and the molecular docking study which would be helpful to design novel MEK-1 inhibitors for anticancer drugs. Full article
Figures

Figure 1

Open AccessArticle Synthesis and Antiproliferative Activity of Novel All-Trans-Retinoic Acid-Podophyllotoxin Conjugate towards Human Gastric Cancer Cells
Molecules 2017, 22(4), 628; https://doi.org/10.3390/molecules22040628
Received: 22 February 2017 / Revised: 2 April 2017 / Accepted: 10 April 2017 / Published: 17 April 2017
Cited by 1 | PDF Full-text (6893 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
With the purpose of creating a multifunctional drug for gastric cancer treatment, a novel all-trans-retinoic acid (ATRA) conjugate with podophyllotoxin (PPT) was designed and synthesized, and its in vitro antiproliferative activity was evaluated against human gastric cancer cell
[...] Read more.
With the purpose of creating a multifunctional drug for gastric cancer treatment, a novel all-trans-retinoic acid (ATRA) conjugate with podophyllotoxin (PPT) was designed and synthesized, and its in vitro antiproliferative activity was evaluated against human gastric cancer cell lines using CCK-8 assay. The conjugate, P-A, exhibited significant anticancer activity against MKN-45 and BGC-823 cells with IC50 values of 0.419 ± 0.032 and 0.202 ± 0.055 μM, respectively. Moreover, P-A efficiently triggered cell cycle arrest and induced apoptosis in MKN-45 and BGC-823 cells due to modulation of cell cycle arrest- (CDK1, CDK2, CyclinA and CyclinB1) and apoptosis- (cleaved caspase-3, -8 and -9) related proteins, respectively. Further mechanism studies revealed that P-A could increase the expression levels of RARα and RARβ, and decrease the level of RARγ in MKN-45 and BGC-823 cells. Finally, P-A inhibited the ERK1/2 and AKT signaling in the above two cancer cell lines. More importantly, the underlying mechanisms of P-A were similar to those of precursor PPT but different with the other precursor ATRA. Together, the conjugate P-A was a promising candidate for the potential treatment of human gastric cancer. Full article
Figures

Figure 1

Open AccessArticle Design, Synthesis and Evaluation of Naphthalimide Derivatives as Potential Anticancer Agents for Hepatocellular Carcinoma
Molecules 2017, 22(2), 342; https://doi.org/10.3390/molecules22020342
Received: 13 January 2017 / Revised: 16 February 2017 / Accepted: 16 February 2017 / Published: 22 February 2017
Cited by 4 | PDF Full-text (2893 KB) | HTML Full-text | XML Full-text
Abstract
Two kinds of naphthalimide derivatives were synthesized and evaluated for in vitro their anti-hepatocellular carcinoma properties. Compound 3a with a fused thiazole fragment to naphthalimide skeleton inhibited cell migration of SMMC-7721 and HepG2, and further in vivo trials with two animal models confirmed
[...] Read more.
Two kinds of naphthalimide derivatives were synthesized and evaluated for in vitro their anti-hepatocellular carcinoma properties. Compound 3a with a fused thiazole fragment to naphthalimide skeleton inhibited cell migration of SMMC-7721 and HepG2, and further in vivo trials with two animal models confirmed that compound 3a moderately inhibited primary H22 tumor growth (52.6%) and potently interrupted lung metastasis (75.7%) without obvious systemic toxicity at the therapeutic dose. Mechanistic research revealed that compound 3a inhibited cancerous liver cell growth mostly by inducing G2/M phase arrest. Western blotting experiments corroborated that 3a could up-regulate the cell cycle related protein expression of cyclin B1, CDK1 and p21, and inhibit cell migration by elevating the E-cadherin and attenuating integrin α6 expression. Our study showed that compound 3a is a valuable lead compound worthy of further investigation. Full article
Figures

Graphical abstract

2016

Jump to: 2018, 2017, 2015, 2014

Open AccessArticle Targeting Cancer Stem Cells with Novel 4-(4-Substituted phenyl)-5-(3,4,5-trimethoxy/3,4-dimethoxy)-benzoyl-3,4-dihydropyrimidine-2(1H)-one/thiones
Molecules 2016, 21(12), 1746; https://doi.org/10.3390/molecules21121746
Received: 25 September 2016 / Revised: 12 December 2016 / Accepted: 13 December 2016 / Published: 19 December 2016
Cited by 3 | PDF Full-text (2721 KB) | HTML Full-text | XML Full-text
Abstract
Novel 4-(4-substituted phenyl)-5-(3,4,5-trimethoxy/3,4-dimethoxy)-benzoyl-3,4-dihydropyrimidine-2(1H)-one/thione derivatives (DHP 19) were designed, synthesized, characterized and evaluated for antitumor activity against cancer stem cells. The compounds were synthesized in one pot. Enaminones E1 and E2 were reacted with substituted benzaldehydes and urea/thiourea
[...] Read more.
Novel 4-(4-substituted phenyl)-5-(3,4,5-trimethoxy/3,4-dimethoxy)-benzoyl-3,4-dihydropyrimidine-2(1H)-one/thione derivatives (DHP 19) were designed, synthesized, characterized and evaluated for antitumor activity against cancer stem cells. The compounds were synthesized in one pot. Enaminones E1 and E2 were reacted with substituted benzaldehydes and urea/thiourea in the presence of glacial acetic acid. The synthesized compounds were characterized by spectral analysis. The compounds were screened in vitro against colon cancer cell line (LOVO) colon cancer stem cells. Most of the compounds were found to be active against side population cancer stem cells with an inhibition of >50% at a 10 μM concentration. Compounds DHP-1, DHP-7 and DHP-9 were found to be inactive. Compound DHP-5 exhibited an in vitro anti-proliferative effect and arrested cancer cells at the Gap 2 phase (G2) checkpoint and demonstrated an inhibitory effect on tumor growth for a LOVO xenograft in a nude mouse experiment. Full article
Figures

Graphical abstract

Open AccessReview The HK2 Dependent “Warburg Effect” and Mitochondrial Oxidative Phosphorylation in Cancer: Targets for Effective Therapy with 3-Bromopyruvate
Molecules 2016, 21(12), 1730; https://doi.org/10.3390/molecules21121730
Received: 17 October 2016 / Revised: 9 December 2016 / Accepted: 11 December 2016 / Published: 15 December 2016
Cited by 15 | PDF Full-text (725 KB) | HTML Full-text | XML Full-text
Abstract
This review summarizes the current state of knowledge about the metabolism of cancer cells, especially with respect to the “Warburg” and “Crabtree” effects. This work also summarizes two key discoveries, one of which relates to hexokinase-2 (HK2), a major player in both the
[...] Read more.
This review summarizes the current state of knowledge about the metabolism of cancer cells, especially with respect to the “Warburg” and “Crabtree” effects. This work also summarizes two key discoveries, one of which relates to hexokinase-2 (HK2), a major player in both the “Warburg effect” and cancer cell immortalization. The second discovery relates to the finding that cancer cells, unlike normal cells, derive as much as 60% of their ATP from glycolysis via the “Warburg effect”, and the remaining 40% is derived from mitochondrial oxidative phosphorylation. Also described are selected anticancer agents which generally act as strong energy blockers inside cancer cells. Among them, much attention has focused on 3-bromopyruvate (3BP). This small alkylating compound targets both the “Warburg effect”, i.e., elevated glycolysis even in the presence oxygen, as well as mitochondrial oxidative phosphorylation in cancer cells. Normal cells remain unharmed. 3BP rapidly kills cancer cells growing in tissue culture, eradicates tumors in animals, and prevents metastasis. In addition, properly formulated 3BP shows promise also as an effective anti-liver cancer agent in humans and is effective also toward cancers known as “multiple myeloma”. Finally, 3BP has been shown to significantly extend the life of a human patient for which no other options were available. Thus, it can be stated that 3BP is a very promising new anti-cancer agent in the process of undergoing clinical development. Full article
Figures

Figure 1

Open AccessArticle Design, Synthesis and Biological Evaluation of Novel Primaquine-Cinnamic Acid Conjugates of the Amide and Acylsemicarbazide Type
Molecules 2016, 21(12), 1629; https://doi.org/10.3390/molecules21121629
Received: 18 October 2016 / Revised: 16 November 2016 / Accepted: 24 November 2016 / Published: 28 November 2016
Cited by 3 | PDF Full-text (2812 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this paper design and synthesis of a scaffold comprising primaquine (PQ) motif and cinnamic acid derivatives (CADs) bound directly (compounds 3ak) or via a spacer (compounds 7ak) are reported. In the first series of compounds, PQ
[...] Read more.
In this paper design and synthesis of a scaffold comprising primaquine (PQ) motif and cinnamic acid derivatives (CADs) bound directly (compounds 3ak) or via a spacer (compounds 7ak) are reported. In the first series of compounds, PQ and various CADs were connected by amide bonds and in the second series by acylsemicarbazide functional groups built from the PQ amino group, CONHNH spacer and the carbonyl group originating from the CADs. PQ-CAD amides 3ak were prepared by a simple one-step condensation reaction of PQ with a series of CAD chlorides (method A) or benzotriazolides 2 (method B). The synthesis of acylsemicarbazides 7ak included activation of PQ with benzotriazole, preparation of PQ-semicarbazide 6 and its condensation with CAD chlorides 4. All synthesized PQ-CAD conjugates were evaluated for their anticancer, antiviral and antioxidative activities. Almost all compounds from series 3 were selective towards the MCF-7 cell line and active at micromolar concentrations. The o-fluoro derivative 3h showed high activity against HeLa, MCF-7 and in particular against the SW 620 cell line, while acylsemicarbazide 7f with a benzodioxole ring and 7c, 7g and especially 7j with methoxy-, chloro- or trifluoromethyl-substituents in the para position showed high selectivity and high inhibitory activity against MCF-7 cell line at micromolar (7c, 7f, 7g) and nanomolar (7j) levels. Acylsemicarbazide derivatives with trifluoromethyl group(s) 7i, 7j and 7k showed specific activity against human coronavirus (229E) at concentrations which did not alter the normal cell morphology. The same compounds exerted the most potent reducing activity in the DPPH test, together with 7d and 7g, while methoxy (compounds 7ce), benzodioxole (7f), p-Cl (7g) and m-CF3 (7i) acylsemicarbazides and amide 3f presented the highest LP inhibition (83%–89%). The dimethoxy derivative 7d was the most potent LOX inhibitor (IC50 = 10 μΜ). The performed biological tests gave evidence of acylsemicarbazide functional group as superior binding group in PQ-CAD conjugates. Full article
Figures

Scheme 1

Open AccessArticle Transdermal Permeation and Anti-Inflammation Activities of Novel Sinomenine Derivatives
Molecules 2016, 21(11), 1520; https://doi.org/10.3390/molecules21111520
Received: 29 August 2016 / Revised: 7 November 2016 / Accepted: 7 November 2016 / Published: 17 November 2016
Cited by 3 | PDF Full-text (1769 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Sinomenine is extracted from Sinomenii caulis (a traditional Chinese medicine), and it is used as the active ingredient in rheumatic arthritis treatments. It has been used in clinical applications for decades. However, there are some disadvantages, including low activity in transdermal permeation and
[...] Read more.
Sinomenine is extracted from Sinomenii caulis (a traditional Chinese medicine), and it is used as the active ingredient in rheumatic arthritis treatments. It has been used in clinical applications for decades. However, there are some disadvantages, including low activity in transdermal permeation and a high dosage being clinically required. To overcome these defects, sinomenine was used as a primer, and structural modification was performed. In our study, eight new compounds were screened out by transdermal permeation in vitro and anti-inflammatory response in vitro and in vivo. Compound 1a exhibited the most potent transdermal permeation and anti-inflammatory activity. Based on these results, further development of this compound may be warranted. Full article
Figures

Figure 1

Open AccessReview Mitoxantrone-Surfactant Interactions: A Physicochemical Overview
Molecules 2016, 21(10), 1356; https://doi.org/10.3390/molecules21101356
Received: 1 September 2016 / Revised: 29 September 2016 / Accepted: 1 October 2016 / Published: 13 October 2016
Cited by 5 | PDF Full-text (3844 KB) | HTML Full-text | XML Full-text
Abstract
Mitoxantrone is a synthetic anticancer drug used clinically in the treatment of different types of cancer. It was developed as a doxorubicin analogue in a program to find drugs with improved antitumor activity and decreased cardiotoxicity compared with the anthracyclines. As the cell
[...] Read more.
Mitoxantrone is a synthetic anticancer drug used clinically in the treatment of different types of cancer. It was developed as a doxorubicin analogue in a program to find drugs with improved antitumor activity and decreased cardiotoxicity compared with the anthracyclines. As the cell membrane is the first barrier encountered by anticancer drugs before reaching the DNA sites inside the cells and as surfactant micelles are known as simple model systems for biological membranes, the drugs-surfactant interaction has been the subject of great research interest. Further, quantitative understanding of the interactions of drugs with biomimicking structures like surfactant micelles may provide helpful information for the control of physicochemical properties and bioactivities of encapsulated drugs in order to design better delivery systems with possible biomedical applications. The present review describes the physicochemical aspects of the interactions between the anticancer drug mitoxantrone and different surfactants. Mitoxantrone-micelle binding constants, partitions coefficient of the drug between aqueous and micellar phases and the corresponding Gibbs free energy for the above processes, and the probable location of drug molecules in the micelles are discussed. Full article
Figures

Figure 1

Open AccessArticle Modulation of Autophagy by a Thioxanthone Decreases the Viability of Melanoma Cells
Molecules 2016, 21(10), 1343; https://doi.org/10.3390/molecules21101343
Received: 9 August 2016 / Revised: 30 September 2016 / Accepted: 1 October 2016 / Published: 10 October 2016
Cited by 4 | PDF Full-text (2657 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
(1) Background: Our previous studies unveiled the hit thioxanthone TXA1 as an inhibitor of P-glycoprotein (drug efflux pump) and of human tumor cells growth, namely of melanoma cells. Since TXA1 is structurally similar to lucanthone (an autophagy inhibitor and apoptosis inducer) and to
[...] Read more.
(1) Background: Our previous studies unveiled the hit thioxanthone TXA1 as an inhibitor of P-glycoprotein (drug efflux pump) and of human tumor cells growth, namely of melanoma cells. Since TXA1 is structurally similar to lucanthone (an autophagy inhibitor and apoptosis inducer) and to N10-substituted phenoxazines (isosteres of thioxanthones, and autophagy inducers), this study aimed at further assessing its cytotoxic mechanism and evaluating its potential as an autophagy modulator in A375-C5 melanoma cells; (2) Methods: Flow cytometry with propidium iodide (PI) for cell cycle profile analysis; Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, flow cytometry with Annexin V/PI labeling and Western blot for apoptosis analysis were conducted. A pharmacophore approach was used for mapping TXA1 onto pharmacophores for autophagy induction. Autophagy analyses included transmission electron microscopy for visualization of autophagic structures, fluorescence microscopy for observation of monodansylcadaverine (MDC) staining, pattern of LC3 expression in the cells and acridine orange staining, and Western blot for autophagic proteins expression; (3) Results: TXA1 induced autophagy of melanoma cells at the GI50 concentration (3.6 μM) and apoptosis at twice that concentration. Following treatment with TXA1, autophagic structures were observed, together with the accumulation of autophagosomes and the formation of autophagolysosomes. An increase in LC3-II levels was also observed, which was reverted by 3-methyladenine (3-MA) (an early stage autophagy-inhibitor) but further increased by E-64d/pepstatin (late-stage autophagy inhibitors). Finally, 3-MA also reverted the effect of TXA1 in cellular viability; (4) Conclusion: TXA1 decreases the viability of melanoma cells by modulation of autophagy and may, therefore, serve as a lead compound for the development of autophagy modulators with antitumor activity. Full article
Figures

Figure 1

Open AccessArticle Anti-Cancer Effect of Quercetin in Xenograft Models with EBV-Associated Human Gastric Carcinoma
Molecules 2016, 21(10), 1286; https://doi.org/10.3390/molecules21101286
Received: 13 July 2016 / Revised: 8 September 2016 / Accepted: 13 September 2016 / Published: 26 September 2016
Cited by 2 | PDF Full-text (2922 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Licorice extracts have been widely used in herbal and folk medications. Glycyrrhiza contains diverse range of biological compounds including triterpenes (glycyrrhizin, glycyrrhizic acid) and flavonoids (quercetin, liquiritin, liquiritigenin, glabridin, licoricidin, isoliquiritigenin). The flavonoids in licorice are known to have strong anti-cancer activities. Quercetin,
[...] Read more.
Licorice extracts have been widely used in herbal and folk medications. Glycyrrhiza contains diverse range of biological compounds including triterpenes (glycyrrhizin, glycyrrhizic acid) and flavonoids (quercetin, liquiritin, liquiritigenin, glabridin, licoricidin, isoliquiritigenin). The flavonoids in licorice are known to have strong anti-cancer activities. Quercetin, the most abundant flavonoid, has been shown to have anti-ulcer, anti-cancer, antioxidant, and anti-inflammatory properties. Latent Epstein-Barr virus (EBV) infection can lead to serious malignancies, such as, Burkitt’s lymphoma, Hodgkin’s disease and gastric carcinoma(GC), and (Epstein-Barr virus associated gastric carcinoma) EBVaGC is one of the most common EBV-associated cancers. In this study, the authors first examined the anti-cancer effects of quercetin and isoliquiritigenin in vivo xenograft animal models implanted with EBV(+) human gastric carcinoma (SNU719) or EBV(−) human gastric carcinoma (MKN74), and then explored the molecular mechanisms responsible for their anti-cancer activities. The results obtained showed that anti-cancer effect of quercetin was greater than isoliquiritigenin in mice injected with EBV(+) human gastric carcinoma (SNU719) cells. On the other hand, quercetin and isoliquiritigenin had similar anti-cancer effects in mice injected with EBV(−) human gastric carcinoma (MKN74) cells. Interestingly, quercetin inhibited EBV viral protein expressions, including EBNA-1 and LMP-2 proteins in tumor tissues from mice injected with EBV(+) human gastric carcinoma. Quercetin more effectively induced p53-dependent apoptosis than isoliquiritigenin in EBV(+) human gastric carcinoma, and this induction was correlated with increased expressions of the cleaved forms of caspase-3, -9, and Parp. In EBV(−)human gastric carcinoma (MKN74), both quercetin and isoliquiritigenin induced the expressions of p53, Bax, and Puma and the cleaved forms of caspase-3 and -9 and Parp at similar levels. Full article
Figures

Figure 1

Open AccessArticle Copper Ion Attenuated the Antiproliferative Activity of Di-2-pyridylhydrazone Dithiocarbamate Derivative; However, There Was a Lack of Correlation between ROS Generation and Antiproliferative Activity
Molecules 2016, 21(8), 1088; https://doi.org/10.3390/molecules21081088
Received: 14 July 2016 / Revised: 8 August 2016 / Accepted: 16 August 2016 / Published: 20 August 2016
Cited by 6 | PDF Full-text (3764 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The use of chelators for cancer treatment has been an alternative option. Dithiocarbamates have recently attracted considerable attention owning to their diverse biological activities; thus, the preparation of new dithiocarbamate derivatives with improved antitumor activity and selectivity as well as probing the underlying
[...] Read more.
The use of chelators for cancer treatment has been an alternative option. Dithiocarbamates have recently attracted considerable attention owning to their diverse biological activities; thus, the preparation of new dithiocarbamate derivatives with improved antitumor activity and selectivity as well as probing the underlying molecular mechanism are required. In this study, di-2-pyridylhydrazone dithiocarbamate S-propionic acid (DpdtpA) and its copper complex were prepared and characterized, and its antiproliferative activity was evaluated. The proliferation inhibition assay showed that DpdtpA exhibited excellent antiproliferative effect in hepatocellular carcinoma (IC50 = 1.3 ± 0.3 μM for HepG2, and 2.5 ± 0.6 μM for Bel-7402). However, in the presence of copper ion, the antiproliferative activity of DpdtpA was dramatically attenuated (20–30 fold) owing to the formation of copper chelate. A preliminarily mechanistic study revealed that reactive oxygen species (ROS) generation mediated the antiproliferative activity of DpdtpA, and accordingly induced apoptosis, DNA cleavage, and autophagy. Surprisingly, the cytotoxicity of DpdtpA copper complex (DpdtpA–Cu) was also involved in ROS generation; however, a paradoxical relation between cellular ROS level and cytotoxicity was observed. Further investigation indicated that DpdtpA could induce cell cycle arrest at the S phase; however, DpdtpA–Cu lacked this effect, which explained the difference in their antiproliferative activity. Full article
Figures

Figure 1

Open AccessArticle Hybrid Molecules Containing a 7-Chloro-4-aminoquinoline Nucleus and a Substituted 2-Pyrazoline with Antiproliferative and Antifungal Activity
Molecules 2016, 21(8), 969; https://doi.org/10.3390/molecules21080969
Received: 19 May 2016 / Revised: 18 July 2016 / Accepted: 18 July 2016 / Published: 27 July 2016
Cited by 5 | PDF Full-text (5079 KB) | HTML Full-text | XML Full-text
Abstract
Twenty-four new hybrid analogues (1538) containing 7-chloro-4-aminoquinoline and 2-pyrazoline N-heterocyclic fragments were synthesized. Twelve of the new compounds were evaluated against 58 human cancer cell lines by the U.S. National Cancer Institute (NCI). Compounds 25, 30, 31
[...] Read more.
Twenty-four new hybrid analogues (1538) containing 7-chloro-4-aminoquinoline and 2-pyrazoline N-heterocyclic fragments were synthesized. Twelve of the new compounds were evaluated against 58 human cancer cell lines by the U.S. National Cancer Institute (NCI). Compounds 25, 30, 31, 36, and 37 showed significant cytostatic activity, with the most outstanding GI50 values ranging from 0.05 to 0.95 µM. The hybrid compounds (1538) were also evaluated for antifungal activity against Candida albicans and Cryptococcus neoformans. From the obtained results some structure–activity relationships were outlined. Full article
Figures

Graphical abstract

Open AccessArticle Synthesis, Characterization and Anti-Cancer Activity of Hydrazide Derivatives Incorporating a Quinoline Moiety
Molecules 2016, 21(7), 916; https://doi.org/10.3390/molecules21070916
Received: 24 May 2016 / Revised: 5 July 2016 / Accepted: 8 July 2016 / Published: 14 July 2016
Cited by 10 | PDF Full-text (2236 KB) | HTML Full-text | XML Full-text
Abstract
Identification of the novel (E)-N′-((2-chloro-7-methoxyquinolin-3-yl)methylene)-3-(phenylthio)propanehydrazide scaffold 18 has led to the development of a new series of biologically active hydrazide compounds. The parent compound 18 and new quinoline derivatives 1926 were prepared from the corresponding quinoline hydrazones
[...] Read more.
Identification of the novel (E)-N′-((2-chloro-7-methoxyquinolin-3-yl)methylene)-3-(phenylthio)propanehydrazide scaffold 18 has led to the development of a new series of biologically active hydrazide compounds. The parent compound 18 and new quinoline derivatives 1926 were prepared from the corresponding quinoline hydrazones and substituted carboxylic acids using EDC-mediated peptide coupling reactions. Further modification of the parent compound 18 was achieved by replacement of the quinoline moiety with other aromatic systems. All the newly synthesized compounds were evaluated for their anti-cancer activity against the SH-SY5Y and Kelly neuroblastoma cell lines, as well as the MDA-MB-231 and MCF-7 breast adenocarcinoma cell lines. Analogues 19 and 22 significantly reduced the cell viability of neuroblastoma cancer cells with micromolar potency and significant selectivity over normal cells. The quinoline hydrazide 22 also induced G1 cell cycle arrest, as well as upregulation of the p27kip1 cell cycle regulating protein. Full article
Figures

Figure 1

Open AccessArticle Pyridine and p-Nitrophenyl Oxime Esters with Possible Photochemotherapeutic Activity: Synthesis, DNA Photocleavage and DNA Binding Studies
Molecules 2016, 21(7), 864; https://doi.org/10.3390/molecules21070864
Received: 30 May 2016 / Revised: 22 June 2016 / Accepted: 28 June 2016 / Published: 30 June 2016
Cited by 3 | PDF Full-text (2340 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Compared to standard treatments for various diseases, photochemotherapy and photo-dynamic therapy are less invasive approaches, in which DNA photocleavers represent promising tools for novel “on demand” chemotherapeutics. A series of p-nitrobenzoyl and p-pyridoyl ester conjugated aldoximes, amidoximes and ethanone oximes were
[...] Read more.
Compared to standard treatments for various diseases, photochemotherapy and photo-dynamic therapy are less invasive approaches, in which DNA photocleavers represent promising tools for novel “on demand” chemotherapeutics. A series of p-nitrobenzoyl and p-pyridoyl ester conjugated aldoximes, amidoximes and ethanone oximes were subjected to UV irradiation at 312 nm with supercoiled circular plasmid DNA. The compounds which possessed appropriate properties were additionally subjected to UVA irradiation at 365 nm. The ability of most of the compounds to photocleave DNA was high at 312 nm, whereas higher concentrations were required at 365 nm as a result of their lower UV absorption. The affinity of selected compounds to calf-thymus (CT) DNA was studied by UV spectroscopy, viscosity experiments and competitive studies with ethidium bromide (EB) revealing that all compounds interacted with CT DNA. The fluorescence emission spectra of the pre-treated EB-DNA exhibited a moderate to significant quenching in the presence of the compounds indicating the binding of the compounds to CT DNA via intercalation as concluded also by DNA-viscosity experiments. For the oxime esters the DNA photocleavage and affinity studies aimed to clarify the role of the oxime nature (aldoxime, ketoxime, amidoxime) and the role of the pyridine and p-nitrophenyl moieties both as oxime substituents and ester conjugates. Full article
Figures

Figure 1

Open AccessArticle Novel 5-Substituted 2-(Aylmethylthio)-4-chloro-N-(5-aryl-1,2,4-triazin-3-yl)benzenesulfonamides: Synthesis, Molecular Structure, Anticancer Activity, Apoptosis-Inducing Activity and Metabolic Stability
Molecules 2016, 21(6), 808; https://doi.org/10.3390/molecules21060808
Received: 13 May 2016 / Revised: 8 June 2016 / Accepted: 17 June 2016 / Published: 22 June 2016
Cited by 8 | PDF Full-text (5550 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of novel 5-substituted 2-(arylmethylthio)-4-chloro-N-(5-aryl-1,2,4-triazin-3-yl) benzenesulfonamide derivatives 2760 have been synthesized by the reaction of aminoguanidines with an appropriate phenylglyoxal hydrate in glacial acetic acid. A majority of the compounds showed cytotoxic activity toward the human cancer cell
[...] Read more.
A series of novel 5-substituted 2-(arylmethylthio)-4-chloro-N-(5-aryl-1,2,4-triazin-3-yl) benzenesulfonamide derivatives 2760 have been synthesized by the reaction of aminoguanidines with an appropriate phenylglyoxal hydrate in glacial acetic acid. A majority of the compounds showed cytotoxic activity toward the human cancer cell lines HCT-116, HeLa and MCF-7, with IC50 values below 100 μM. It was found that for the analogues 3638 the naphthyl moiety contributed significantly to the anticancer activity. Cytometric analysis of translocation of phosphatidylserine as well as mitochondrial membrane potential and cell cycle revealed that the most active compounds 37 (HCT-116 and HeLa) and 46 (MCF-7) inhibited the proliferation of cells by increasing the number of apoptotic cells. Apoptotic-like, dose dependent changes in morphology of cell lines were also noticed after treatment with 37 and 46. Moreover, triazines 37 and 46 induced caspase activity in the HCT-116, HeLa and MCF-7 cell lines. Selected compounds were tested for metabolic stability in the presence of pooled human liver microsomes and NADPH, both R2 and Ar = 4-CF3-C6H4 moiety in 2-(R2-methylthio)-N-(5-aryl-1,2,4-triazin-3-yl)benzenesulfonamides simultaneously increased metabolic stability. The results pointed to 37 as a hit compound with a good cytotoxicity against HCT-116 (IC50 = 36 μM), HeLa (IC50 = 34 μM) cell lines, apoptosis-inducing activity and moderate metabolic stability. Full article
Figures

Figure 1

Open AccessArticle Discovery of Novel Allopurinol Derivatives with Anticancer Activity and Attenuated Xanthine Oxidase Inhibition
Molecules 2016, 21(6), 771; https://doi.org/10.3390/molecules21060771
Received: 31 March 2016 / Revised: 24 May 2016 / Accepted: 8 June 2016 / Published: 20 June 2016
Cited by 2 | PDF Full-text (536 KB) | HTML Full-text | XML Full-text
Abstract
A series of pyrazolo[3,4-d]pyrimidine derivatives related to allopurinol has been synthesized and evaluated for its cytotoxicity against a panel of three cancer cell lines as well as its xanthine oxidase (XOD) inhibitory activities. Among them, compound 4 showed potent cytotoxicity with IC50
[...] Read more.
A series of pyrazolo[3,4-d]pyrimidine derivatives related to allopurinol has been synthesized and evaluated for its cytotoxicity against a panel of three cancer cell lines as well as its xanthine oxidase (XOD) inhibitory activities. Among them, compound 4 showed potent cytotoxicity with IC50 values of 25.5 and 35.2 μM against human hepatoma carcinoma cell lines, BEL-7402 and SMMC-7221, respectively. The anticancer activity of 4 was comparable to that of Tanespimycin (17-N-allylamino-17-demethoxy geldanamycin, 17-AAG) that inhibited the growth of BEL-7402 and SMMC-7221 cells at IC50 values of 12.4 and 9.85 μM, respectively. However, unlike allopurinol, which is also a strong inhibitor of XOD, compound 4 is a much weaker XOD inhibitor, suggesting that the anticancer activities of the allopurinol derivatives may not be associated with XOD inhibition. Moreover, the cytotoxicity of 4 toward normal cells is significantly lower than that of 17-AAG, making 4 a promising lead compound for further optimization of structure-activity relationships that may lead to anticancer agents of clinical utility. Full article
Figures

Figure 1

Open AccessArticle Synthesis and Cytotoxic Activity of Biphenylurea Derivatives Containing Indolin-2-one Moieties
Molecules 2016, 21(6), 762; https://doi.org/10.3390/molecules21060762
Received: 12 April 2016 / Revised: 26 May 2016 / Accepted: 3 June 2016 / Published: 10 June 2016
Cited by 9 | PDF Full-text (1102 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In our endeavor towards the development of potent anticancer agents, two different sets of biphenylurea-indolinone conjugates, 5as and 8a,b were synthesized. The in vitro cytotoxicity of the synthesized compounds was examined in two human cancer cell lines, namely MCF-7
[...] Read more.
In our endeavor towards the development of potent anticancer agents, two different sets of biphenylurea-indolinone conjugates, 5as and 8a,b were synthesized. The in vitro cytotoxicity of the synthesized compounds was examined in two human cancer cell lines, namely MCF-7 breast cancer and PC-3 prostate cancer cells using the sulforhodamine B (SRB) colorimetric assay. In particular, the MCF-7 cancer cell line was more susceptible to the synthesized compounds. Compound 5o (IC50 = 1.04 ± 0.10 μM) emerged as the most active member in this study against MCF-7, with 7-fold increased activity compared to the reference drug, doxorubicin (IC50 = 7.30 ± 0.84 μM). Compounds 5l, 5q and 8b also exhibited superior cytotoxic activity against MCF-7 with IC50 values of 1.93 ± 0.17, 3.87 ± 0.31 and 4.66 ± 0.42 μM, respectively. All of the tested compounds were filtered according to the Lipinski and Veber rules and all of them passed the filters. Additionally, several ADME descriptors for the synthesized compounds 5as and 8a,b were predicted via a theoretical kinetic study performed using the Discovery Studio 2.5 software. Full article
Figures

Figure 1

Open AccessArticle Design, Synthesis and Structure-Activity Relationships of Novel Chalcone-1,2,3-triazole-azole Derivates as Antiproliferative Agents
Molecules 2016, 21(5), 653; https://doi.org/10.3390/molecules21050653
Received: 10 March 2016 / Revised: 7 May 2016 / Accepted: 12 May 2016 / Published: 19 May 2016
Cited by 15 | PDF Full-text (2442 KB) | HTML Full-text | XML Full-text
Abstract
A series of novel chalcone-1,2,3-triazole-azole hybrids were designed, synthesized and evaluated for their antiproliferative activity against three selected cancer cell lines (SK-N-SH, EC-109 and MGC-803). Most of the synthesized compounds exhibited moderate to good activity against all the cancer cell lines selected. Particularly,
[...] Read more.
A series of novel chalcone-1,2,3-triazole-azole hybrids were designed, synthesized and evaluated for their antiproliferative activity against three selected cancer cell lines (SK-N-SH, EC-109 and MGC-803). Most of the synthesized compounds exhibited moderate to good activity against all the cancer cell lines selected. Particularly, compound I-21 showed the most excellent antiproliferative activity with an IC50 value of 1.52 μM against SK-N-SH cancer cells. Further mechanism studies revealed that compound I-21 induced morphological changes of SK-N-SH cancer cells possibly by inducing apoptosis. Novel chalcone-1,2,3-triazole-azole derivatives in this work might be a series of promising lead compounds to develop anticancer agents for treating neuroblastoma. Full article
Figures

Figure 1

Open AccessArticle Synthesis and Biological Testing of Novel Glucosylated Epigallocatechin Gallate (EGCG) Derivatives
Molecules 2016, 21(5), 620; https://doi.org/10.3390/molecules21050620
Received: 10 March 2016 / Revised: 2 May 2016 / Accepted: 4 May 2016 / Published: 11 May 2016
Cited by 7 | PDF Full-text (1410 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Epigallocatechin gallate (EGCG) is the most abundant component of green tea catechins and has strong physiological activities. In this study, two novel EGCG glycosides (EGCG-G1 and EGCG-G2) were chemoselectively synthesized by a chemical modification strategy. Each of these EGCG glycosides underwent structure identification,
[...] Read more.
Epigallocatechin gallate (EGCG) is the most abundant component of green tea catechins and has strong physiological activities. In this study, two novel EGCG glycosides (EGCG-G1 and EGCG-G2) were chemoselectively synthesized by a chemical modification strategy. Each of these EGCG glycosides underwent structure identification, and the structures were assigned as follows: epigallocatechin gallate-4′′-O-β-d-glucopyranoside (EGCG-G1, 2) and epigallocatechin gallate-4′,4′′-O-β-d-gluco-pyranoside (EGCG-G2, 3). The EGCG glycosides were evaluated for their anticancer activity in vitro against two human breast cell lines (MCF-7 and MDA-MB-231) using MTT assays. The inhibition rate of EGCG glycosides (EGCG-G1 and EGCG-G2) is not obvious. The EGCG glycosides are more stable than EGCG in aqueous solutions, but exhibited decreasing antioxidant activity in the DPPH radical-scavenging assay (EGCG > EGCG-G2 > EGCG-G1). Additionally, the EGCG glycosides exhibited increased water solubility: EGCG-G2 and EGCG-G1 were 15 and 31 times as soluble EGCG, respectively. The EGCG glycosides appear to be useful, and further studies regarding their biological activity are in progress. Full article
Figures

Figure 1

Open AccessArticle Novel N-Substituted 2-(2-(Adamantan-1-yl)-1H-Indol-3-yl)-2-Oxoacetamide Derivatives: Synthesis and Biological Evaluation
Molecules 2016, 21(5), 530; https://doi.org/10.3390/molecules21050530
Received: 7 March 2016 / Revised: 3 April 2016 / Accepted: 16 April 2016 / Published: 5 May 2016
Cited by 1 | PDF Full-text (5375 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this study, a series of novel N-substituted 2-(2-(adamantan-1-yl)-1H-indol-3-yl)-2-oxoacetamide derivatives were synthesized, and evaluated for their cytotoxicity in human cell lines including Hela (cervical cancer), MCF7 (breast cancer ) and HepG2 (liver cancer). Several compounds were found to have potent
[...] Read more.
In this study, a series of novel N-substituted 2-(2-(adamantan-1-yl)-1H-indol-3-yl)-2-oxoacetamide derivatives were synthesized, and evaluated for their cytotoxicity in human cell lines including Hela (cervical cancer), MCF7 (breast cancer ) and HepG2 (liver cancer). Several compounds were found to have potent anti-proliferative activity against those human cancer cell lines and compound 5r showed the most potent biological activity against HepG2 cells with an IC50 value of 10.56 ± 1.14 μΜ. In addition, bioassays showed that compound 5r induced time-dependent and dose-dependent cleavage of poly ADP-ribose polymerase (PARP), and also induced a dose-dependent increase in caspase-3 and caspase-8 activity, but had little effect on caspase-9 protease activity in HepG2 cells. These results provide evidence that 5r-induced apoptosis in HepG2 cell is caspase-8-dependent. Full article
Figures

Figure 1

Open AccessArticle Delivery of Gemcitabine Prodrugs Employing Mesoporous Silica Nanoparticles
Molecules 2016, 21(4), 522; https://doi.org/10.3390/molecules21040522
Received: 21 March 2016 / Revised: 13 April 2016 / Accepted: 14 April 2016 / Published: 21 April 2016
Cited by 13 | PDF Full-text (3153 KB) | HTML Full-text | XML Full-text
Abstract
In this paper, mesoporous silica nanoparticles (MSNs) were studied as vehicles for the delivery of the antitumoral drug gemcitabine (GEM) and of its 4-(N)-acyl derivatives, (4-(N)-valeroyl-(C5GEM), 4-(N)-lauroyl-(C12GEM) and 4-(N)-stearoyl-gemcitabine (C18GEM)). The loading of the GEM
[...] Read more.
In this paper, mesoporous silica nanoparticles (MSNs) were studied as vehicles for the delivery of the antitumoral drug gemcitabine (GEM) and of its 4-(N)-acyl derivatives, (4-(N)-valeroyl-(C5GEM), 4-(N)-lauroyl-(C12GEM) and 4-(N)-stearoyl-gemcitabine (C18GEM)). The loading of the GEM lipophilic prodrugs on MSNs was explored with the aim to obtain both a physical and a chemical protection of GEM from rapid plasmatic metabolization. For this purpose, MSNs as such or with grafted aminopropyl and carboxyethyl groups were prepared and characterized. Then, their different drug loading capacity in relation to the nature of the functional group was evaluated. In our experimental conditions, GEM was not loaded in any MSNs, while C12GEM was the most efficiently encapsulated and employed for further evaluation. The results showed that loading capacity increased with the presence of functional groups on the nanoparticles; similarly, the presence of functional groups on MSNs’ surface influenced the drug release profile. Finally, the cytotoxicity of the different preparations was evaluated and data showed that C12GEM loaded MSNs are less cytotoxic than the free drug with an activity that increased with the incubating time, indicating that all these systems are able to release the drug in a controlled manner. Altogether, the results demonstrate that these MSNs could be an interesting system for the delivery of anticancer drugs. Full article
Figures

Figure 1

Open AccessArticle Synthesis and Antitumor Evaluation of Novel 5-Hydrosulfonyl-1H-benzo[d]imidazol-2(3H)-one Derivatives
Molecules 2016, 21(4), 516; https://doi.org/10.3390/molecules21040516
Received: 26 January 2016 / Revised: 21 March 2016 / Accepted: 31 March 2016 / Published: 20 April 2016
Cited by 2 | PDF Full-text (1152 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of novel 5-hydrosulfonyl-1H-benzo[d]imidazol-2(3H)-one derivatives bearing natural product substructures has been successfully synthesized and their antitumor activity studied. These newly synthesized derivatives were characterized by 1H-NMR, 13C-NMR and high resolution mass spectral data, then
[...] Read more.
A series of novel 5-hydrosulfonyl-1H-benzo[d]imidazol-2(3H)-one derivatives bearing natural product substructures has been successfully synthesized and their antitumor activity studied. These newly synthesized derivatives were characterized by 1H-NMR, 13C-NMR and high resolution mass spectral data, then screened as antitumor agents against the A549, HCC1937, and MDA-MB-468 human tumor cell lines using MTT cell proliferation assays. The results show that some of these compounds can effectively inhibit the growth of these cancerous cells, with compound 5b being the best one (IC50 = 2.6 μM). Flow cytometry data revealed that compound 5b induced apoptosis of HCC1937 cells with increased solution concentration. The structure and activity relationships (SAR) of these compounds is summarized. Full article
Figures

Figure 1

Open AccessArticle In-Vitro Anticancer Evaluation of Some Novel Thioureido-Benzensulfonamide Derivatives
Molecules 2016, 21(4), 409; https://doi.org/10.3390/molecules21040409
Received: 29 January 2016 / Revised: 24 February 2016 / Accepted: 26 February 2016 / Published: 25 March 2016
Cited by 2 | PDF Full-text (492 KB) | HTML Full-text | XML Full-text
Abstract
A novel series of sulfonamide derivatives (14 compounds) bearing thiourea moieties were efficiently synthesized and evaluated for their possible in vitro anticancer activity against four human tumor cell lines. The results indicated that compound 6 was the most potent, showing effectiveness on all
[...] Read more.
A novel series of sulfonamide derivatives (14 compounds) bearing thiourea moieties were efficiently synthesized and evaluated for their possible in vitro anticancer activity against four human tumor cell lines. The results indicated that compound 6 was the most potent, showing effectiveness on all the tested cell lines. Compounds 7 and 10 also showed promising results. Full article
Figures

Figure 1

Open AccessArticle Anticancer Effects of Sinulariolide-Conjugated Hyaluronan Nanoparticles on Lung Adenocarcinoma Cells
Molecules 2016, 21(3), 297; https://doi.org/10.3390/molecules21030297
Received: 1 February 2016 / Revised: 25 February 2016 / Accepted: 26 February 2016 / Published: 2 March 2016
Cited by 2 | PDF Full-text (2964 KB) | HTML Full-text | XML Full-text
Abstract
Lung cancer is one of the most clinically challenging malignant diseases worldwide. Sinulariolide (SNL), extracted from the farmed coral species Sinularia flexibilis, has been used for suppressing malignant cells. For developing anticancer therapeutic agents, we aimed to find an alternative for non-small
[...] Read more.
Lung cancer is one of the most clinically challenging malignant diseases worldwide. Sinulariolide (SNL), extracted from the farmed coral species Sinularia flexibilis, has been used for suppressing malignant cells. For developing anticancer therapeutic agents, we aimed to find an alternative for non-small cell lung cancer treatment by using SNL as the target drug. We investigated the SNL bioactivity on A549 lung cancer cells by conjugating SNL with hyaluronan nanoparticles to form HA/SNL aggregates by using a high-voltage electrostatic field system. SNL was toxic on A549 cells with an IC50 of 75 µg/mL. The anticancer effects of HA/SNL aggregates were assessed through cell viability assay, apoptosis assays, cell cycle analyses, and western blotting. The size of HA/SNL aggregates was approximately 33–77 nm in diameter with a thin continuous layer after aggregating numerous HA nanoparticles. Flow cytometric analysis revealed that the HA/SNL aggregate-induced apoptosis was more effective at a lower SNL dose of 25 µg/mL than pure SNL. Western blotting indicated that caspases-3, -8, and -9 and Bcl-xL and Bax played crucial roles in the apoptotic signal transduction pathway. In summary, HA/SNL aggregates exerted stronger anticancer effects on A549 cells than did pure SNL via mitochondria-related pathways. Full article
Figures

Figure 1

Open AccessArticle Preparation and Biological Evaluation of Two Novel Platinum(II) Complexes Based on the Ligands of Dipicolyamine Bisphosphonate Esters
Molecules 2016, 21(3), 255; https://doi.org/10.3390/molecules21030255
Received: 30 December 2015 / Revised: 1 February 2016 / Accepted: 2 February 2016 / Published: 24 February 2016
Cited by 4 | PDF Full-text (4121 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Two new platinum(II)-based complexes bearing a bone-targeting group were synthesized and characterized. They both have excellent affinity for hydroxyapatite (HA), which is abundant in human bone tissues. Their antitumor activities against five human cancer cell lines (U2OS, A549, HCT116, MDA-MB-231 and HepG2) were
[...] Read more.
Two new platinum(II)-based complexes bearing a bone-targeting group were synthesized and characterized. They both have excellent affinity for hydroxyapatite (HA), which is abundant in human bone tissues. Their antitumor activities against five human cancer cell lines (U2OS, A549, HCT116, MDA-MB-231 and HepG2) were evaluated and compared with cisplatin (CDDP). Though the antitumor efficacies of new complexes are lower than that of CDDP, they show higher selectivity against the HepG2 hepatoma cell line than the L02 normal liver cell line. Morphology studies exhibited typical characteristics of cell apoptosis and the cell cycle distribution analysis indicated that the complexes can inhibit cancer cells by inducing cell cycle arrest at the G2/M phase, a similar mechanism of action to CDDP. Full article
Figures

Figure 1

Open AccessArticle Synthesis and Anticancer Activities of Glycyrrhetinic Acid Derivatives
Molecules 2016, 21(2), 199; https://doi.org/10.3390/molecules21020199
Received: 7 December 2015 / Accepted: 2 February 2016 / Published: 6 February 2016
Cited by 6 | PDF Full-text (429 KB) | HTML Full-text | XML Full-text
Abstract
A total of forty novel glycyrrhetinic acid (GA) derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231) in vitro by the MTT method. The evaluation results revealed that, in
[...] Read more.
A total of forty novel glycyrrhetinic acid (GA) derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231) in vitro by the MTT method. The evaluation results revealed that, in comparison with GA, compound 42 shows the most promising anticancer activity (IC50 1.88 ± 0.20 and 1.37 ± 0.18 µM for MCF-7 and MDA-MB-231, respectively) and merits further exploration as a new anticancer agent. Full article
Figures

Figure 1

Open AccessArticle Design of a MCoTI-Based Cyclotide with Angiotensin (1-7)-Like Activity
Molecules 2016, 21(2), 152; https://doi.org/10.3390/molecules21020152
Received: 28 December 2015 / Revised: 20 January 2016 / Accepted: 22 January 2016 / Published: 26 January 2016
Cited by 11 | PDF Full-text (2826 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We report for the first time the design and synthesis of a novel cyclotide able to activate the unique receptor of angiotensin (1-7) (AT1-7), the MAS1 receptor. This was accomplished by grafting an AT1-7 peptide analog onto loop 6 of cyclotide MCoTI-I using
[...] Read more.
We report for the first time the design and synthesis of a novel cyclotide able to activate the unique receptor of angiotensin (1-7) (AT1-7), the MAS1 receptor. This was accomplished by grafting an AT1-7 peptide analog onto loop 6 of cyclotide MCoTI-I using isopeptide bonds to preserve the α-amino and C-terminal carboxylate groups of AT1-7, which are required for activity. The resulting cyclotide construct was able to adopt a cyclotide-like conformation and showed similar activity to that of AT1-7. This cyclotide also showed high stability in human serum thereby providing a promising lead compound for the design of a novel type of peptide-based in the treatment of cancer and myocardial infarction. Full article
Figures

Figure 1

2015

Jump to: 2018, 2017, 2016, 2014

Open AccessArticle Synthesis of Bioconjugate Sesterterpenoids with Phospholipids and Polyunsaturated Fatty Acids
Received: 3 December 2015 / Revised: 21 December 2015 / Accepted: 22 December 2015 / Published: 30 December 2015
Cited by 2 | PDF Full-text (1273 KB) | HTML Full-text | XML Full-text
Abstract
A series of sesterterpenoid bioconjugates with phospholipids and polyunsaturated fatty acids (PUFAs) have been synthesized for biological activity testing as antiproliferative agents in several cancer cell lines. Different substitution analogues of the original lipidic ether edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine)
[...] Read more.
A series of sesterterpenoid bioconjugates with phospholipids and polyunsaturated fatty acids (PUFAs) have been synthesized for biological activity testing as antiproliferative agents in several cancer cell lines. Different substitution analogues of the original lipidic ether edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) are obtained varying the sesterterpenoid in position 1 or 2 of the glycerol or a phosphocholine or PUFA unit in position 3. Simple bioconjugates of sesterterpenoids and eicosapentaenoic acid (EPA) have been obtained too. All synthetic derivatives were tested against the human tumour cell lines HeLa (cervix) and MCF-7 (breast). Some compounds showed good IC50 (0.3 and 0.2 μM) values against these cell lines. Full article
Figures

Figure 1

Open AccessArticle Synthesis of Novel Pyrido[4,3-e][1,2,4]triazino[3,2-c][1,2,4]thiadiazine 6,6-dioxide Derivatives with Potential Anticancer Activity
Received: 16 November 2015 / Revised: 21 December 2015 / Accepted: 22 December 2015 / Published: 29 December 2015
Cited by 2 | PDF Full-text (1677 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of novel 3-/2,3-substituted pyrido[4,3-e][1,2,4]triazino[3,2-c][1,2,4]thiadiazine 6,6-dioxides 428 have been synthesized by the reaction of 3-amino-2-(4-thioxo-1,4-dihydropyridin-3-yl-sulfonyl)guanidine with either 2-oxoalkanoic acids and its esters, or phenylglyoxylic hydrates in glacial acetic acid. Some of them exhibited reasonable or moderate
[...] Read more.
A series of novel 3-/2,3-substituted pyrido[4,3-e][1,2,4]triazino[3,2-c][1,2,4]thiadiazine 6,6-dioxides 428 have been synthesized by the reaction of 3-amino-2-(4-thioxo-1,4-dihydropyridin-3-yl-sulfonyl)guanidine with either 2-oxoalkanoic acids and its esters, or phenylglyoxylic hydrates in glacial acetic acid. Some of them exhibited reasonable or moderate anticancer activity toward human cancer cell lines, HCT-116, MCF-7 and HeLa. The structure of this novel heterocyclic ring system was confirmed by 1D-NMR and 2D-NMR spectroscopic data including COSY, ROESY and HMBC, elemental analyses and MS spectrometry. Full article
Figures

Figure 1

Open AccessReview Chemoprevention of Breast Cancer by Dietary Polyphenols
Molecules 2015, 20(12), 22578-22620; https://doi.org/10.3390/molecules201219864
Received: 2 October 2015 / Revised: 4 December 2015 / Accepted: 8 December 2015 / Published: 17 December 2015
Cited by 19 | PDF Full-text (9006 KB) | HTML Full-text | XML Full-text
Abstract
The review will discuss in detail the effects of polyphenols on breast cancer, including both the advantages and disadvantages of the applications of these natural compounds. First, we focus on the characterization of the main classes of polyphenols and then on in vitro
[...] Read more.
The review will discuss in detail the effects of polyphenols on breast cancer, including both the advantages and disadvantages of the applications of these natural compounds. First, we focus on the characterization of the main classes of polyphenols and then on in vitro and in vivo experiments carried out in breast cancer models. Since the therapeutic effects of the administration of a single type of polyphenol might be limited because of the reduced bioavailability of these drugs, investigations on combination of several polyphenols or polyphenols with conventional therapy will also be discussed. In addition, we present recent data focusing on clinical trials with polyphenols and new approaches with nanoparticles in breast cancer. Besides the clinical and translational findings this review systematically summarizes our current knowledge about the molecular mechanisms of anti-cancer effects of polyphenols, which are related to apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways and epigenetic mechanisms. At the same time the effects of polyphenols on primary tumor, metastasis and angiogenesis in breast cancer are discussed. The increasing enthusiasm regarding the combination of polyphenols and conventional therapy in breast cancer might lead to additional efforts to motivate further research in this field. Full article
Figures

Figure 1

Open AccessArticle Novel 3-Amino-6-chloro-7-(azol-2 or 5-yl)-1,1-dioxo-1,4,2-benzodithiazine Derivatives with Anticancer Activity: Synthesis and QSAR Study
Molecules 2015, 20(12), 21960-21970; https://doi.org/10.3390/molecules201219821
Received: 30 October 2015 / Revised: 20 November 2015 / Accepted: 1 December 2015 / Published: 9 December 2015
Cited by 4 | PDF Full-text (958 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of new 3-amino-6-chloro-7-(azol-2 or 5-yl)-1,1-dioxo-1,4,2-benzodithiazine derivatives 5aj have been synthesized and evaluated in vitro for their antiproliferative activity at the U.S. National Cancer Institute. The most active compound 5h showed significant cytotoxic effects against ovarian (OVCAR-3) and breast (MDA-MB-468)
[...] Read more.
A series of new 3-amino-6-chloro-7-(azol-2 or 5-yl)-1,1-dioxo-1,4,2-benzodithiazine derivatives 5aj have been synthesized and evaluated in vitro for their antiproliferative activity at the U.S. National Cancer Institute. The most active compound 5h showed significant cytotoxic effects against ovarian (OVCAR-3) and breast (MDA-MB-468) cancer (10% and 47% cancer cell death, respectively) as well as a good selectivity toward prostate (DU-145), colon (SW-620) and renal (TK-10) cancer cell lines. To obtain a deeper insight into the structure-activity relationships of the new compounds 5aj QSAR studies have been applied. Theoretical calculations allowed the identification of molecular descriptors belonging to the RDF (RDF055p and RDF145m in the MOLT-4 and UO-31 QSAR models, respectively) and 3D-MorSE (Mor32m and Mor16e for MOLT-4 and UO-31 QSAR models) descriptor classes. Based on these data, QSAR models with good robustness and predictive ability have been obtained. Full article
Figures

Figure 1

Open AccessArticle Anticancer and Antibacterial Activity Studies of Gold(I)-Alkynyl Chromones
Molecules 2015, 20(11), 19699-19718; https://doi.org/10.3390/molecules201119647
Received: 8 September 2015 / Revised: 18 October 2015 / Accepted: 23 October 2015 / Published: 30 October 2015
Cited by 10 | PDF Full-text (2958 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Three gold(I) complexes of alkynyl chromones were synthesized and characterized. The single-crystal X-ray structure analysis of a dinuclear compound and of a flavone derivative exhibit a typical d10 gold(I)-alkynyl linear arrangement. All complexes were evaluated as anticancer and antibacterial agents against four human
[...] Read more.
Three gold(I) complexes of alkynyl chromones were synthesized and characterized. The single-crystal X-ray structure analysis of a dinuclear compound and of a flavone derivative exhibit a typical d10 gold(I)-alkynyl linear arrangement. All complexes were evaluated as anticancer and antibacterial agents against four human cancer cell lines and four pathogenic bacterial strains. All compounds show antiproliferative activity at lower micromolar range concentrations. Complex 4 showed a broad activity profile, being more active than the reference drug auranofin against HepG2, MCF-7 and CCRF-CEM cancer cells. The cellular uptake into MCF-7 cells of the investigated complexes was measured by atomic absorption spectroscopy (AAS). These measurements showed a positive correlation between an increased cellular gold content and the incubation time of the complexes. Unexpectedly an opposite effect was observed for the most active compound. Biological assays revealed various molecular mechanisms for these compounds, comprising: (i) thioredoxin reductase (TrxR) inhibition, (ii) caspases-9 and -3 activation; (iii) DNA damaging activity and (iv) cell cycle disturbance. The gold(I) complexes were also bactericidal against Gram-positive methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) bacterial strains, while showing no activity against the Gram-negative Escherichia coli bacterial strain. Full article
Figures

Figure 1

Open AccessArticle Design, Synthesis, Activity and Docking Study of Sorafenib Analogs Bearing Sulfonylurea Unit
Molecules 2015, 20(10), 19361-19371; https://doi.org/10.3390/molecules201019361
Received: 10 August 2015 / Revised: 21 September 2015 / Accepted: 21 September 2015 / Published: 23 October 2015
Cited by 17 | PDF Full-text (296 KB) | HTML Full-text | XML Full-text
Abstract
Two series of novel sorafenib analogs containing a sulfonylurea unit were synthesized and their chemical structures were confirmed by 1H-NMR, 13C-NMR, MS spectrum and elemental analysis. The synthesized compounds were evaluated for the cytotoxicity against A549, Hela, MCF-7, and PC-3
[...] Read more.
Two series of novel sorafenib analogs containing a sulfonylurea unit were synthesized and their chemical structures were confirmed by 1H-NMR, 13C-NMR, MS spectrum and elemental analysis. The synthesized compounds were evaluated for the cytotoxicity against A549, Hela, MCF-7, and PC-3 cancer cell lines. Some of the compounds showed moderate cytotoxic activity, especially compounds 1-(2,4-difluorophenylsulfonyl)-3-(4-(2-(methylcarbamoyl)pyridin-4-yloxy)phenyl)urea (6c) and 1-(4-bromophenylsulfonyl)-3-(4-(2-(methylcarbamoyl)pyridin-4-yloxy)phenyl)urea (6f) with the IC50 values against four cancer cell lines ranging from 16.54 ± 1.22 to 63.92 ± 1.81 μM, respectively. Inhibitory rates against vascular endothelial growth factor receptor-2 (VEGFR2/KDR) kinase at 10 μM of target compounds were further carried out in this paper in order to investigate the target of these compounds. Structure-activity relationships (SARs) and docking studies indicated that the sulfonylurea unit was important to these kinds of compounds. None of the substitutions in the phenoxy group and small halogen atoms such as 2,4-difluoro substitution of the aryl group contributed to the activity. The results suggested that sulfonylurea sorafenib analogs are worthy of further study. Full article
Figures

Figure 1

Open AccessArticle Synthesis and Evaluation of New Pyrazoline Derivatives as Potential Anticancer Agents
Molecules 2015, 20(10), 19066-19084; https://doi.org/10.3390/molecules201019066
Received: 17 August 2015 / Revised: 14 October 2015 / Accepted: 14 October 2015 / Published: 20 October 2015
Cited by 15 | PDF Full-text (540 KB) | HTML Full-text | XML Full-text
Abstract
New pyrazoline derivatives were synthesized and evaluated for their cytotoxic effects on AsPC-1 human pancreatic adenocarcinoma, U87 and U251 human glioblastoma cell lines. 1-[((5-(4-Methylphenyl)-1,3,4-oxadiazol-2-yl)thio)acetyl]-3-(2-thienyl)-5-(4-chlorophenyl)-2-pyrazoline (11) was found to be the most effective anticancer agent against AsPC-1 and U251 cell lines, with
[...] Read more.
New pyrazoline derivatives were synthesized and evaluated for their cytotoxic effects on AsPC-1 human pancreatic adenocarcinoma, U87 and U251 human glioblastoma cell lines. 1-[((5-(4-Methylphenyl)-1,3,4-oxadiazol-2-yl)thio)acetyl]-3-(2-thienyl)-5-(4-chlorophenyl)-2-pyrazoline (11) was found to be the most effective anticancer agent against AsPC-1 and U251 cell lines, with IC50 values of 16.8 µM and 11.9 µM, respectively. Tumor selectivity of compound 11 was clearly seen between Jurkat human leukemic T-cell line and human peripheral blood mononuclear cells (PBMC). Due to its promising anticancer activity, compound 11 was chosen for apoptosis/necrosis evaluation and DNA-cleavage analysis in U251 cells. Compound 11-treated U251 cells exhibited apoptotic phenotype at low concentration (1.5 µM). DNA-cleaving efficiency of this ligand was more significant than cisplatin and was clearly enhanced by Fe(II)-H2O2-ascorbic acid systems. This result pointed out the relationship between the DNA cleavage and the cell death. Full article
Figures

Figure 1

Open AccessArticle Lead Optimization of 2-Cyclohexyl-N-[(Z)-(3-methoxyphenyl/3-hydroxyphenyl) methylidene]hydrazinecarbothioamides for Targeting the HER-2 Overexpressed Breast Cancer Cell Line SKBr-3
Molecules 2015, 20(10), 18246-18263; https://doi.org/10.3390/molecules201018246
Received: 19 June 2015 / Revised: 2 October 2015 / Accepted: 2 October 2015 / Published: 7 October 2015
Cited by 4 | PDF Full-text (1477 KB) | HTML Full-text | XML Full-text
Abstract
Lead derivatives of 2-cyclohexyl-N-[(Z)-(3-methoxyphenyl/3-hydroxyphenyl) methylidene]hydrazinecarbothioamides 118 were synthesized, characterized and evaluated in vitro against HER-2 overexpressed breast cancer cell line SKBr-3. All the compounds showed activity against HER-2 overexpressed SKBr-3 cells with IC50 = 17.44 ±
[...] Read more.
Lead derivatives of 2-cyclohexyl-N-[(Z)-(3-methoxyphenyl/3-hydroxyphenyl) methylidene]hydrazinecarbothioamides 118 were synthesized, characterized and evaluated in vitro against HER-2 overexpressed breast cancer cell line SKBr-3. All the compounds showed activity against HER-2 overexpressed SKBr-3 cells with IC50 = 17.44 ± 0.01 µM to 53.29 ± 0.33 µM. (2Z)-2-(3-Hydroxybenzylidene)-N-(3-methoxyphenyl)hydrazinecarbothioamide (12, IC50 = 17.44 ± 0.01 µM) was found to be most potent compound of this series targeting HER-2 overexpressed breast cancer cells compared to the standard drug 5-fluorouracil (5-FU) (IC50 = 38.58 ± 0.04 µM). Compound 12 inhibited the cellular proliferation via DNA degradation. Full article
Figures

Figure 1

Open AccessArticle Design, Synthesis and Biological Evaluation of Novel 5H-Chromenopyridines as Potential Anti-Cancer Agents
Molecules 2015, 20(9), 17152-17165; https://doi.org/10.3390/molecules200917152
Received: 20 July 2015 / Revised: 10 September 2015 / Accepted: 11 September 2015 / Published: 17 September 2015
Cited by 8 | PDF Full-text (889 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A novel series of 5H-chromenopyridines was identified as anticancer agents in our continuing effort to discover and develop new small molecule anti-proliferative agents. Based on our initial lead SP-6-27 compound, we designed and synthesized novel tricyclic 5H-thiochromenopyridine and 5
[...] Read more.
A novel series of 5H-chromenopyridines was identified as anticancer agents in our continuing effort to discover and develop new small molecule anti-proliferative agents. Based on our initial lead SP-6-27 compound, we designed and synthesized novel tricyclic 5H-thiochromenopyridine and 5H-chromenopyridine analogs to evaluate the impact of an additional ring, as well as conformational flexibility on cytotoxic activity against human melanoma and glioma cell lines. All of the 5H-thiochromenopyridines have been achieved in good yields (89%–93%) using a single-step, three-component cyclization without the need for purification. The 5H-chromenopyridine analog of the potent 5H-thiochromenopyride was obtained in a good yield upon purification. All newly-prepared 5H-thiochromenopyridines showed good to moderate cytotoxicity against three melanoma and two glioma cell lines (3–15 μM). However, the 5H-chromenopyridine analogue that we prepared in our laboratory lost cytotoxic activity. The moderate cytotoxic activity of 5H-thiochromenopyridines shows the promise of developing chromenopyridines as potential anticancer agents. Full article
Figures

Figure 1

Open AccessArticle Synthesis, Spectral Analysis and Preliminary in Vitro Evaluation of Some Tetrapyrrolic Complexes with 3d Metal Ions
Molecules 2015, 20(9), 15488-15499; https://doi.org/10.3390/molecules200915488
Received: 20 July 2015 / Revised: 13 August 2015 / Accepted: 18 August 2015 / Published: 26 August 2015
Cited by 1 | PDF Full-text (307 KB) | HTML Full-text | XML Full-text
Abstract
In this paper, two tetrapyrrolic complexes, Zn(II)-5-(3-hydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin and Cu(II)-5-(3-hydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin were synthesized, and characterized from a spectral and biological point of view. The study provided data concerning the behavior of identical external substituents vs. two different core insertions. Some of the properties of the
[...] Read more.
In this paper, two tetrapyrrolic complexes, Zn(II)-5-(3-hydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin and Cu(II)-5-(3-hydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin were synthesized, and characterized from a spectral and biological point of view. The study provided data concerning the behavior of identical external substituents vs. two different core insertions. Some of the properties of the proposed tetrapyrrolic structures were highlighted, having photodynamic therapy of cancer as a targeted biomedical application. Elemental analysis, NMR, FTIR and UV-Vis data in various solvents were provided. A preliminary in vitro study on normal and cancer cultured cells was carried out for biocompatibility assessment in dark conditions. The preliminary in vitro study performed on human peripheral mononuclear cells exposed to tetrapyrrolic compounds (2 µM) showed that the proposed compounds had a convenient cytotoxic profile on human normal peripheral blood mononuclear cells under dark conditions. Meanwhile, the investigated compounds reduced the number of metabolically active breast tumor MCF-7 cells, with the exception of Zn(II) complex-containing a symmetrical ligand. Accordingly, preliminary in vitro data suggest that the proposed tetrapyrrolic compounds are good candidates for PDT, as they limit tumor expansion even under dark conditions, whilst sparing normal cells. Full article
Figures

Figure 1

Open AccessArticle Novel Coumarin-Containing Aminophosphonatesas Antitumor Agent: Synthesis, Cytotoxicity, DNA-Binding and Apoptosis Evaluation
Molecules 2015, 20(8), 14791-14809; https://doi.org/10.3390/molecules200814791
Received: 29 June 2015 / Revised: 6 August 2015 / Accepted: 10 August 2015 / Published: 13 August 2015
Cited by 13 | PDF Full-text (1417 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of novel coumarin-containing α-aminophosphonates were synthesized and evaluated for their antitumor activities against Human colorectal (HCT-116), human nasopharyngeal carcinoma (human KB) and human lung adenocarcinoma (MGC-803) cell lines in vitro. Compared with 7-hydroxy-4-methylcoumarin (4-MU), most of the derivatives
[...] Read more.
A series of novel coumarin-containing α-aminophosphonates were synthesized and evaluated for their antitumor activities against Human colorectal (HCT-116), human nasopharyngeal carcinoma (human KB) and human lung adenocarcinoma (MGC-803) cell lines in vitro. Compared with 7-hydroxy-4-methylcoumarin (4-MU), most of the derivatives showed an improved antitumor activity. Compound 8j (diethyl 1-(3-(4-methyl-2-oxo-2H-chromen-7-yloxy) propanamido)-1-phenylethyl-Phosphonate), with IC50 value of 8.68 μM against HCT-116 cell lines, was about 12 fold than that of unsubstituted parent compound. The mechanism investigation proved that 8c, 8d, 8f and 8j were achieved through the induction of cell apoptosis by G1 cell-cycle arrest. In addition, the further mechanisms of compound 8j-induced apoptosis in HCT-116 cells demonstrated that compound 8j induced the activations of caspase-9 and caspase-3 for causing cell apoptosis, and altered anti- and pro-apoptotic proteins. DNA-binding experiments suggested that some derivatives bind to DNA through intercalation. The results seem to imply the presence of an important synergistic effect between coumarin and aminophosphonate, which could contribute to the strong chelating properties of aminophosphonate moiety. Full article
Figures

Figure 1

Open AccessArticle CAPE Analogs Induce Growth Arrest and Apoptosis in Breast Cancer Cells
Molecules 2015, 20(7), 12576-12589; https://doi.org/10.3390/molecules200712576
Received: 28 May 2015 / Revised: 4 July 2015 / Accepted: 7 July 2015 / Published: 10 July 2015
Cited by 11 | PDF Full-text (738 KB) | HTML Full-text | XML Full-text
Abstract
Breast cancer is the second leading cause of death amongst women worldwide. As a result, many have turned their attention to new alternative approaches to treat this disease. Caffeic acid phenylethyl ester (CAPE), a well-known active compound from bee propolis, has been previously
[...] Read more.
Breast cancer is the second leading cause of death amongst women worldwide. As a result, many have turned their attention to new alternative approaches to treat this disease. Caffeic acid phenylethyl ester (CAPE), a well-known active compound from bee propolis, has been previously identified as a strong antioxidant, anti-inflammatory, antiviral and anticancer molecule. In fact, CAPE is well documented as inducing cell death by inhibiting NFκB and by inducing pro-apoptotic pathways (i.e., p53). With the objective of developing stronger anticancer compounds, we studied 18 recently described CAPE derivatives for their ability to induce apoptosis in breast cancer cell lines. Five of the said compounds, including CAPE, were selected and subsequently characterised for their anticancer mechanism of action. We validated that CAPE is a potent inducer of caspase-dependent apoptosis. Interestingly, some newly synthesized CAPE derivatives also showed greater cell death activity than the lead CAPE structure. Similarly to CAPE, analog compounds elicited p53 activation. Interestingly, one compound in particular, analog 10, induced apoptosis in a p53-mutated cell line. These results suggest that our new CAPE analog compounds may display the capacity to induce breast cancer apoptosis in a p53-dependent and/or independent manner. These CAPE analogs could thus provide new therapeutic approaches for patients with varying genotypic signatures (such as p53 mutations) in a more specific and targeted fashion. Full article
Figures

Figure 1

Open AccessArticle Synthesis of Novel 1-(4-Substituted pyridine-3-sulfonyl)-3-phenylureas with Potential Anticancer Activity
Molecules 2015, 20(7), 12029-12044; https://doi.org/10.3390/molecules200712029
Received: 2 April 2015 / Revised: 16 June 2015 / Accepted: 24 June 2015 / Published: 1 July 2015
Cited by 8 | PDF Full-text (779 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of novel 4-substituted-N-(phenylcarbamoyl)-3-pyridinesulfonamides 1127 have been synthesized by the reaction of 4-substituted pyridine-3-sulfonamides 210 with the appropriate aryl isocyanates in presence of potassium carbonate. The in vitro anticancer activity of compounds 11, 12,
[...] Read more.
A series of novel 4-substituted-N-(phenylcarbamoyl)-3-pyridinesulfonamides 1127 have been synthesized by the reaction of 4-substituted pyridine-3-sulfonamides 210 with the appropriate aryl isocyanates in presence of potassium carbonate. The in vitro anticancer activity of compounds 11, 12, 1421 and 2426 was evaluated at the U.S. National Cancer Institute and in light of the results, some structure-activity relationships were discussed. The most prominent compound, N-[(4-chlorophenyl)carbamoyl]-4-[4-(3,4-dichlorophenyl)piperazin-1-yl]pyridine-3-sulfonamide (21) has exhibited a good activity profile and selectivity toward the subpanels of leukemia, colon cancer and melanoma, with average GI50 values ranging from 13.6 to 14.9 µM. Full article
Figures

Figure 1

Open AccessArticle Synthesis and Biological Evaluation of Lipophilic 1,4-Naphthoquinone Derivatives against Human Cancer Cell Lines
Molecules 2015, 20(7), 11994-12015; https://doi.org/10.3390/molecules200711994
Received: 29 May 2015 / Revised: 21 June 2015 / Accepted: 25 June 2015 / Published: 30 June 2015
Cited by 7 | PDF Full-text (4867 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
To examine the effect of hydrophobicity on the anticancer activity of 1,4-naphthoquinone derivatives, a series of compounds bearing a 2-O-alkyl-, 3-C-alkyl- or 2/3-N-morpholinoalkyl group were synthesized and evaluated for their anticancer activity against five human cancer cell
[...] Read more.
To examine the effect of hydrophobicity on the anticancer activity of 1,4-naphthoquinone derivatives, a series of compounds bearing a 2-O-alkyl-, 3-C-alkyl- or 2/3-N-morpholinoalkyl group were synthesized and evaluated for their anticancer activity against five human cancer cell lines in vitro. The cytotoxicity of these derivatives was assayed against HT-29, SW480, HepG2, MCF-7 and HL-60 cells by the MTT assay. Among them, 2-hydroxy-3-farnesyl-1,4-naphthoquinone (11a) was found to be the most cytotoxic against these cell lines. Our results showed that the effectiveness of compound 11a may be attributed to its suppression of the survival of HT-29. Secondly, in the Hoechst 33258 staining test, compound 11a-treated cells exhibited nuclear condensation typical of apoptosis. Additionally, cell cycle analysis by flow cytometry indicated that compound 11a arrested HT-29 cells in the S phase. Furthermore, cell death detected by Annexin V-FITC/propidium iodide staining showed that compound 11a efficiently induced apoptosis of HT-29 in a concentration-dependent manner. Taken together, compound 11a effectively inhibits colon cancer cell proliferation and may be a potent anticancer agent. Full article
Figures

Figure 1

Open AccessArticle Induction of Mitochondrial Dependent Apoptosis in Human Leukemia K562 Cells by Meconopsis integrifolia: A Species from Traditional Tibetan Medicine
Molecules 2015, 20(7), 11981-11993; https://doi.org/10.3390/molecules200711981
Received: 22 February 2015 / Revised: 15 May 2015 / Accepted: 18 May 2015 / Published: 30 June 2015
Cited by 3 | PDF Full-text (3743 KB) | HTML Full-text | XML Full-text
Abstract
Objectives: Meconopsis integrifolia (M. integrifolia) is one of the most popular members in Traditional Tibetan Medicine. This study aimed to investigate the anticancer effect of M. integrifolia and to detect the underlying mechanisms of these effects. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
[...] Read more.
Objectives: Meconopsis integrifolia (M. integrifolia) is one of the most popular members in Traditional Tibetan Medicine. This study aimed to investigate the anticancer effect of M. integrifolia and to detect the underlying mechanisms of these effects. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and trypan blue assay were used to evaluate the cytotoxicity of M. integrifolia. Changes in cell nuclear morphology and reactive oxygen species (ROS) level were observed by fluorescent microscopy. Apoptosis ratio, DNA damage and mitochondrial membrane potential (MMP) loss were analyzed by flow cytometry. Western blotting assay was adopted to detect the proteins related to apoptosis. Immunofluorescence was used to observe the release of cytochrome C. Results: The obtained data revealed that M. integrifolia could significantly inhibit K562 cell viability, mainly by targeting apoptosis induction and cell cycle arrest in G2/M phase. Collapse in cell morphology, chromatin condensation, DNA damage and ROS accumulation were observed. Further mechanism detection revealed that mitochondrion might be a key factor in M. integrifolia-induced apoptosis. Conclusions: M. integrifolia could induce mitochondria mediated apoptosis and cell cycle arrest in G2/M phase with little damage to normal cells, suggesting that M. integrifolia might be a potential and efficient anticancer agent that deserves further investigation. Full article
Figures

Figure 1

Open AccessArticle A Selective G-Quadruplex DNA-Stabilizing Ligand Based on a Cyclic Naphthalene Diimide Derivative
Molecules 2015, 20(6), 10963-10979; https://doi.org/10.3390/molecules200610963
Received: 8 May 2015 / Revised: 28 May 2015 / Accepted: 8 June 2015 / Published: 12 June 2015
Cited by 14 | PDF Full-text (2743 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A cyclic naphthalene diimide (cyclic NDI, 1), carrying a benzene moiety as linker chain, was synthesized and its interaction with G-quadruplex DNAs of a-core and a-coreTT as a human telomeric DNA, c-kit and c-myc as DNA sequence at promoter region, or thrombin-binding
[...] Read more.
A cyclic naphthalene diimide (cyclic NDI, 1), carrying a benzene moiety as linker chain, was synthesized and its interaction with G-quadruplex DNAs of a-core and a-coreTT as a human telomeric DNA, c-kit and c-myc as DNA sequence at promoter region, or thrombin-binding aptamer (TBA) studied based on UV-VIS and circular dichroism (CD) spectroscopic techniques, thermal melting temperature measurement, and FRET-melting assay. The circular dichroism spectra showed that 1 induced the formation of different types of G-quadruplex DNA structure. Compound 1 bound to these G-quadruplexes with affinities in the range of 106–107 M−1 order and a 2:1 stoichiometry. Compound 1 showed 270-fold higher selectivity for a-core than dsDNA with a preferable a-core binding than a-coreTT, c-kit, c-myc and TBA in the presence of K+, which is supported by thermal melting studies. The FRET-melting assay also showed that 1 bound preferentially to human telomeric DNA. Compound 1 showed potent inhibition against telomerase activity with an IC50 value of 0.9 μM and preferable binding to G-quadruplexes DNA than our previously published cyclic NDI derivative 3 carrying a benzene moiety as longer linker chain. Full article
Figures

Figure 1

Open AccessArticle Optimization of Purification, Identification and Evaluation of the in Vitro Antitumor Activity of Polyphenols from Pinus Koraiensis Pinecones
Molecules 2015, 20(6), 10450-10467; https://doi.org/10.3390/molecules200610450
Received: 6 February 2015 / Revised: 12 May 2015 / Accepted: 2 June 2015 / Published: 5 June 2015
Cited by 13 | PDF Full-text (982 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this study, an efficient purification method for the polyphenols of Pinus koraiensis pinecone (PPP) has been developed. AB-8 resin was verified to offer good adsorption and desorption ratio for PPP. Response surface methodology (RSM) indicated that the optimized purification parameters for PPP
[...] Read more.
In this study, an efficient purification method for the polyphenols of Pinus koraiensis pinecone (PPP) has been developed. AB-8 resin was verified to offer good adsorption and desorption ratio for PPP. Response surface methodology (RSM) indicated that the optimized purification parameters for PPP were 1.70 mg GAE/mL phenolic sample concentration, 22.00 mL sample volume, and 63.00% ethanol concentration. Under these conditions, the experimental purity of PPP was 27.93 ± 0.14% (n = 3), which matched well with the predicted purity of 28.17%. Next, the antiproliferative effects of PPP on seven cancer cell lines, including A375 (human skin melanoma cancer cell line), A549 (human lung cancer cell line), SH-SY5Y (human neuroblastoma cell line), LOVO (human colon cancer stem cell line), MCF-7 (human breast cancer cell line), HeLa (human cervical cancer line), and HT29 (human colon cancer line), were examined by MTT assays. The results indicated that PPP had the highest capacity for inhibiting LOVO cells growth with an EC50 value of 0.317 ± 0.0476 mg/mL. Finally, Ultra-high performance liquid chromatography- tandem mass spectrometry (UPLC-MS) was used to tentatively identify twenty-four peaks in the purified PPP, of which five representative peaks were identified as catechin, methyl quercetin, o-vanillin, luteolin and coronaric acid. Our results demonstrate that Pinus koraiensis pinecone is a readily available source of polyphenols, and the purified PPP could be a promising natural antitumor agent for applications in functional foods. Full article
Figures

Figure 1

Open AccessCommunication Synthesis and Biological Evaluation of Novel Water-Soluble Poly-(ethylene glycol)-10-hydroxycamptothecin Conjugates
Molecules 2015, 20(5), 9393-9404; https://doi.org/10.3390/molecules20059393
Received: 20 April 2015 / Accepted: 15 May 2015 / Published: 21 May 2015
Cited by 1 | PDF Full-text (795 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In order to improve the antitumor activity and water solubility of 10-hydroxycamptothecin (HCPT), a series of novel HCPT conjugates were designed and synthesized by conjugating polyethylene glycol (PEG) to the 10-hydroxyl group of HCPT via a valine spacer. The in vitro stability of
[...] Read more.
In order to improve the antitumor activity and water solubility of 10-hydroxycamptothecin (HCPT), a series of novel HCPT conjugates were designed and synthesized by conjugating polyethylene glycol (PEG) to the 10-hydroxyl group of HCPT via a valine spacer. The in vitro stability of these synthesized compounds was determined in pH 7.4 buffer at 37 °C, and the results showed that they released HCPT at different rates. All the compounds demonstrated significant antitumor activity in vitro against K562, HepG2 and HT-29 cells. Among them, compounds, 4a, 4d, 4e and 4f, exhibited 2–5 times higher potency than HCPT. The stability and antitumor activity of these conjugates were found to be closely related to the length of PEG and the linker type, conjugates with a relatively short PEG chain and carbamate linkages (compounds 4a and 4f) exhibited controlled release of HCPT and excellent antitumor in vitro activity. Full article
Figures

Figure 1

Open AccessArticle Novel All Trans-Retinoic Acid Derivatives: Cytotoxicity, Inhibition of Cell Cycle Progression and Induction of Apoptosis in Human Cancer Cell Lines
Molecules 2015, 20(5), 8181-8197; https://doi.org/10.3390/molecules20058181
Received: 5 February 2015 / Revised: 28 April 2015 / Accepted: 29 April 2015 / Published: 7 May 2015
Cited by 5 | PDF Full-text (3436 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Owing to the pharmacological potential of ATRA (all trans-retinoic acid), a series of retinamides and a 1-(retinoyl)-1,3-dicyclohexylurea compound were prepared by reacting ATRA with long chain alkyl or alkenyl fatty amines by using a 4-demethylaminopyridine (DMAP)-catalyzed N,N¢-dicyclohexylcarbodiimide (DCC) coupling. The successful synthesis
[...] Read more.
Owing to the pharmacological potential of ATRA (all trans-retinoic acid), a series of retinamides and a 1-(retinoyl)-1,3-dicyclohexylurea compound were prepared by reacting ATRA with long chain alkyl or alkenyl fatty amines by using a 4-demethylaminopyridine (DMAP)-catalyzed N,N¢-dicyclohexylcarbodiimide (DCC) coupling. The successful synthesis of the target compounds was demonstrated using a range of spectroscopic techniques. The cytotoxicity of the compounds was measured along with their ability to induce cell cycle arrest and apoptosis in human cancer cell lines MCF-7 (breast cancer) and HepG2 (liver cancer) and normal human cell line HEK293 (embryonic kidney). The results of cytotoxicity and flow cytometry data showed that the compounds had a moderate to strong effect against MCF-7 and HepG2 cells and were less toxic to HEK293 cells. N-oleyl-retinamide was found to be the most potent anticancer agent and was more effective against MCF-7 cells than HepG2 cells. Full article
Figures

Figure 1

Open AccessArticle 5-Methoxyquinoline Derivatives as a New Class of EZH2 Inhibitors
Molecules 2015, 20(5), 7620-7636; https://doi.org/10.3390/molecules20057620
Received: 15 January 2015 / Revised: 16 April 2015 / Accepted: 20 April 2015 / Published: 27 April 2015
Cited by 4 | PDF Full-text (1297 KB) | HTML Full-text | XML Full-text
Abstract
A series of quinoline derivatives was synthesized and biologically evaluated as Enhancer of Zeste Homologue 2 (EZH2) inhibitors. Structure-activity relationship (SAR) studies led to the discovery of 5-methoxy-2-(4-methyl-1,4-diazepan-1-yl)-N-(1-methylpiperidin-4-yl)quinolin-4-amine (5k), which displayed an IC50 value of 1.2 μM against